Course 224: Geometry - Continuity and Differentiability

Lecture Notes by Prof. David Simms

LATEXed by Chris Blair

1 Continuity

Consider M, N finite dimensional real or complex vector spaces. What does it mean to say that a map

$$M \supset X \xrightarrow{f} Y \subset N$$

is continuous? Let $a, x \in X \subset M$, and $f(a), f(x) \in Y \subset N$, then we can make "f(x) arbitrarily close to f(a)" by taking "x sufficiently close to a." To make this precise, we choose norms on M, N.

Definition: (Norm) A norm or length function on M is a function $|| \cdot ||$ such that

$$\begin{array}{c} M \to \mathbb{R} \\ x \mapsto ||x|| \end{array}$$

such that:

i) $||x + y|| \le ||x|| + ||y||$ (triangle inequality), ii) $||\alpha x|| = |\alpha|||x||$, iii) $||x|| \ge 0$ with equality if and only if x = 0.

Definition: (Normed Vector Space) A real or complex vector space with a chosen norm is called a normed vector space. From now on, M, N etc. are normed spaces.

Definition: (Ball) Let $X \subset M$, $a \in X, r > 0$, then the ball in X of radius r, centred at a is

$$B_X(a, r) = \{ x \in X \mid ||x - a|| < r \}$$

Definition: (Open) A set $V \subset X$ is called open in X if for each $a \in V$ there exists an r > 0 such that $B_X(a,r) \subset V$, is each point of V is an interior point.

Theorem 1.1.

 $B_X(a,r)$ is open in X.

Proof. Let $b \in B_X(a, r)$. Then $||b-a|| < r \Rightarrow r - ||b-a|| > 0$. Let s > 0 be less than r - ||b-a||, then

$$x \in B_X(b,s) \Rightarrow ||x - b|| < s < r - ||b - a||$$

$$\Rightarrow ||x - b|| + ||b - a|| < r$$

$$\Rightarrow ||x - a|| < r \Rightarrow x \in B_X(a,r)$$

using the triangle inequality. Hence $B_X(b,s) \subset B_X(a,r)$ as required.

Definition: (Continuity) A map $M \supset X \xrightarrow{f} Y \subset N$ is called continuous at $a \in X$ if for each $\varepsilon > 0$ $\exists \delta > 0$ such that $f[B_X(a, \delta)] \subset B_Y(f(a), \varepsilon)$)

We call f continuous if it is continuous at a for every $a \in X$.

Theorem 1.2.

Let $M \supset X \xrightarrow{f} Y \subset N$, then f is continuous at $a \Leftrightarrow$ for each V open in Y such that $f(a) \in V$ there exists W open in X such that $fW \subset V$.

Proof. i) Let f be continuous at a, and let V open in Y such that $f(a) \in V$. V is open, so there exists $\varepsilon > 0$ such that $B_Y(f(a), \varepsilon) \subset V$. f is continuous, so therefore there exists $\delta > 0$ such that $fB_X(a, \delta) \subset B_Y(f(a), \varepsilon)$, where $B_X(a, \delta)$ is open in X as required.

ii) Let V be open in Y such that $f(a) \in V \Rightarrow$ there exists W open in X such that $a \in W$ and $fW \subset V$. V is open so there exists $\varepsilon > 0$ such that $B_Y(f(a), \varepsilon)$ open in Y, $f(a) \in B_Y(f(a), \varepsilon)$. Therefore there exists W open in X such that $a \in W$ and $fW \subset B_Y(f(a), \varepsilon)$.

W is open in X, so there exists $\delta > 0$ such that $B_X(a, \delta) \subset fW \subset B_Y(f(a), \varepsilon)$, hence f is continuous at a as required.

This theorem shows that the continuity at a of $X \xrightarrow{f} Y$ depends only on the open sets of X and Y.

Definition: (Usual Topology) The collection of open sets of X, where X is a subset of a finite dimensional real or complex vector space, is called the usual topology on X, and is independent of the choice of norm.

Definition: (Topology on X) Let X be a set. A topology on X is a collection of subsets of X, called the open sets of the topology, such that

i) \emptyset, X open

ii) If $\{V_i\}_{i \in I}$ a collection of sets V_i open in X then their union $\bigcup V_i$ is open in X

iii) If $V_1 \dots V_k$ a finite collection of sets V_i open in X, then their intersection $V_1 \cap V_2 \cap \dots \cap V_k$ is open in X

Definition: (Topological Space) A set X together with a topology on X is called a topological space.

Definition: (Continuous at a) Let $X \xrightarrow{f} Y$, X, Y topological spaces, and $a \in X$. Then f is continuous at a if for each V open in Y such that $f(a) \in V$ there exists W open in X such that $a \in W$ and $fW \subset V$.

f is continuous if it is continuous at a for all $a \in X$.

Note: If X a topological space and if $V \subset X$, and if for each $a \in V$ there exists open W such that $a \in W_a \subset V$, then V is open.

Proof. $V = \bigcup W_a$ is a union of open sets and is therefore open.

Theorem 1.3.

Let $X \xrightarrow{f} Y$, X, Y topological spaces, then f is continuous $\Leftrightarrow V$ open in $Y \Rightarrow f^{-1}V$ open in X.

Proof. i) Let f be continuous, and V be open in Y. Let $a \in f^{-1}V$, then there exists W_a open in X such that $a \in W_a \subset f^{-1}V$ (as f continuous). $f^{-1}V = \bigcup W_a$ a union of open sets, hence $f^{-1}V$ is open.

ii) Let V be open in $Y \Rightarrow f^{-1}V$ open in X. Let $a \in X$, and let V open in Y be such that $f(a) \in V$. Therefore $a \in f^{-1}V$ open in X, and $f[f^{-1}V] \subset V$. $f^{-1}V$ is open, so then f is continuous at a for all $a \in X$, and so f is continuous.

Theorem 1.4.

Let

$$X \xrightarrow{f} Y$$

 $\bigvee_{gf} g$
 Z
then f, g continuous $\Rightarrow gf$ continuous.

Proof. Let V be open in Z, then $(gf)^{-1}V = f^{-1}[g^{-1}V]$, and $g^{-1}V$ is open as g is continuous, and $f^{-1}g^{-1}V$ is open as f is continuous, hence gf is continuous.

Thus we have a category top, whose objects are topological spaces $X, Y, Z \dots$ and whose morphisms

 $X \xrightarrow{f} Y$

are continuous maps.

We consider, in calculus, the category whose objects are open subsets $V, U, W \dots$ of finite dimensional real or complex vector spaces, and whose morphisms are continuous maps

 $V \xrightarrow{f} W$

The isomorphisms in these categories are called homeomorphisms, hence we could ask

"Wherefore art thou homeomorphism?"

2 Differentiability

Definition: (Differentiable) Let $M \supset V \xrightarrow{f} W \subset N$, where V, W are open subsets of real or complex vector spaces M, N. Let $a \in V$, then f is differentiable at a if there exists a linear operator

 $M \stackrel{f'(a)}{\rightarrow} N$

called the derivative of f at a, such that

$$f(a+h) = f(a) + f'(a)h + \phi(h)$$

where f'(a)h is a linear approximation to the change in f when a changes by h, and $\phi(h)$ is a remainder term such that

$$\frac{||\phi(h)||}{||h||} \to 0 \text{ as } ||h|| \to 0$$

i.e. for each open $V, 0 \in V$, in \mathbb{R} there exists open $W, 0 \in W$, in M such that $\frac{||\phi(h)||}{||h||} \in V$ for all $h \in W, h \neq 0$. Or equivalently, for any chosen norm, for each $\varepsilon > 0$ there exists $\delta > 0$ such that $\frac{||\phi(h)||}{||h||} < \varepsilon \ \forall ||h|| < \delta, h \neq 0$.

Theorem 2.1.

Let $M \supset V \xrightarrow{f} W \subset N$ be differentiable at $a \in V$. Then the derivative f'(a) is uniquely determined by the formula

$$\begin{aligned} f'(a)h &= \lim_{t \to 0} \frac{f(a+th) - f(a)}{t} \\ &= \frac{d}{dt} f(a+th) \Big|_{t=0} \\ &= the \ directional \ derivative \ of \ f \ at \ a \ along \ h \end{aligned}$$

Proof.

$$f(a+th) = f(a) + f'(a)th + \phi(th)$$

$$\Rightarrow \left| \left| \frac{f(a+th) - f(a)}{t} - f'(a)h \right| \right| = \frac{||\phi(th)||}{||th||} ||h||$$
, as required.

which $\rightarrow 0$ as $t \rightarrow 0$, as required.

Definition: (Function of *n* independent variables) Let $\mathbb{R}^n \supset V \xrightarrow{f} \mathbb{R}$, *V* open in \mathbb{R}^n , then *f* is called a real-valued function of *n* independent variables.

Definition: (Partial Derivative) If $a = (a_1, \ldots, a_n) \in V$, and $x = (x_1, \ldots, x_n)$, $f(x) = f(x_1, \ldots, x_n)$, then we define

$$\begin{aligned} \frac{\partial f}{\partial x^j}(a) &= \frac{\partial f}{\partial x^j}(a_1, \dots, a_n) \\ &= \lim_{t \to 0} \frac{f(a_1, \dots, a_j + t, \dots, a_n) - f(a_1, \dots, a_j, \dots, a_n)}{t} \\ &= \lim_{t \to 0} \frac{f(a + te_j) - f(a)}{t} \\ &= \frac{d}{dt} f(a + te_j) \Big|_{t=0} \\ &= \text{ directional derivative of } f \text{ at } a \text{ along } e_j \end{aligned}$$

called the partial derivative of f at a with respect to the j^{th} usual coordinate function x^j .

Theorem 2.2.

Let $\mathbb{R}^n \supset V \xrightarrow{f} \mathbb{R}^m$ be differentiable, V open, where $f(x) = (f^1(x), \dots, f^m(x)), f^i(x) = f^i(x_1, \dots, x_n)$. Then the derivative

$$\mathbb{R}^n \stackrel{f'(a)}{\to} \mathbb{R}^m$$

is the $m \times n$ matrix

$$f'(a) = \left(\frac{\partial f^i(a)}{\partial x^j}\right) \quad i = 1 \dots m \ , \ j = 1 \dots n$$

Proof. The j^{th} column of $f'(a) = f'(a)e_j = \frac{d}{dt} \left(f(a+te_j) \right) \Big|_{t=0} = \frac{\partial f(a)}{\partial x^j} = \left(\frac{\partial f^1(a)}{\partial x^j}, \dots, \frac{\partial f^m(a)}{\partial x^j} \right)$ as required.

Definition: (Operator Norm) Let $M \xrightarrow{T} N$ be a linear operator on M, N finite dimensional normed vector spaces. We write

$$||T|| = \sup_{||u||=1} ||Tu||$$

called the operator norm of T. This satisfies:

$$\begin{split} &\text{i) } ||S+T|| \leq ||S|| + ||T|| \\ &\text{ii) } ||\alpha T|| = |\alpha|||T|| \\ &\text{iii) } ||Tx|| \leq ||T|| \, ||x|| \\ &\text{iv) } ||ST|| \leq ||S|| \, ||T|| \\ &\text{v) } ||T|| \geq 0 \text{ with equality if and only if } T = 0 \end{split}$$

$$\begin{array}{l} Proof. \text{ eg. iii) } ||Tx|| = ||x|| \left| \left| T \frac{x}{||x||} \right| \right| \leq ||x|| \, ||T|| \text{ since } \frac{x}{||x||} \text{ a unit vector.} \\ \text{iv)} & ||ST|| = \sup_{\substack{||u||=1}} ||STu|| \\ \leq \sup_{\substack{||u||=1}} ||S|| \, ||Tu|| \\ \leq \sup_{\substack{||u||=1}} ||S|| \, ||T|| \\ \leq \sup_{\substack{||u||=1}} ||S|| \, ||T|| \, ||u|| \\ = ||S|| \, ||T|| \end{array}$$

using iii).

Theorem 2.3.

(Chain Rule For Functions on Finite Dimensional Real or Complex Vector Space)

Let $U \xrightarrow{g} V \xrightarrow{f} W$ and $U \xrightarrow{f \cdot g} W$ where U, V, W are open subsets of finite dimensional real or complex vector spaces. Let g be differentiable at a, f differentiable at g(a), then $f \cdot g$ is differentiable at a and

$$(f \cdot g)' = f'(g(a))g'(a)$$

Proof.

$$\begin{split} f\left(g(a+h)\right) &= f\left[g(a) + g'(a)h + \phi(h)\right] & \text{where } \frac{||\phi(h)||}{||h||} \to 0 \text{ as } ||h|| \to 0 \\ &= f\left[g(a) + y\right] & \text{where } y = g'(a)h + \phi(h) \\ &\Rightarrow ||y|| \leq ||g'(a)|| + ||\phi(h)|| \\ &\Rightarrow \frac{||y||}{||h||} \leq ||g'(a)|| + \frac{||\phi(h)||}{||h||} \\ &= f\left(g(a)\right) + f'\left(g(a)\right)y + \psi(y) & \text{where } \frac{||\psi(y)||}{||y||} \to 0 \text{ as } ||y|| \to 0 \\ &= f\left(g(a)\right) + f'\left(g(a)\right)g'(a)h \\ &+ f'\left(g(a)\right)\phi(h) + ||y||\theta(y) & \text{where } \theta(y) = \begin{cases} \frac{\psi(y)}{||y||} & y \neq 0 \\ 0 & y = 0 \end{cases} \end{split}$$

Now,

$$\frac{\left|\left|f'(g(a))\phi(h) + ||y||\theta(y)\right|\right|}{||h||} \le \left|\left|f'(g(a))\right|\right| \frac{||\phi(h)||}{||h||} + \frac{||y||}{||h||} ||\theta(y)||$$

which $\to 0$ as $||h|| \to 0$ (since $\theta(y) \to 0$ as $||y|| \to 0$ as $||h|| \to 0$), hence result.

Example. Consider $\frac{d}{dt}f[g^1(t),\ldots,g^n(t)]$, where

$$\mathbb{R} \supset U \xrightarrow{g} V \subset \mathbb{R}^n$$
$$t \mapsto g(t) = \left(g^1(t), \dots, g^n(t)\right)$$

with g differentiable on U, and

$$\mathbb{R}^n \supset V \xrightarrow{f} \mathbb{R}$$
$$(x_1, \dots, x_n) \mapsto f(x_1, \dots, x_n)$$

so that $\mathbb{R} \supset U \xrightarrow{f \cdot g} \mathbb{R}$. Then,

$$\frac{d}{dt}f\left[g^{1}(t),\ldots,g^{n}(t)\right] = \frac{d}{dt}\left(f \cdot g\right)(t)$$

$$= \left(f \cdot g\right)'(t) \qquad (1 \times 1 \text{ matrix})$$

$$= f'\left(g(t)\right)g'(t) \qquad (n \times 1 \text{ and } 1 \times n \text{ matrices})$$

$$= \left(\frac{\partial f(g(t))}{\partial x^{i}}\right)\left(\frac{d}{dt}g^{i}(t)\right)$$

$$= \sum_{i=1}n\frac{\partial f\left(g(t)\right)}{\partial x^{i}}\frac{d}{dt}g^{i}(t)$$

$$= \frac{\partial f(g(t))}{\partial x^{1}}\frac{dg^{1}(t)}{dt} +$$

$$\cdots + \frac{\partial f(g(t))}{\partial x^{n}}\frac{dg^{n}(t)}{dt}$$

illustrating the "chain rule."

Example. Consider f(x, y), then

$$\frac{d}{dt}f\Big[g(t),g(t)\Big] = \frac{\partial f}{\partial x^1}\Big[g(t),g(t)\Big]\frac{dg(t)}{dt} + \frac{\partial f}{\partial x^2}\Big[g(t),g(t)\Big]\frac{dg(t)}{dt}$$

Definition: (C^r) If f differentiable and f' continuous, we say that f is C^1 . If f' differentiable and $f^{(2)} = (f')'$ continuous, we say that f is C^2 . If the r^{th} derivative exists and is continuous, we say that f is C^r . If the r^{th} derivative $f^{(r)}$ exists for all r we say that f is C^{∞} or smooth.

For each r we have a category whose objects are open subsets of finite dimensional real or complex vector spaces, and whose morphisms are C^r functions, such that $f, g \ C^r \Rightarrow f \cdot g \ C^r$. The isomorphisms in this category are called C^r diffeomorphisms. V, W are C^r diffeomorphic if $\exists V \xrightarrow{f} W, V \xleftarrow{f^{-1}} W, f, f^{-1}$ both C^r .

Now consider $\mathbb{R}^n \supset V \xrightarrow{f} W \subset \mathbb{R}^m$. We have that

$$f(x_1, \dots, x_n) = \left[f^1(x_1, \dots, x_n), \dots, f^m(x_1, \dots, x_n) \right]$$

and then $f C^1 \Rightarrow f' = \left(\frac{\partial f^i}{\partial x^j}\right) (m \times n \text{ matrix})$ exists and is continuous, which implies $\frac{\partial f^i}{\partial x^j}$ all exist and are continuous. We want to show the converse.

Theorem 2.4.

(Just the one component case) Let $\mathbb{R}^n \supset V \xrightarrow{f} \mathbb{R}$, V open, then f is $C^1 \Leftrightarrow \frac{\partial f}{\partial x^i}$ exists and is continuous for all i.

Proof. Have already proved \Rightarrow implication. We will prove the \Leftarrow case for n = 2 only, i.e. let

$$\mathbb{R}^2 \supset V \xrightarrow{f} \mathbb{R}$$
$$(x, y) \mapsto f(x, y)$$

then $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist and are continuous. To prove this, let $a \in V$, then

$$f(a+h) = f(a) + \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right] \left[\begin{array}{c}h^1\\h^2\end{array}\right] + \phi(h)$$

where the remainder is

$$\phi(h) = f(a+h) - f(a+h^2e_2) - \frac{\partial f}{\partial x}h^1 + f(a+h^2e_2) - f(a) - \frac{\partial f}{\partial y}h^2$$
$$= \frac{\partial f}{\partial x}(m_1)h^1 - \frac{\partial f}{\partial x}(a)h^1 + \frac{\partial f}{\partial y}(m_2)h^2 - \frac{\partial f}{\partial y}(a)h^2$$

using the Mean Value Theorem, for some m_1 on $[a + h^2 e_2, a + h]$ and some m_2 on $[a, a + h^2 e_2]$ $h^2 e_2].$

Hence,

using the Mean Value Theorem, for some

$$a_1$$
 on $[a + h^2 e_2, a + h]$ and some m_2 on $[a, a + 2e_2]$.
Hence,
 $\frac{||\phi(h)||}{||h||} \leq \frac{||h^1||}{||h||} \left\| \frac{\partial f}{\partial x}(m_1) - \frac{\partial f}{\partial x}(a) \right\|$
 $+ \frac{||h^2||}{||h||} \left\| \frac{\partial f}{\partial y}(m_2) - \frac{\partial f}{\partial y}(a) \right\|$

which $\to 0$ as $||h|| \to 0$. Therefore f' exists, and is $\left|\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right|$.

Now let

$$M \supset V \xrightarrow{f} N_1 \times \dots \times N_m$$
$$f(x) = \left(f_1(x), \dots, f_m(x)\right)$$
$$= \left(f_j(x)\right)$$
$$(1 \times m \text{ matrix})$$

be an m component function on open subset V, where M, N_i are finite dimensional real or complex vector spaces. For any norm on M, N_i , take a norm on $N_1 \times \cdots \times N_m$ as

$$||(y_1, \dots, y_m)|| = ||y_1|| + \dots + ||y_m||$$

Then if $a \in V$,

$$f(a+h) = \left(f_j(a+h)\right)$$
$$= \left(f_j(a) + f'_j(a)h + \psi_j(h)\right)$$
$$= \left(f_j(a)\right) + \left(f'_j(a)h\right) + \left(\psi_j(h)\right)$$

 \mathbf{SO}

$$\frac{||\psi(h)||}{||h||} = \frac{||\psi_1(h)||}{||h||} + \dots + \frac{||\psi_m(h)||}{||h||}$$

which goes to zero as $||h|| \to 0||$ if and only if $\frac{||\psi_j(h)||}{||h||} \to 0$ as $||h|| \to 0$ for all $j = 1, \ldots, m$. Therefore f is differentiable at a with derivative f'(a) such that

$$f'(a)h = \left(f'_j(a)h\right)$$

if and only if f_j is differentiable at a with derivative $f'_j(a)$ for all $j = 1, \ldots, m$. We have that f' continuous $\Leftrightarrow f'_j$ continuous $\forall j$, and so f is $C^1 \Leftrightarrow f_j$ is $C^1 \forall j$.

Example. Let $\mathbb{R}^n \supset V \xrightarrow{f} \mathbb{R}$. Then,

 $f \text{ is } C^1 \Leftrightarrow f' = \left(\frac{\partial f}{\partial x^j}\right) \text{ exists and is continuous}$ $f \text{ is } C^2 \Leftrightarrow f'' = \left(\frac{\partial^2 f}{\partial x^i \partial x^j}\right) \text{ exists and is continuous}$ $f \text{ is } C^3 \Leftrightarrow f''' = \left(\frac{\partial^3 f}{\partial x^i \partial x^j \partial x^k}\right) \text{ exists and is continuous}$ $f \text{ is } C^\infty \Leftrightarrow \text{ all partial derivatives exist.}$

Theorem 2.5. If $\mathbb{R}^n \supset V \xrightarrow{f} \mathbb{R}$, V open, is C^2 , then

$$\frac{\partial^2 f}{\partial x^i \partial x^j} = \frac{\partial^2 f}{\partial x^j \partial x^i}$$

Proof. We will prove the case n = 2 only, i.e. let $\mathbb{R}^2 \supset V \xrightarrow{f} \mathbb{R}$, then

$$\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} \right)$$

Let $(a, b) \in V$. Let $h \neq 0, k \neq 0$ be such that the closed rectangle (a, b), (a + h, b), (a + h, b + h), (a, b + k) is contained in V.

Put

$$g(x) = f(x, b+k) - f(x, b)$$

then

$$\begin{aligned} f(a+h,b+h) - f(a+h,b) - f(a,b+k) + f(a,b) &= g(a+h) - g(a) \\ &= hg'(c) \\ &= h \left[\frac{\partial f}{\partial x}(c,b+k) - \frac{\partial f}{\partial x}(c,b) \right] \\ &= hk \left[\frac{\partial}{\partial y} \frac{\partial f}{\partial x} \right](c,d) \end{aligned}$$

using the Mean Value Theorem first for some $a \leq c \leq a+h$ and then for some $b \leq d \leq b+k.$ Similarly, by defining

$$\tilde{g}(x) = f(a+h, y) - f(a, y)$$

we have

$$\begin{aligned} f(a+h,b+h) - f(a+h,b) - f(a,b+k) + f(a,b) &= \tilde{g}(b+k) - \tilde{g}(b) \\ &= k \, \tilde{g}'(d') \\ &= k \left[\frac{\partial f}{\partial y}(a+h,d') - \frac{\partial f}{\partial y}(a,d') \right] \\ &= hk \left[\frac{\partial}{\partial x} \frac{\partial f}{\partial y} \right] (c',d') \end{aligned}$$

say, and so cancelling the h and k we get

$$\frac{\partial^2 f}{\partial y \partial x}(c,d) = \frac{\partial^2 f}{\partial x \partial y}(c',d')$$

We now let $(h, k) \to (0, 0)$, so $(c, d) \to (a, b)$ and $(c', d') \to (a, b)$. Hence by continuity of the second derivative we find that

$$\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$$

Theorem 2.6.

(Mean Value Theorem for Functions on Finite Dimensional Normed Spaces) Let $M \supset V \xrightarrow{f} N$ be C^1 . Let $x, y \in V$ such that

$$[x, y] = \{tx + (1 - t)y \mid 0 \le t \le 1\} \subset V$$

Let

$$\left| \left| f'\left[tx + (1-t)y\right] \right| \right| \le k \quad \forall 0 \le t \le 1$$
$$\left| \left| f(x) - f(y)\right| \right| \le k \left| \left|x - y\right| \right|$$

then

Proof. We have that

$$f(x) - f(y) = \int_0^1 \left(\frac{d}{dt} f\left[tx + (1-t)y \right] \right) dt$$
$$= \int_0^1 f' \left[tx + (1-t)y \right] (x-y) dt$$
$$\Rightarrow \left| \left| f(x) - f(y) \right| \right| \le \int_0^1 k \left| \left| x - y \right| \right| dt$$
$$= k \left| \left| x - y \right| \right|$$

as required.

Theorem 2.7.

(Inverse Function Theorem) Let $M \supset V \xrightarrow{f} N$ be a C^r function on open V, with M, N finite dimensional real or complex vector spaces. Let $a \in V$ at which

 $M \stackrel{f'(a)}{\to} N$

is invertible, then there exists an open neighbourhood W of a such that

 $W \xrightarrow{f} f(W)$

is a C^r diffeomorphism onto open f(W) in N.

Proof. i) Let T be the inverse of f'(a), and put

$$F(x) = Tf(x+a) - Tf(a)$$

 \mathbf{SO}

$$F(0) = Tf(a) - Tf(a) = 0$$

F'(0) = Tf'(a) + 0 = 1

We will prove that F maps an open neighbourhood U of 0 onto an open neighbourhood F(U) of 0 by a C^r diffeomorphism. It will then follow that f maps U + a onto f(U + a) by a C^r diffeomorphism.

Choose a closed ball B, centre 0, radius r > 0 such that, by continuity of F'

$$\frac{||\mathbf{1}_M - F'(x)|| \le \frac{1}{2}}{\det F'(x) \ne 0} \, \bigg\} \forall x \in B$$

then, using $||u|| - ||v|| \le ||u - v||$,

$$\begin{aligned} \forall x, y \in B, ||x - y|| - ||F(x) - F(y)|| &\leq ||(1 - F)x - (1 - F)y|| \\ &\leq \frac{1}{2}||x - y|| \end{aligned}$$

by the Mean Value Theorem. Therefore

$$||F(x) - F(y)|| \ge \frac{1}{2}||x - y||$$

so $F(x) = F(y) \Rightarrow x = y$, so F is injective on B. Also, $F(x) \to F(y) \Rightarrow x \to y$, so F^{-1} is continuous. Hence

$$B \xrightarrow{F} F(B)$$

is a homeomorphism.

ii) We will now show $\frac{1}{2}B \subset F(B)$. Take $a \in \frac{1}{2}B$. Put

$$g(x) = x - F(x) + a$$

then

$$g'(x) = 1 - F'(x) + 0$$

 \mathbf{so}

$$||g'(x)|| \le \frac{1}{2} \ \forall x \in B$$

and therefore

$$||g(x) - g(y)|| \le \frac{1}{2}||x - y|| \ \forall x, y \in B$$

by the Mean Value Theorem, and so g is a contraction. Also,

$$\begin{aligned} ||g(x)|| &= ||g(x) - g(0) + a|| & \text{since } g(0) = a \\ &\leq ||g(x) - g(0)|| + ||a|| \\ &\leq \frac{1}{2} ||x|| + \frac{1}{2}r & \text{by MVT} \\ &\leq \frac{1}{2}r + \frac{1}{2}r \\ &= r \ \forall x \in B \end{aligned}$$

Therefore $x \in B \Rightarrow g(x) \in B$, so $B \xrightarrow{g} B$, and is a contraction.

Consider now a sequence of points $x_0, x_1, x_2...$ in B where $g(x_0) = x_1, g(x_1) = x_2$ and so on, or $x_r = g^r(x_0)$. Let

$$\lim_{r \to \infty} x_r = z \in B$$

$$\Rightarrow g(z) = g \lim_{r \to \infty} x_r = \lim_{r \to \infty} g(x_r) = \lim_{r \to \infty} x_{r+1} = z$$

hence z is a fixed point. Therefore

$$z = z - F(z) + a$$
$$\Rightarrow F(z) = a$$

so $a \in F(B)$.

iii) Now let B^0 be the interior of B, and let $U = B^0 \cap F^{-1}(\frac{1}{2}B^0)$, all open sets, then $U \xrightarrow{F} F(U)$ is a C^r homeomorphism of open U onto open F(U).

We want to show that the inverse map $U \stackrel{G}{\leftarrow} F(U)$ is C^r . Let $x, x + h \in F(U)$, then G(x) = y, G(x + h) = y + l, say. Then

$$F(y+l) = F(y) + Sl + \phi(l)$$

where S = F'(y) and $\frac{||\phi(l)||}{||l||} \to 0$ as $||l|| \to 0$, and $||h|| \ge ||l||$ (as $||F(x) - F(y)|| \ge \frac{1}{2}||x - y||$), so $||l|| \to 0$ as $||h|| \to 0$. Therefore,

$$\begin{aligned} x+h &= x+Sl+\phi(l) \\ \Rightarrow l &= S^{-1}h - S^{-1}\phi(l) \end{aligned}$$

 \mathbf{SO}

$$G(x+h) = y+l = G(x) + S^{-1}h - S^{-1}\phi(l)$$

and

$$\frac{||S^{-1}\phi(l)||}{||h||} \le ||S^{-1}||\frac{||\phi(l)||}{||l||}\frac{||l||}{||h||}$$

with $\frac{||l||}{||h||} \leq 2$, so this all goes to zero as $||h|| \to 0$, hence G is differentiable at x and

$$G'(x) = S^{-1} = \left[F'(y)\right]^{-1} = \left[F'(G(x))\right]^{-1}$$

therefore if G is C^s for some $0 \le s \le r$, then G' is the composition of the C^s functions G, F' and $[\cdot]^{-1}$, and hence is $C^s \Rightarrow G$ is C^{s+1} . So $G C^s \Rightarrow G C^{s+1} \forall 0 \le s \le r$, therefore G is C^r as required.

3 Exercises

1. Let f be a constant function. Show f'(a) is zero $\forall a \in M$. Solution: Let $f(x) = c \ \forall x \in M$. Then

$$f(a+h) = c = f(a) + 0h + 0$$

and therefore $f'(a) = 0 \ \forall x \in M$

- 2. Let f be a linear function. Show that f'(a) is equal to $f \forall x \in M$. Show $f''(a) = 0 \forall x \in M$. Solution: f(a + h) = f(a) + f(h) + 0, so therefore $f'(a) = f \forall x \in M \Rightarrow f' = \text{constant} \Rightarrow f''(a) = 0 \forall x \in M$.
- 3. Let $f : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ be defined by $f(A) = A^2$. Prove that f is differentiable and find its derivative.

Solution: $f(A + H) = A^2 + AH + HA + H^2$ and

$$\frac{||H^2||}{||H||} = \frac{||HH||}{||H||} \le \frac{||H|| \, ||H||}{||H||} \to 0 \text{ as } ||H|| \to 0$$

hence f is differentiable, with derivative given by

$$f'(A)H = AH + HA$$

4. Let B be a fixed $n \times n$ matrix. Let $f : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ be defined by f(A) = ABA. Prove that f is differentiable and find its derivative.

Solution: f(A + H) = (A + H)B(A + H) = ABA + ABH + HBA + HBH and

$$\frac{||HBH||}{||H||} \leq \frac{||H|||B|||H||}{||H||} \rightarrow 0 \text{ as } ||H|| \rightarrow 0$$

hence f is differentiable, with derivative given by

$$f'(A)H = ABH + HBA$$

5. Let $f : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ be defined by $f(A) = A^t A$. Prove that f is differentiable and find its derivative. Prove that if A is an orthogonal matrix then the image of the linear operator f'(A) is the space of real symmetric $n \times n$ matrices.

Solution: $f(A + H) = (A + H)^t(A + H) = A^tA + A^tH + H^tA + H^tH$ and

$$\frac{||H^tH||}{||H||} \leq \frac{||H^t||||H||}{||H||} \rightarrow 0 \text{ as } ||H|| \rightarrow 0$$

hence f is differentiable, with derivative given by

$$f'(A)H = A^tH + H^tA$$

If A orthogonal, we need to show that there exists $H \in \mathbb{R}^{n \times n}$ such that f'(A)H = S, ie such that $A^tH + H^tA = S$ and such a matrix H is given by $H = \frac{1}{2}AS$.

6. Let V be the space of real non-singular $n \times n$ matrices. Let $f : V \to \mathbb{R}^{n \times n}$ be given by $f(A) = A^{-1}$. Find f'(A).

Solution: We want $f(A + H) = (A + H)^{-1} = A^{-1} + \text{linear in } H + \text{remainder. Now,}$

$$(A+H)^{-1} - A^{-1} = (A+H)^{-1} \left[\mathbb{I} - (A+H)A^{-1} \right] = (A+H)^{-1} \left(-HA^{-1} \right) \approx -A^{-1}HA^{-1}$$

for small H. The remainder term is then

$$\begin{split} \phi(H) &= (A+H)^{-1} - A^{-1} + A^{-1}HA^{-1} \\ &= (A+H)^{-1} \Big[\mathbb{I} - (A+H)A^{-1} + (A+H)A^{-1}HA^{-1} \Big] \\ &= (A+H)^{-1} \Big[HA^{-1}HA^{-1} \Big] \end{split}$$

then

$$\frac{||\phi(H)||}{||H||} \le \left| \left| (A+H)^{-1} \right| \right| \frac{||H||^2}{||H||} \left| \left| A^{-1} \right| \right|^2 \to 0 \text{ as } ||H|| \to 0$$

as required, hence

$$f'(A)H = -A^{-1}HA^{-1}$$

7. A function F of n real variables is called homogeneous of degree r if it satisfies

$$F(tx_1,\ldots,tx_n) = t^r F(x_1,\ldots,x_n)$$

By differentiation with respect to t show that such a function ${\cal F}$ is an eigenfunction of the operator

$$x_1\frac{\partial}{\partial x^1} + \dots + x_n\frac{\partial}{\partial x^n}$$

and find the eigenvalue.

Solution: Fix x_1, \ldots, x_n and differentiate with respect to t, hence

$$x^{1}\frac{\partial}{\partial x^{1}}F(tx_{1},\ldots,tx_{n})+\cdots+x^{n}\frac{\partial}{\partial x^{n}}F(tx_{1},\ldots,tx_{n})=rt^{r-1}F(x_{1},\ldots,x_{n})$$

Let t = 1, then

$$\left(x_1\frac{\partial}{\partial x^1} + \dots + x_n\frac{\partial}{\partial x^n}\right)F = rF$$

hence F an eigenfunction of the the operator $x_1 \frac{\partial}{\partial x^1} + \dots + x_n \frac{\partial}{\partial x^n}$ with eigenvalue r. 8. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the function

$$f = \begin{cases} 2xy\frac{x^2 - y^2}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = 0 \end{cases}$$

Show that

$$\frac{\partial^2 f}{\partial x \partial y} \neq \frac{\partial^2 f}{\partial y \partial x}$$

at (0, 0).

Solution: We have that

$$\left(\frac{\partial^2 f}{\partial x \partial y}\right)_{(0,0)} = \left[\frac{\partial}{\partial x}\frac{\partial f}{\partial y}\right]_{(0,0)} = \lim_{t \to 0} \left[\frac{\frac{\partial f}{\partial y}(t,0) - \frac{\partial f}{\partial y}(0,0)}{t}\right]$$

and away from the origin

$$\begin{split} \frac{\partial f}{\partial y} &= \frac{\partial}{\partial y} \left[\frac{2x^3y - 2xy^3}{x^2 + y^2} \right] = \frac{(x^2 + y^2)(2x^3 - 6xy^2) - (2x^3y - 2xy^3)(2y)}{(x^2 + y^2)^2} \\ &\Rightarrow \frac{\partial f}{\partial y}(t, 0) = 2t \end{split}$$

and as f(x,y) = 0 at (0,0) and along the y-axis, then $\frac{\partial f}{\partial y}(0,0) = 0$. Hence

$$\left(\frac{\partial^2 f}{\partial x \partial y}\right)_{(0,0)} = \lim_{t \to 0} \frac{2t}{t} = 2$$

By symmetry, $\left(\frac{\partial^2 f}{\partial y \partial x}\right)_{(0,0)} = -2$, hence

$$\frac{\partial^2 f}{\partial x \partial y} \neq \frac{\partial^2 f}{\partial y \partial x}$$

at (0, 0).

9. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the function

$$f = \begin{cases} \frac{2xy^2}{x^2 + y^4} & (x, y) \neq (0, 0) \\ 0 & (x, y) = 0 \end{cases}$$

Calculate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (0,0). Calculate $\frac{d}{dt}f(ta,tb)$ at t=0 for $a,b \in \mathbb{R}$. Deduce that the chain rule does not hold at (0,0).

Solution: As f(x, y) = 0 along the x and y axes and at the origin, we have

$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$$

We also have $\frac{d}{dt}f(ta,tb) = a\frac{\partial f}{\partial x}(ta,tb) + b\frac{\partial f}{\partial y}(ta,tb)$. Now, away from the origin f is C^{∞} , so the chain rule holds and

$$\frac{d}{dt}f(ta,tb)\bigg|_{t=0} = \lim_{t \to 0} \frac{f(ta,tb) - f(0,0)}{t}$$
$$= \lim_{t \to 0} \frac{2ab^2t^3}{t(a^2t^2 + b^4t^4)}$$
$$= \begin{cases} \frac{2b^2}{a} & a \neq 0\\ 0 & a = 0 \end{cases}$$

while the chain rule would give

$$\left.\frac{d}{dt}f(ta,tb)\right|_{t=0} = a\frac{\partial f}{\partial x}(0,0) + b\frac{\partial f}{\partial y}(0,0) = 0$$

so the chain rule does not hold at (0,0) and indeed f is not differentiable at (0,0).