
Course 224: Geometry - Continuity and Differentiability

Lecture Notes by Prof. David Simms

LATEXed by Chris Blair

1 Continuity

Consider M , N finite dimensional real or complex vector spaces. What does it mean to say that
a map

M⊃ X f→ Y ⊂ N

is continuous? Let a, x ∈ X ⊂M , and f(a), f(x) ∈ Y ⊂ N , then we can make “f(x) arbitrarily
close to f(a)” by taking “x sufficiently close to a.” To make this precise, we choose norms on
M,N .

Definition: (Norm) A norm or length function on M is a function || · || such that

M → R
x 7→ ||x||

such that:
i) ||x+ y|| ≤ ||x||+ ||y|| (triangle inequality),
ii) ||αx|| = |α|||x||,
iii) ||x|| ≥ 0 with equality if and only if x = 0.

Definition: (Normed Vector Space) A real or complex vector space with a chosen norm is called
a normed vector space. From now on, M , N etc. are normed spaces.

Definition: (Ball) Let X ⊂M , a ∈ X, r > 0, then the ball in X of radius r, centred at a is

BX(a, r) = {x ∈ X | ||x− a|| < r}

Definition: (Open) A set V ⊂ X is called open in X if for each a ∈ V there exists an r > 0
such that BX(a, r) ⊂ V , ie each point of V is an interior point.

Theorem 1.1.
BX(a, r) is open in X.

Proof. Let b ∈ BX(a, r). Then ||b−a|| < r ⇒ r−||b−a|| > 0. Let s > 0 be less than r−||b−a||,
then

x ∈ BX(b, s)⇒ ||x− b|| < s < r − ||b− a||
⇒ ||x− b||+ ||b− a|| < r

⇒ ||x− a|| < r ⇒ x ∈ BX(a, r)

using the triangle inequality. Hence BX(b, s) ⊂ BX(a, r) as required.
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Definition: (Continuity) A map M⊃ X f→ Y ⊂ N is called continuous at a ∈ X if for each ε>0
∃ δ > 0 such that f [BX(a, δ)] ⊂ BY (f(a), ε))

We call f continuous if it is continuous at a for every a ∈ X.

Theorem 1.2.
Let M ⊃ X

f→ Y ⊂ N , then f is continuous at a ⇔ for each V open in Y such that f(a) ∈ V
there exists W open in X such that fW ⊂ V .

Proof. i) Let f be continuous at a, and let V open in Y such that f(a) ∈ V . V is open, so there
exists ε>0 such that BY (f(a), ε) ⊂ V . f is continuous, so therefore there exists δ>0 such that
fBX(a, δ) ⊂ BY (f(a), ε), where BX(a, δ) is open in X as required.

ii) Let V be open in Y such that f(a) ∈ V ⇒ there exists W open in X such that a ∈W and
fW ⊂ V . V is open so there exists ε> 0 such that BY (f(a), ε) open in Y , f(a) ∈ BY (f(a), ε).
Therefore there exists W open in X such that a ∈W and fW ⊂ BY (f(a), ε).

W is open in X, so there exists δ > 0 such that BX(a, δ) ⊂ fW ⊂ BY (f(a), ε), hence f is
continuous at a as required.

This theorem shows that the continuity at a of X
f→ Y depends only on the open sets of X

and Y .

Definition: (Usual Topology) The collection of open sets of X, where X is a subset of a finite
dimensional real or complex vector space, is called the usual topology on X, and is independent
of the choice of norm.

Definition: (Topology on X) Let X be a set. A topology on X is a collection of subsets of X,
called the open sets of the topology, such that

i) ∅, X open
ii) If {Vi}i∈I a collection of sets Vi open in X then their union

⋃
Vi is open in X

iii) If V1 . . . Vk a finite collection of sets Vi open in X, then their intersection V1∩V2∩· · ·∩Vk
is open in X

Definition: (Topological Space) A set X together with a topology on X is called a topological
space.

Definition: (Continuous at a) Let X
f→ Y , X,Y topological spaces, and a ∈ X. Then f is

continuous at a if for each V open in Y such that f(a) ∈ V there exists W open in X such that
a ∈W and fW ⊂ V .
f is continuous if it is continuous at a for all a ∈ X.

Note: If X a topological space and if V ⊂ X, and if for each a ∈ V there exists open W such
that a ∈Wa ⊂ V , then V is open.

Proof. V =
⋃
Wa is a union of open sets and is therefore open.

Theorem 1.3.
Let X

f→ Y , X,Y topological spaces, then f is continuous ⇔ V open in Y ⇒ f−1V open in X.

Proof. i) Let f be continuous, and V be open in Y . Let a ∈ f−1V , then there exists Wa open
in X such that a ∈ Wa ⊂ f−1V (as f continuous). f−1V =

⋃
Wa a union of open sets, hence

f−1V is open.
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ii) Let V be open in Y ⇒ f−1V open in X. Let a ∈ X, and let V open in Y be such that
f(a) ∈ V . Therefore a ∈ f−1V open in X, and f

[
f−1V

]
⊂ V . f−1V is open, so then f is

continuous at a for all a ∈ X, and so f is continuous.

Theorem 1.4.
Let

X Y

Z

............................................................... ............
f

.................................................................... ........
....

gf
................................................................

....

............
g

then f, g continuous ⇒ gf continuous.

Proof. Let V be open in Z, then (gf)−1V = f−1
[
g−1V

]
, and g−1V is open as g is continuous,

and f−1g−1V is open as f is continuous, hence gf is continuous.

Thus we have a category top, whose objects are topological spaces X,Y, Z . . . and whose
morphisms

X
f→ Y

are continuous maps.
We consider, in calculus, the category whose objects are open subsets V,U,W . . . of finite

dimensional real or complex vector spaces, and whose morphisms are continuous maps

V
f→W

The isomorphisms in these categories are called homeomorphisms, hence we could ask

“Wherefore art thou homeomorphism?”

2 Differentiability

Definition: (Differentiable) Let M ⊃ V
f→ W ⊂ N , where V,W are open subsets of real or

complex vector spaces M,N . Let a ∈ V , then f is differentiable at a if there exists a linear
operator

M
f ′(a)→ N

called the derivative of f at a, such that

f(a+ h) = f(a) + f ′(a)h+ φ(h)

where f ′(a)h is a linear approximation to the change in f when a changes by h, and φ(h) is a
remainder term such that

||φ(h)||
||h||

→ 0 as ||h|| → 0

i.e. for each open V , 0 ∈ V , in R there exists open W , 0 ∈W , in M such that ||φ(h)||
||h|| ∈ V for all

h ∈ W,h 6= 0. Or equivalently, for any chosen norm, for each ε > 0 there exists δ > 0 such that
||φ(h)||
||h|| <ε ∀||h||<δ, h 6= 0.
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Theorem 2.1.
Let M⊃ V f→W ⊂ N be differentiable at a ∈ V . Then the derivative f ′(a) is uniquely determined
by the formula

f ′(a)h = lim
t→0

f(a+ th)− f(a)
t

=
d

dt
f(a+ th)

∣∣∣
t=0

= the directional derivative of f at a along h

Proof.
f(a+ th) = f(a) + f ′(a)th+ φ(th)

⇒
∣∣∣∣∣∣∣∣f(a+ th)− f(a)

t
− f ′(a)h

∣∣∣∣∣∣∣∣ =
||φ(th)||
||th||

||h||

which → 0 as t→ 0, as required.

Definition: (Function of n independent variables) Let Rn ⊃ V
f→ R, V open in Rn, then f is

called a real-valued function of n independent variables.

Definition: (Partial Derivative) If a = (a1, . . . , an) ∈ V , and x = (x1, . . . , xn), f(x) = f(x1, . . . , xn),
then we define

∂f

∂xj
(a) =

∂f

∂xj
(a1, . . . , an)

= lim
t→0

f(a1, . . . , aj + t, . . . , an)− f(a1, . . . , aj , . . . an)
t

= lim
t→0

f(a+ tej)− f(a)
t

=
d

dt
f(a+ tej)

∣∣∣
t=0

= directional derivative of f at a along ej

called the partial derivative of f at a with respect to the jth usual coordinate function xj .

Theorem 2.2.
Let Rn ⊃ V

f→ Rm be differentiable, V open, where f(x) = (f1(x), . . . , fm(x)), f i(x) =
f i(x1, . . . , xn). Then the derivative

Rn f ′(a)→ Rm

is the m× n matrix

f ′(a) =
(
∂f i(a)
∂xj

)
i = 1 . . .m , j = 1 . . . n

Proof. The jth column of f ′(a) = f ′(a)ej = d
dt

(
f(a + tej)

)∣∣∣
t=0

= ∂f(a)
∂xj =

(
∂f1(a)
∂xj , . . . , ∂f

m(a)
∂xj

)
as required.

Definition: (Operator Norm) Let M T→ N be a linear operator on M,N finite dimensional
normed vector spaces. We write

||T || = sup
||u||=1

||Tu||
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called the operator norm of T . This satisfies:
i) ||S + T || ≤ ||S||+ ||T ||
ii) ||αT || = |α|||T ||
iii) ||Tx|| ≤ ||T || ||x||
iv) ||ST || ≤ ||S|| ||T ||
v) ||T || ≥ 0 with equality if and only if T = 0

Proof. eg. iii) ||Tx|| = ||x||
∣∣∣∣∣∣T x
||x||

∣∣∣∣∣∣ ≤ ||x|| ||T || since x
||x|| a unit vector.

iv) ||ST || = sup
||u||=1

||STu||

≤ sup
||u||=1

||S|| ||Tu||

≤ sup
||u||=1

||S|| ||T || ||u||

= ||S|| ||T ||

using iii).

Theorem 2.3.
(Chain Rule For Functions on Finite Dimensional Real or Complex Vector Space)

Let U
g→ V

f→ W and U
f ·g→ W where U, V,W are open subsets of finite dimensional real

or complex vector spaces. Let g be differentiable at a, f differentiable at g(a), then f · g is
differentiable at a and (

f · g
)′

= f ′
(
g(a)

)
g′(a)

Proof.

f
(
g(a+ h)

)
= f

[
g(a) + g′(a)h+ φ(h)

]
where

||φ(h)||
||h||

→ 0 as ||h|| → 0

= f
[
g(a) + y

]
where y = g′(a)h+ φ(h)

⇒ ||y|| ≤ ||g′(a)|| ||h||+ ||φ(h)||

⇒ ||y||
||h||

≤ ||g′(a)||+ ||φ(h)||
||h||

= f
(
g(a)

)
+ f ′

(
g(a)

)
y + ψ(y) where

||ψ(y)||
||y||

→ 0 as ||y|| → 0

= f
(
g(a)

)
+ f ′

(
g(a)

)
g′(a)h

+ f ′
(
g(a)

)
φ(h) + ||y|| θ(y) where θ(y) =

{
ψ(y)
||y|| y 6= 0
0 y = 0

Now, ∣∣∣∣∣∣f ′(g(a)
)
φ(h) + ||y||θ(y)

∣∣∣∣∣∣
||h||

≤
∣∣∣∣∣∣f ′(g(a)

)∣∣∣∣∣∣ ||φ(h)||
||h||

+
||y||
||h||
||θ(y)||

which → 0 as ||h|| → 0 (since θ(y)→ 0 as ||y|| → 0 as ||h|| → 0), hence result.
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Example. Consider d
dtf
[
g1(t), . . . , gn(t)

]
, where

R⊃ U g→ V ⊂ Rn

t 7→ g(t) =
(
g1(t), . . . , gn(t)

)
with g differentiable on U , and

Rn⊃ V f→ R
(x1, . . . , xn) 7→ f(x1, . . . , xn)

so that R ⊃ U f ·g→ R. Then,

d

dt
f
[
g1(t), . . . , gn(t)

]
=

d

dt

(
f · g

)
(t)

=
(
f · g

)′
(t) (1× 1 matrix)

= f ′
(
g(t)

)
g′(t) (n× 1 and 1× n matrices)

=
(
∂f(g(t))
∂xi

)(
d

dt
gi(t)

)

=
∑
i=1

n
∂f
(
g(t)

)
∂xi

d

dt
gi(t)

=
∂f(g(t))
∂x1

dg1(t)
dt

+

· · ·+ ∂f(g(t))
∂xn

dgn(t)
dt

illustrating the “chain rule.”

Example. Consider f(x, y), then

d

dt
f
[
g(t), g(t)

]
=

∂f

∂x1

[
g(t), g(t)

]dg(t)
dt

+
∂f

∂x2

[
g(t), g(t)

]dg(t)
dt

Definition: (Cr) If f differentiable and f ′ continuous, we say that f is C1. If f ′ differentiable
and f (2) = (f ′)′ continuous, we say that f is C2. If the rth derivative exists and is continuous,
we say that f is Cr. If the rthderivative f (r) exists for all r we say that f is C∞ or smooth.

For each r we have a category whose objects are open subsets of finite dimensional real or
complex vector spaces, and whose morphisms are Cr functions, such that f, g Cr ⇒ f · g Cr.
The isomorphisms in this category are called Cr diffeomorphisms. V,W are Cr diffeomorphic if

∃V f→W,V
f−1

← W , f, f−1 both Cr.

Now consider Rn⊃ V f→W ⊂ Rm. We have that

f(x1, . . . , xn) =
[
f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

]
and then f C1 ⇒ f ′ =

(
∂fi

∂xj

)
(m× n matrix) exists and is continuous, which implies ∂fi

∂xj all
exist and are continuous. We want to show the converse.
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Theorem 2.4.
(Just the one component case) Let Rn ⊃ V

f→ R, V open, then f is C1 ⇔ ∂f
∂xi exists and is

continuous for all i.

Proof. Have already proved ⇒ implication. We will prove the ⇐ case for n = 2 only, i.e. let

R2⊃ V f→ R
(x, y) 7→ f(x, y)

then ∂f
∂x ,

∂f
∂y exist and are continuous. To prove this, let a ∈ V , then

f(a+ h) = f(a) +
[
∂f

∂x
,
∂f

∂y

] [
h1

h2

]
+ φ(h)

where the remainder is

φ(h) = f(a+ h)− f(a+ h2e2)− ∂f

∂x
h1 + f(a+ h2e2)− f(a)− ∂f

∂y
h2

=
∂f

∂x
(m1)h1 − ∂f

∂x
(a)h1 +

∂f

∂y
(m2)h2 − ∂f

∂y
(a)h2

using the Mean Value Theorem, for some
m1 on [a+ h2e2, a+ h] and some m2 on [a, a+
h2e2].

Hence,

||φ(h)||
||h||

≤ ||h
1||
||h||

∣∣∣∣∣∣∣∣∂f∂x (m1)− ∂f

∂x
(a)
∣∣∣∣∣∣∣∣

+
||h2||
||h||

∣∣∣∣∣∣∣∣∂f∂y (m2)− ∂f

∂y
(a)
∣∣∣∣∣∣∣∣

·

· ·

a

a+ h2e2 a+ h

m2

m1

which → 0 as ||h|| → 0. Therefore f ′ exists, and is
[
∂f
∂x ,

∂f
∂y

]
.

Now let
M⊃ V f→ N1 × · · · ×Nm

f(x) =
(
f1(x), . . . , fm(x)

)
=
(
fj(x)

)
(1×m matrix)

be an m component function on open subset V , where M,Ni are finite dimensional real or
complex vector spaces. For any norm on M,Ni, take a norm on N1 × · · · ×Nm as

||(y1, . . . , ym)|| = ||y1||+ · · ·+ ||ym||
Then if a ∈ V ,

f(a+ h) =
(
fj(a+ h)

)
=
(
fj(a) + f ′j(a)h+ ψj(h)

)
=
(
fj(a)

)
+
(
f ′j(a)h

)
+
(
ψj(h)

)
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so
||ψ(h)||
||h||

=
||ψ1(h)||
||h||

+ · · ·+ ||ψm(h)||
||h||

which goes to zero as ||h|| → 0|| if and only if ||ψj(h)||
||h|| → 0 as ||h|| → 0 for all j = 1, . . . ,m.

Therefore f is differentiable at a with derivative f ′(a) such that

f ′(a)h =
(
f ′j(a)h

)
if and only if fj is differentiable at a with derivative f ′j(a) for all j = 1, . . . ,m. We have that f ′

continuous ⇔ f ′j continuous ∀j, and so f is C1 ⇔ fj is C1∀j.

Example. Let Rn⊃ V f→ R. Then,

f is C1 ⇔ f ′ =
(
∂f
∂xj

)
exists and is continuous

f is C2 ⇔ f ′′ =
(

∂2f
∂xi∂xj

)
exists and is continuous

f is C3 ⇔ f ′′′ =
(

∂3f
∂xi∂xj∂xk

)
exists and is continuous

f is C∞ ⇔ all partial derivatives exist.

Theorem 2.5.
If Rn⊃ V f→ R, V open, is C2, then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

Proof. We will prove the case n = 2 only, i.e. let R2⊃ V f→ R, then

∂

∂x

(
∂

∂y

)
=

∂

∂y

(
∂

∂x

)
Let (a, b) ∈ V . Let h 6= 0, k 6= 0 be such that the closed rectangle (a, b), (a+ h, b), (a+ h, b+

h), (a, b+ k) is contained in V .

a a + hc

b

b + k

d

(a, b)

(a+ h, b+ k)

V

Put
g(x) = f(x, b+ k)− f(x, b)
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then

f(a+ h, b+ h)− f(a+ h, b)− f(a, b+ k) + f(a, b) = g(a+ h)− g(a)
= hg′(c)

= h

[
∂f

∂x
(c, b+ k)− ∂f

∂x
(c, b)

]
= hk

[
∂

∂y

∂f

∂x

]
(c, d)

using the Mean Value Theorem first for some a ≤ c ≤ a + h and then for some b ≤ d ≤ b + k.
Similarly, by defining

g̃(x) = f(a+ h, y)− f(a, y)

we have

f(a+ h, b+ h)− f(a+ h, b)− f(a, b+ k) + f(a, b) = g̃(b+ k)− g̃(b)
= k g̃′(d′)

= k

[
∂f

∂y
(a+ h, d′)− ∂f

∂y
(a, d′)

]
= hk

[
∂

∂x

∂f

∂y

]
(c′, d′)

say, and so cancelling the h and k we get

∂2f

∂y∂x
(c, d) =

∂2f

∂x∂y
(c′, d′)

We now let (h, k) → (0, 0), so (c, d) → (a, b) and (c′, d′) → (a, b). Hence by continuity of the
second derivative we find that

∂2f

∂x∂y
(a, b) =

∂2f

∂y∂x
(a, b)

Theorem 2.6.
(Mean Value Theorem for Functions on Finite Dimensional Normed Spaces) Let M ⊃ V

f→ N
be C1. Let x, y ∈ V such that

[x, y] = {tx+ (1− t)y | 0 ≤ t ≤ 1} ⊂ V

Let ∣∣∣∣∣∣f ′ [tx+ (1− t)y]
∣∣∣∣∣∣ ≤ k ∀0 ≤ t ≤ 1

then ∣∣∣∣∣∣f(x)− f(y)
∣∣∣∣∣∣ ≤ k∣∣∣∣∣∣x− y∣∣∣∣∣∣
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Proof. We have that

f(x)− f(y) =
∫ 1

0

(
d

dt
f [tx+ (1− t)y]

)
dt

=
∫ 1

0

f ′ [tx+ (1− t)y] (x− y)dt

⇒
∣∣∣∣∣∣f(x)− f(y)

∣∣∣∣∣∣ ≤ ∫ 1

0

k
∣∣∣∣∣∣x− y∣∣∣∣∣∣dt

= k
∣∣∣∣∣∣x− y∣∣∣∣∣∣

as required.

Theorem 2.7.
(Inverse Function Theorem) Let M ⊃ V

f→ N be a Cr function on open V , with M,N finite
dimensional real or complex vector spaces. Let a ∈ V at which

M
f ′(a)→ N

is invertible, then there exists an open neighbourhood W of a such that

W
f→ f(W )

is a Cr diffeomorphism onto open f(W ) in N .

Proof. i) Let T be the inverse of f ′(a), and put

F (x) = Tf(x+ a)− Tf(a)

so

F (0) = Tf(a)− Tf(a) = 0
F ′(0) = Tf ′(a) + 0 = 1

We will prove that F maps an open neighbourhood U of 0 onto an open neighbourhood F (U)
of 0 by a Cr diffeomorphism. It will then follow that f maps U + a onto f(U + a) by a Cr

diffeomorphism.
Choose a closed ball B, centre 0, radius r > 0 such that, by continuity of F ′

||1M − F ′(x)|| ≤ 1
2

det F ′(x) 6= 0

}
∀x ∈ B

then, using ||u|| − ||v|| ≤ ||u− v||,

∀x, y ∈ B, ||x− y|| − ||F (x)− F (y)|| ≤ ||(1− F )x− (1− F )y||

≤ 1
2
||x− y||

by the Mean Value Theorem. Therefore

||F (x)− F (y)|| ≥ 1
2
||x− y||
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so F (x) = F (y) ⇒ x = y, so F is injective on B. Also, F (x) → F (y) ⇒ x → y, so F−1 is
continuous. Hence

B
F→ F (B)

is a homeomorphism.

ii) We will now show 1
2B ⊂ F (B). Take a ∈ 1

2B. Put

g(x) = x− F (x) + a

then
g′(x) = 1− F ′(x) + 0

so
||g′(x)|| ≤ 1

2
∀x ∈ B

and therefore
||g(x)− g(y)|| ≤ 1

2
||x− y|| ∀x, y ∈ B

by the Mean Value Theorem, and so g is a contraction. Also,

||g(x)|| = ||g(x)− g(0) + a|| since g(0) = a

≤ ||g(x)− g(0)||+ ||a||

≤ 1
2
||x||+ 1

2
r by MVT

≤ 1
2
r +

1
2
r

= r ∀x ∈ B

Therefore x ∈ B ⇒ g(x) ∈ B, so B
g→ B, and is a contraction.

Consider now a sequence of points x0, x1, x2 . . . in B where g(x0) = x1, g(x1) = x2 and so
on, or xr = gr(x0). Let

lim
r→∞

xr = z ∈ B

⇒ g(z) = g lim
r→∞

xr = lim
r→∞

g(xr) = lim
r→∞

xr+1 = z

hence z is a fixed point. Therefore

z = z − F (z) + a

⇒ F (z) = a

so a ∈ F (B).

iii) Now let B0 be the interior of B, and let U = B0 ∩ F−1
(

1
2B

0
)
, all open sets, then

U
F→ F (U) is a Cr homeomorphism of open U onto open F (U).
We want to show that the inverse map U G← F (U) is Cr. Let x, x+h ∈ F (U), then G(x) = y,

G(x+ h) = y + l, say. Then

F (y + l) = F (y) + Sl + φ(l)
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where S = F ′(y) and ||φ(l)||
||l|| → 0 as ||l|| → 0, and ||h|| ≥ ||l|| (as ||F (x)−F (y)|| ≥ 1

2 ||x− y||),
so ||l|| → 0 as ||h|| → 0. Therefore,

x+ h = x+ Sl + φ(l)

⇒ l = S−1h− S−1φ(l)

so
G(x+ h) = y + l = G(x) + S−1h− S−1φ(l)

and
||S−1φ(l)||
||h||

≤ ||S−1|| ||φ(l)||
||l||

||l||
||h||

with ||l||
||h|| ≤ 2, so this all goes to zero as ||h|| → 0, hence G is differentiable at x and

G′(x) = S−1 =
[
F ′(y)

]−1

=
[
F ′(G(x))

]−1

therefore if G is Cs for some 0 ≤ s ≤ r, then G′ is the composition of the Cs functions G, F ′

and [ · ]−1, and hence is Cs ⇒ G is Cs+1. So G Cs ⇒ G Cs+1 ∀ 0 ≤ s ≤ r, therefore G is Cr as
required.

3 Exercises

1. Let f be a constant function. Show f ′(a) is zero ∀ a ∈M .

Solution: Let f(x) = c ∀x ∈M . Then

f(a+ h) = c = f(a) + 0h+ 0

and therefore f ′(a) = 0 ∀x ∈M

2. Let f be a linear function. Show that f ′(a) is equal to f ∀x ∈M . Show f ′′(a) = 0 ∀x ∈M .

Solution: f(a + h) = f(a) + f(h) + 0, so therefore f ′(a) = f ∀x ∈ M ⇒ f ′ = constant
⇒ f ′′(a) = 0 ∀x ∈M .

3. Let f : Rn×n → Rn×n be defined by f(A) = A2. Prove that f is differentiable and find its
derivative.

Solution: f(A+H) = A2 +AH +HA+H2 and

||H2||
||H||

=
||HH||
||H||

≤ ||H|| ||H||
||H||

→ 0 as ||H|| → 0

hence f is differentiable, with derivative given by

f ′(A)H = AH +HA

4. Let B be a fixed n×n matrix. Let f : Rn×n → Rn×n be defined by f(A) = ABA. Prove
that f is differentiable and find its derivative.

Solution: f(A+H) = (A+H)B(A+H) = ABA+ABH +HBA+HBH and

||HBH||
||H||

≤ ||H||||B||||H||
||H||

→ 0 as ||H|| → 0

12



hence f is differentiable, with derivative given by

f ′(A)H = ABH +HBA

5. Let f : Rn×n → Rn×n be defined by f(A) = AtA. Prove that f is differentiable and find its
derivative. Prove that if A is an orthogonal matrix then the image of the linear operator
f ′(A) is the space of real symmetric n×n matrices.

Solution: f(A+H) = (A+H)t(A+H) = AtA+AtH +HtA+HtH and

||HtH||
||H||

≤ ||H
t||||H||
||H||

→ 0 as ||H|| → 0

hence f is differentiable, with derivative given by

f ′(A)H = AtH +HtA

If A orthogonal, we need to show that there exists H ∈ Rn×n such that f ′(A)H = S, ie
such that AtH +HtA = S and such a matrix H is given by H = 1

2AS.

6. Let V be the space of real non-singular n×n matrices. Let f : V → Rn×n be given by
f(A) = A−1. Find f ′(A).

Solution: We want f(A+H) = (A+H)−1 = A−1+ linear in H+ remainder. Now,

(A+H)−1 −A−1 = (A+H)−1
[
I− (A+H)A−1

]
= (A+H)−1

(
−HA−1

)
≈ −A−1HA−1

for small H. The remainder term is then

φ(H) = (A+H)−1 −A−1 +A−1HA−1

= (A+H)−1
[
I− (A+H)A−1 + (A+H)A−1HA−1

]
= (A+H)−1

[
HA−1HA−1

]
then

||φ(H)||
||H||

≤
∣∣∣∣(A+H)−1

∣∣∣∣ ||H||2
||H||

∣∣∣∣A−1
∣∣∣∣2 → 0 as ||H|| → 0

as required, hence
f ′(A)H = −A−1HA−1

7. A function F of n real variables is called homogeneous of degree r if it satisfies

F (tx1, . . . , txn) = trF (x1, . . . , xn)

By differentiation with respect to t show that such a function F is an eigenfunction of the
operator

x1
∂

∂x1
+ · · ·+ xn

∂

∂xn

and find the eigenvalue.

Solution: Fix x1, . . . , xn and differentiate with respect to t, hence

x1 ∂

∂x1
F (tx1, . . . , txn) + · · ·+ xn

∂

∂xn
F (tx1, . . . , txn) = rtr−1F (x1, . . . , xn)
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Let t = 1, then (
x1

∂

∂x1
+ · · ·+ xn

∂

∂xn

)
F = rF

hence F an eigenfunction of the the operator x1
∂
∂x1 + · · ·+ xn

∂
∂xn with eigenvalue r.

8. Let f : R2 → R be the function

f =

{
2xy x

2−y2

x2+y2 (x, y) 6= (0, 0)
0 (x, y) = 0

Show that
∂2f

∂x∂y
6= ∂2f

∂y∂x

at (0, 0).

Solution: We have that

(
∂2f

∂x∂y

)
(0,0)

=
[
∂

∂x

∂f

∂y

]
(0,0)

= lim
t→0

[
∂f
∂y (t, 0)− ∂f

∂y (0, 0)

t

]

and away from the origin

∂f

∂y
=

∂

∂y

[
2x3y − 2xy3

x2 + y2

]
=

(x2 + y2)(2x3 − 6xy2)− (2x3y − 2xy3)(2y)
(x2 + y2)2

⇒ ∂f

∂y
(t, 0) = 2t

and as f(x, y) = 0 at (0, 0) and along the y-axis, then ∂f
∂y (0, 0) = 0. Hence(

∂2f

∂x∂y

)
(0,0)

= lim
t→0

2t
t

= 2

By symmetry,
(
∂2f
∂y∂x

)
(0,0)

= −2, hence

∂2f

∂x∂y
6= ∂2f

∂y∂x

at (0, 0).

9. Let f : R2 → R be the function

f =

{
2xy2

x2+y4 (x, y) 6= (0, 0)
0 (x, y) = 0

Calculate ∂f
∂x and ∂f

∂y at (0, 0). Calculate d
dtf(ta, tb) at t = 0 for a, b ∈ R. Deduce that the

chain rule does not hold at (0, 0).
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Solution: As f(x, y) = 0 along the x and y axes and at the origin, we have

∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0

We also have d
dtf(ta, tb) = a∂f∂x (ta, tb) + b∂f∂y (ta, tb).

Now, away from the origin f is C∞, so the chain rule holds and

d

dt
f(ta, tb)

∣∣∣∣∣
t=0

= lim
t→0

f(ta, tb)− f(0, 0)
t

= lim
t→0

2ab2t3

t(a2t2 + b4t4)

=

{
2b2

a a 6= 0
0 a = 0

while the chain rule would give

d

dt
f(ta, tb)

∣∣∣∣∣
t=0

= a
∂f

∂x
(0, 0) + b

∂f

∂y
(0, 0) = 0

so the chain rule does not hold at (0, 0) and indeed f is not differentiable at (0, 0).
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