Course 224: Geometry - Continuity and Differentiability

Lecture Notes by Prof. David Simms
ETEXed by Chris Blair

1 Continuity

Consider M, N finite dimensional real or complex vector spaces. What does it mean to say that
a map

M>XLvyenN

is continuous? Let a,z € X C M, and f(a), f(z) € Y C N, then we can make “f(x) arbitrarily
close to f(a)” by taking “z sufficiently close to a.” To make this precise, we choose norms on
M,N.

Definition: (Norm) A norm or length function on M is a function || - || such that
M —-R
z = ||z|]
such that:
1) [|z 4+ yll < [|=[| + [lyl| (triangle inequality),
i) ||ax]] = [all|z]],

iii) ||«|| > 0 with equality if and only if z = 0.

Definition: (Normed Vector Space) A real or complex vector space with a chosen norm is called
a normed vector space. From now on, M, N etc. are normed spaces.

Definition: (Ball) Let X C M, a € X,r > 0, then the ball in X of radius r, centred at a is
Bx(a,r) ={z € X|[|[z —al| <r}

Definition: (Open) A set V' C X is called open in X if for each a € V there exists an r > 0
such that Bx(a,r) C V, ie each point of V is an interior point.

Theorem 1.1.
Bx(a,r) is open in X.

Proof. Let b € Bx(a,r). Then |[[b—a|| <r = r—||b—a|| > 0. Let s > 0 be less than r — ||b—al],
then

z € Bx(b,s) = ||t —b|]| <s<r—]lb—al
= |lz—b||+|b—al <7
= ||z —al|| <r =2z € Bx(a,r)

using the triangle inequality. Hence Bx (b, s) C Bx(a,r) as required. O



Definition: (Continuity) A map M D> X L, ¥ ¢ N is called continuous at a € X if for each £>0
36 > 0 such that f [Bx(a,d)] C By (f(a),¢))

We call f continuous if it is continuous at a for every a € X.

Theorem 1.2.
Let M D> X EN Y C N, then f is continuous at a < for each V open in'Y such that f(a) € V
there exists W open in X such that fW C V.

Proof. i) Let f be continuous at a, and let V open in Y such that f(a) € V. V is open, so there
exists € >0 such that By (f(a),e) C V. f is continuous, so therefore there exists 6 >0 such that
fBx(a,d) C By(f(a),e), where Bx (a,d) is open in X as required.

ii) Let V be open in Y such that f(a) € V = there exists W open in X such that a € W and
fW C V. V is open so there exists € >0 such that By (f(a),e) open in Y, f(a) € By (f(a),e).
Therefore there exists W open in X such that a € W and fW C By (f(a),e).

W is open in X, so there exists § >0 such that Bx(a,0) C fW C By(f(a),¢), hence f is
continuous at a as required. O

This theorem shows that the continuity at a of X Ly depends only on the open sets of X
and Y.

Definition: (Usual Topology) The collection of open sets of X, where X is a subset of a finite
dimensional real or complex vector space, is called the usual topology on X, and is independent
of the choice of norm.

Definition: (Topology on X) Let X be a set. A topology on X is a collection of subsets of X,
called the open sets of the topology, such that

i) 0, X open

ii) If {Vi}ier a collection of sets V; open in X then their union [JV; is open in X

iii) If V1 ...V} a finite collection of sets V; open in X, then their intersection V4 NVoN-- NV
is open in X

Definition: (Topological Space) A set X together with a topology on X is called a topological
space.

Definition: (Continuous at a) Let X EN Y, X,Y topological spaces, and a € X. Then f is
continuous at a if for each V open in Y such that f(a) € V there exists W open in X such that
a€Wand fWCV.

f is continuous if it is continuous at a for all @ € X.

Note: If X a topological space and if V' C X, and if for each a € V there exists open W such
that a € W, C V, then V is open.

Proof. V.=|JW, is a union of open sets and is therefore open. O

Theorem 1.3.
Let X L Y, X,Y topological spaces, then f is continuous <V open in'Y = f~V open in X.

Proof. i) Let f be continuous, and V be open in Y. Let a € f~!V, then there exists W, open
in X such that a € W, C f~'V (as f continuous). f~'V = (JW, a union of open sets, hence
f~1V is open.



ii) Let V be open in Y = f~'V open in X. Let a € X, and let V open in Y be such that
f(a) € V. Therefore a € f~'V open in X, and f [f_lV} C V. f~'V is open, so then f is
continuous at a for all a € X, and so f is continuous. O

Theorem 1.4.
Let
f

X —Y
¥

then f,g continuous = gf continuous.

Proof. Let V be open in Z, then (¢f)~'V = f~! [¢7'V], and ¢g7'V is open as g is continuous,

and f~1g~!V is open as f is continuous, hence gf is continuous. O
Thus we have a category top, whose objects are topological spaces X,Y,Z ... and whose
morphisms
x4y

are continuous maps.
We consider, in calculus, the category whose objects are open subsets V,U, W ... of finite
dimensional real or complex vector spaces, and whose morphisms are continuous maps

viw
The isomorphisms in these categories are called homeomorphisms, hence we could ask

“Wherefore art thou homeomorphism?”

2 Differentiability

Definition: (Differentiable) Let M D V Lwen , where V, W are open subsets of real or
complex vector spaces M, N. Let a € V, then f is differentiable at a if there exists a linear
operator

MY N
called the derivative of f at a, such that
fla+h) = f(a) + f'(a)h+ ¢(h)

where f’(a)h is a linear approximation to the change in f when a changes by h, and ¢(h) is a
remainder term such that
[lp(R)||

1Al

—0as ||h]| =0

i.e. for each open V, 0 € V, in R there exists open W, 0 € W, in M such that % € V for all
h € W,h # 0. Or equivalently, for any chosen norm, for each € > 0 there exists § > 0 such that

el < ||| <6,k # 0.




Theorem 2.1.
Let MDDV 4, W C N be differentiable at a € V. Then the derivative f'(a) is uniquely determined
by the formula

1 1 f(a+th)_f(a)
flap = lim =————

d
- %f(a—kth)’tzo

= the directional derivative of f at a along h

Proof.
fla+th) = f( )+ f'(a th+¢(th)
S IHhH
which — 0 as t — 0, as required. O

Definition: (Function of n independent variables) Let R* D V 4, R, V open in R™, then f is
called a real-valued function of n independent variables.

Definition: (Partial Derivative) If a = (a1,...,a,) € Vyand z = (z1,...,2,), f(x) = f(z1,...,20),

then we define

of of

81‘3() = @(ah...,an)
— limf(ala~..7aj+t;-..,an)7f(a1,...,aj,...an)
t—0 t
~ im fla+te;) — f(a)
t—0 t

d
= —fla-+tey
g latte)|
= directional derivative of f at a along e;

called the partial derivative of f at a with respect to the j** usual coordinate function z7.

Theorem 2.2.

Let R" >V L R™ pe differentiable, V open, where f(z) = (f'(x),...,f™(x)), fi(z) =

fi(z1,...,2n). Then the derivative

g 79 pm
s the m x n matriz ‘
8 K3
f’(a):( g;@) i=1l..m,j=1...n
Proof. The j'" column of f'(a) = f'(a)e; = %(f(a + tej)) ‘t:o = agz(;‘.) = (afa;(ja),..., 3{;_5“))
as required. O

Definition: (Operator Norm) Let M LN be a linear operator on M, N finite dimensional
normed vector spaces. We write
17| = SuplllTUH

[lull=



called the operator norm of T'. This satisfies:
DS +T| < [ISI]+ 17|
i) [|aT|| = ||| T]|
i) [|Tz]] < ||T] ]2l
iv) [|ST]| < [|S|[[T]
v) ||T|| > 0 with equality if and only if T'=10

Proof. eg. iii) ||Tz[| = [|z| HTﬁ

) < ||z||||T|| since a7y @ unit vector.

iv) IST(| = I‘Sllllp1||5TU||
< Sup S]]l
< Sup ST ]
= [ISIHITI]
using iii). U

Theorem 2.3.
(Chain Rule For Functions on Finite Dimensional Real or Complex Vector Space)

Let U L vV EN W and U g W where U, VW are open subsets of finite dimensional real
or complex vector spaces. Let g be differentiable at a, f differentiable at g(a), then f - g is
differentiable at a and

(£-9) =1(s@)g'@)

Proof.
f(g(a + h)) = f[g(a) +g'(a)h + ¢(h)] where ||<ﬁ§j|)|| —0as ||h]| =0
=f [g(a) + y} where y = ¢'(a)h + ¢(h)
= [yl < llg"(@)[IR]] +1|¢(R)]]
Il — oy 9
= Al < llg"(a)ll + ]
= f(g(a)) +f (g(a))y +9(y) where W@yf” —0as |yl =0
= (9(@) + 7' (9(@)) g (@)h
¥(y)
+ £/(9(a)) #(h) + llyll 6() wmmﬂ>={@'3i8
Now,
| (g@)otn +bewl| el iyl
i < [l (ot | "+ gy 1ol
which — 0 as ||h|| — 0 (since 6(y) — 0 as ||y|| — 0 as ||k|| — 0), hence result. O



Ezample. Consider 4 f(g'(t), ... ,g"(t)} , where
RO>U SV CR"
tg(t) = (gl(t), - ,gn(t))
with ¢ differentiable on U, and

RS>V LR

(1, yxp) — flog,...,20)
so that R D U £¢ R. Then,
d d
ZFg @) = Z(F-9)®
= (f .g) t) (1 x 1 matrix)

(
)g’(t) (n x 1 and 1 X n matrices)
t

illustrating the “chain rule.”

Ezample. Consider f(z,y), then

@ 1[o0.000] = 2 (o), 9] 202 1 2L 10y, g0y 240

Definition: (C7) If f differentiable and f’ continuous, we say that f is C*. If f’ differentiable
and f®) = (f’) continuous, we say that f is C2. If the 7" derivative exists and is continuous,
we say that f is C". If the r*"derivative f(") exists for all  we say that f is C> or smooth.

For each r we have a category whose objects are open subsets of finite dimensional real or
complex vector spaces, and whose morphisms are C” functions, such that f,g C" = f-g C".
The isomorphisms in this category are called C" diffeomorphisms. V, W are C" diffeomorphic if

-1
wWLw v w, £, ! both C".
Now consider R" D> V L W C R™. We have that

flxy,...,xy) = [fl(xl,...,:cn),...,fm(:cl,...,:z:n)
and then f C!' = f' = (g—g’;) (m x n matrix) exists and is continuous, which implies g—ij all

exist and are continuous. We want to show the converse.



Theorem 2.4.

(Just the one component case) Let R™ D V 4, R, V open, then f is C! & gg, exists and is
continuous for all i.

Proof. Have already proved = implication. We will prove the < case for n = 2 only, i.e. let
R25V LR
(@,y) = f(z,y)
then g£ , gf exist and are continuous. To prove this, let a € V| then

flan = s+ [ gL SN |+ o)

where the remainder is

é(h) = fla+h) — fla+ hep) — %hl ¥ fa+ h2es) — f(a) — %hQ

_of 1 OF oy OF 2 Of 1o
using the Mean Value Theorem, for some )
my on [a+ hez,a+ h] and some my on [a,a + ather ath
h2€2]. 1
Hence, .
oMl thll Haf _of H +
||| [|A]] '
-5
] o'

which — 0 as [|h|| — 0. Therefore f’ exists, and is [%, g—f] . O
@’ dy

Now let f
M>V = Ny x---x Ny,

@) = (@), fn(@))

= (fj(x))

(1 x m matrix)

be an m component function on open subset V', where M, N; are finite dimensional real or
complex vector spaces. For any norm on M, N;, take a norm on Ny X --- X N,, as

- ym)ll = llall + -+ + [lyml]
Then if a € V,

fla+n) = (fila+n)
(fita) + £ (@) + 5(n)
(fit@)) + (Fi@n) + (vs(n)



SO

oMl _ [ (W] [[thm (R
= +...+7
1A 1| 1Al
which goes to zero as ||h|| — 0|| if and only if % —0as|lh||—=0forall j=1,...,m.

Therefore f is differentiable at a with derivative f’(a) such that

I@h = (f;@)n)

if and only if f; is differentiable at a with derivative fj(a) for all j =1,...,m. We have that f’
continuous < fj’ continuous Vj, and so f is C! < f; is C1Vj.

Ezample. Let R" DV LR Then,

xJ

fisCl e f' = (ﬂ> exists and is continuous
fisC? & f' = (%) exists and is continuous
3
fisC? < f = ({ngac%) exists and is continuous
fis C* < all partial derivatives exist.
Theorem 2.5.
IfR"DOV EN R, V open, is C2, then

0% f B 0% f
Oridxi — Ozl ozt

Proof. We will prove the case n = 2 only, i.e. let RZD>V EN R, then

9 (ON\_9 (9
oxr \dy) oy \ oz

Let (a,b) € V. Let h # 0,k # 0 be such that the closed rectangle (a,b), (a + h,b), (a + h,b+
h), (a,b+ k) is contained in V.

_
P .
(a+hb+k)
btk
d— v
b%%

(a,b)

Put
g(.’L‘) = f(x’b+k) _f(va)



then

fla+h,b+h)— fla+hb)— fla,b+ k) + f(a,b) = gla+ h) — g(a)

= hg'(c)
—h Bi(c,u k) — %(C, b)}
= hk {gygﬂ (¢,d)

using the Mean Value Theorem first for some a < ¢ < a + h and then for some b < d < b+ k.
Similarly, by defining
g(z) = fla+h,y) - f(a,y)

we have

fla+h,b+h)— fla+h,b)— fla,b+k)+ f(a,b) =g(b+ k) —g(b)

=kg'(d)
_ | 9f n_ 9
—k{ay(a—kh,d) ay(a,d)
ok | 290 o
= hk {&Uay} (d,d)
say, and so cancelling the h and k& we get
*f Ff
Ayox (c,d) = dxdy (¢, d)

We now let (h, k) — (0,0), so (¢,d) — (a,b) and (¢/,d’) — (a,b). Hence by continuity of the
second derivative we find that
O f O f

0xdy (a,0) = Oyox (a,)

O

Theorem 2.6.
(Mean Value Theorem for Functions on Finite Dimensional Normed Spaces) Let M D'V LN
be Ct. Let x,y € V such that

[,y ={tze+ (1 —-t)y|0<t<1}CV

f’[tx+<1—t)y]H§k Vo<t<1

then
[ #@) = 1| < k||= - o]



Proof. We have that
1
fa) = s = [ (G e+ =1 a
1
- / fltw+ (1= 1)) (o — y)dt

= |lr@ = 1) < [ #lfe o]
He-o
as required. O

Theorem 2.7.
(Inverse Function Theorem) Let M D'V LN be a O function on open V, with M, N finite
dimensional real or complex vector spaces. Let a € V' at which

MY N
is invertible, then there exists an open neighbourhood W of a such that
w L f(w)
is a C" diffeomorphism onto open f(W) in N.
Proof. 1) Let T be the inverse of f'(a), and put
F(z) =Tf(z +a) = Tf(a)
SO

F(0)=Tf(a) =Tf(a) =0
F'(0)=Tf'(a)+0=1

We will prove that F' maps an open neighbourhood U of 0 onto an open neighbourhood F(U)
of 0 by a C” diffeomorphism. It will then follow that f maps U + a onto f(U + a) by a C"
diffeomorphism.

Choose a closed ball B, centre 0, radius 7 > 0 such that, by continuity of F”’

1y — F'(2)]| <L
e P,
det F'(x) #0
then, using [[u|| — [[v]| < [Ju —v]],
Va,y € B, |lx —yl| = |[F(x) = F(y)|| < [|(1 = F)z — (1 = F)y||
< 2z —yl
_5 r—y

by the Mean Value Theorem. Therefore
1
1E(2) = F)I 2 5llz = yll

10



so F(z) = F(y) = = = y, so F is injective on B. Also, F(z) — F(y) =  — y, so F~!is
continuous. Hence

B — F(B)
is a homeomorphism.

ii) We will now show $B C F(B). Take a € 3§ B. Put

then
o) )
I/ @)l < 5 vae B

and therefore 1
llg(z) =9I < 5llz —yl| Vz,y € B

by the Mean Value Theorem, and so g is a contraction. Also,

lg(@)Il = llg(z) — g(0) + al| since g(0) = a
< lg(x) = g(O)[| + [[all
< %Hx||+%r by MVT
< lr—i—lr
-2 2
=rVexebB

Therefore x € B = g(z) € B, so B 4, B, and is a contraction.
Consider now a sequence of points xg, 1, z2 ... in B where g(zg) = z1, g(x1) = z2 and so
on, or z, = g"(xg). Let

lim z,=2€ B

T—00

= g(2) = g lim 2, = lim g(z,) = lm 2,1 =2

hence z is a fixed point. Therefore
z=z—F(2)+a
=F(z)=a
so a € F(B).
iii) Now let BY be the interior of B, and let U = BN F~! (%BO), all open sets, then

vt F(U) is a C" homeomorphism of open U onto open F(U).

We want to show that the inverse map U & F{U)isC". Let x,x+h € F(U), then G(x) = y,
G(z + h) =y +1, say. Then

Fy+1)=F(y)+ Sl+ ¢()

11



where S = F'(y) and L5 — 0 as [|i]| — 0, and [|h]] > [|I]| (as [|[F(z) = F(y)|| > Lllz —yl)),

so ||l|]] — 0 as ||h|| — 0. Therefore,
r+h=x+ S+ ¢(l)
=1=8"1h—-5"1¢(l)

SO
Glx+h)=y+1=G@)+S'h—- 519

and 15160 o1l 11
e AN g~ A e
m =S

with I‘I}lll‘l‘ < 2, so this all goes to zero as ||h|| — 0, hence G is differentiable at x and

@) =57 =[Fw)] = [Fee)]

therefore if G is C*® for some 0 < s < r, then G’ is the composition of the C* functions G, F’
and [-]7!, and hence is C° = G is C**1. So G C° = G C*t1 V0 < s < r, therefore G is C" as
required. O

3 Exercises

1. Let f be a constant function. Show f/(a) is zero Va € M.
Solution: Let f(x) =c¢Va € M. Then

fla+h)=c= f(a) +0h+0
and therefore f'(a) =0Vax € M

2. Let f be alinear function. Show that f/(a) isequal to f Va € M. Show f"(a) =0Vz € M.
Solution: f(a+ h) = f(a) + f(h) + 0, so therefore f'(a) = f Vo € M = f' = constant
= f"(a) =0Vz e M.

3. Let f:R™@™ — R"*" be defined by f(A) = A2. Prove that f is differentiable and find its

derivative.
Solution: f(A+ H) = A?>+ AH + HA+ H? and

|H2]] _ [HH|| _ |[H][]|H]

= < —0as ||H|| —0
=] [IH]] ||

hence f is differentiable, with derivative given by

F(A)H = AH + HA

4. Let B be a fixed nxn matrix. Let f : R"*™ — R"*™ be defined by f(A) = ABA. Prove
that f is differentiable and find its derivative.

Solution: f(A+ H)=(A+ H)B(A+ H)=ABA+ ABH + HBA+ HBH and

|HBH|| _ [[H]||l|BIl[IH]]
1R 41— D]

—0as||H||—=0

12



hence f is differentiable, with derivative given by

f(A)H = ABH + HBA

. Let f:R™"™ — R"¥" he defined by f(A) = A'A. Prove that f is differentiable and find its
derivative. Prove that if A is an orthogonal matrix then the image of the linear operator
f'(A) is the space of real symmetric nxn matrices.

Solution: f(A+ H)=(A+ H)'(A+H)=A'"A+ A'"H+ H'A+ H'H and

[HEH| _ |[H ][ H]]
=l = 1H]]

—0as||H||—0

hence f is differentiable, with derivative given by

f(A)H =A'"H+ H'A
If A orthogonal, we need to show that there exists H € R"*™ such that f'(A)H = S, ie
such that A’"H + H'A = S and such a matrix H is given by H = $AS.

. Let V be the space of real non-singular n xn matrices. Let f : V — R"*™ be given by
f(A) = AL Find f'(A).

Solution: We want f(A+ H) = (A+ H)~! = A7'+ linear in H+ remainder. Now,
(A+H) =A™ = (A+ H) 7 1= (A+ H)A7Y = (A+ H) (- HA™Y) ~ —A7 HA™
for small H. The remainder term is then
GH)=(A+H) P —A 4+ A HA?

= (A+H)™! [11 —(A+H)A™ + (A + H)A*lHAfl}

= (A+H)™" [HA—lHA—l]
then
H|J*

< \|(A+H)—1H|HHH [A7Y|]* = 0 as [|H|| — 0

e(HDI|
1]

as required, hence

f(AH = -A"'HA™!
. A function F of n real variables is called homogeneous of degree r if it satisfies
F(txy,...,txn) =t"F(x1,...,2,)

By differentiation with respect to ¢t show that such a function F is an eigenfunction of the
operator
0 P 0
xr1——— .. Ly ——
' 0xt " Oxn

and find the eigenvalue.

Solution: Fix x1,...,x, and differentiate with respect to ¢, hence
xli (tx tey)+ - +a” 0 F(tx try) =rt" L F (x Tn)
Ol 1ye--yldn o 1y.+-ybbn) — 1y+-+5dn

13



Let t =1, then
CE A P

157 ;
ox! oz

hence F' an eigenfunction of the the operator :171% 4+ -+ xn% with eigenvalue r.

. Let f:R%? — R be the function

f= {2xy;j+zj (z,y) # (0,0)

0 (z,y) =0
Show that
o’ f 2 0 f
0x0y ~ Jydx
at (0,0).

Solution: We have that

<a2f> _ [66’]“} o [560) - 50,0)
0x9y ) (0,0 0x 9y (g0 0 t

and away from the origin

af _ d 223y — 2x13 _ (2% + y?) (223 — 62y?) — (223y — 22y3)(2y)
oy Oy | 2+y* | (22 +y2)?
L of

5y (60 =21

and as f(z,y) =0 at (0,0) and along the y-axis, then %(070) = 0. Hence

0% f .2
=lim— =2
0zdy 00 10t
8% f

By symmetry, (m>(o 0 = —2, hence

0% f
0xdy

0 f
yor

4

at (0,0).

. Let f:R? — R be the function

s [EE @y #£00)
0 ($7y):0

Calculate % and % at (0,0). Calculate £ f(ta,tb) at t = 0 for a,b € R. Deduce that the
chain rule does not hold at (0,0).

14



Solution: As f(z,y) = 0 along the z and y axes and at the origin, we have

of _of _
5,(0.0) = 8—y(0,0) =0

We also have % f(ta, tb) = a3t (ta, tb) + b5L (ta, tb).

Now, away from the origin f is C°°, so the chain rule holds and

[(ta, tb) — £(0,0)

d .
%f(taa tb) - }g% t
t=0
| 2ab*t?
=lim ———
t—0 t(a?t? + b4t4)
_ % a0
)0 a=0
while the chain rule would give
d _of of _
af(ta, tb) i = aa—x(0,0) + b@(0,0) = O

so the chain rule does not hold at (0,0) and indeed f is not differentiable at (0,0).
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