School of Mathematics

Course 111 — Algebra
(JF Mathematics, Theoretical Physics & Two-subject Moderatorship)

Lecturer: Dr. C. Ó Dúnlaing
Requirements/prerequisites: None
Duration: 24 weeks

Number of lectures per week: 2 and 1 tutorial

Assessment: Continuous assessment through twenty homeworks and three short examinations spread over the academic year.

End-of-year Examination: No annual examination. Those who fail through continuous assessment must take a supplemental examination (in September)

Description:

Number theory: The natural number system and Peano’s axioms
The integers, divisibility, and congruence modulo n
Remainder modulo n and integer division

Groups: Semigroups, monoids, and groups
Groups
Additive subgroups of \(\mathbb{Z} \)
The symmetric group \(S_n \)
Generators for \(S_n \)
Parity and the alternating group
Binary relations, equivalence relations, and partitions
Cosets, Lagrange’s Theorem, and Fermat’s Theorem
Normal subgroups and quotient groups
Greatest common divisor
Multiplicative group \(\mathbb{Z}_n^* \)
First isomorphism theorem for groups
Prime factorisation theorem
A Sylow theorem

Rings and fields: Rings
Zero divisors, integral domains, and fields.
Ring homomorphisms
Characteristic of a ring
Polynomials
Division algorithm for polynomials over a field
Factorising polynomials
Gauss’s Lemma and Eisenstein’s Criterion
Ring homomorphisms and ideals
Principal ideal domains

Solving equations: Dimension of extension fields
Ruler-and-compass constructions
Cubic equations
The Galois group of an extension field
Normal extensions, stable intermediate fields, and splitting fields.
Certain standardised radical extensions have solvable group; radical splitting fields have solvable group.
A polynomial equation not solvable by radicals

A last result: Finite multiplicative subgroups of a field

Textbooks: John R. Durbin, Modern algebra – an introduction, contains some but not all of the material.