School of Mathematics

Course 2E2 — Engineering Mathematics IV 2001–02
(SF Engineering)

Lecturer: Dr Conor Houghton

Requirements/prerequisites: 1E1, 1E2

Duration: 24 weeks.

Number of lectures per week: 2 + tutorial

Assessment: Assignments counting 10%

End-of-year Examination: One 3 hour examination.

Description: More detailed information, problems sheets and problem sheet solutions can be found at http://www.maths.tcd.ie/~houghton/2E2.html. The course outline is

- Laplace transforms (Kreyszig Chapter 5, or James Chapter 2, or Kaplan Chapter 4) and Z-transform (James Chapter 5). This continues the work on linear constant coefficient differential and difference equations begun in 1E2. It allows a more diverse variety of input functions.

- Systems of Differential Equations. Phase space diagrams. (Kreyszig Chapter 3)

- Series Solutions of Differential Equations and an Introduction to Special Functions. (Kreyszig Chapter 4)

- Vector Calculus, Differential Operators and the Integral Theorems (Kreyszig Chapters 8 & 9).

- Optimisation (Kreyszig Chapter 20)

- Introduction to Partial Differential Equations (Kreyszig Chapter 11).

Objectives
To give the participants an understanding of how to solve the differential equations that arise in engineering, and to promote an ability among the participants to apply this knowledge in new situations.

Books
Main book

Additional references
Glyn James, Advanced modern engineering mathematics, Addison-Wesley, 1999.
Wilfred Kaplan, Advanced mathematics for engineers, Addison-Wesley, 1981.

October 7, 2001