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1 Introduction

Unstable D-branes can decay and produce branes of lower dimension. The most simple decay is that
of & Dp-brane annihilating with a Dp-antibrane to yield a D(p — 2)-brane. In this scenario the lightest
open-string mode stretching between the brane-antibrane pair is tachyonic and it can condense into a
configuration with non-trivial winding, Then, in order to have finite energy, the gange field living an
the branes must have non-zero first Chern class which implies the existence of A non-zero (p — 2)-brane
charge. The happy state of affairs is that the negative energy density of the condensed tachyon field
exactly cancels with the positive energy density of the brane-antibrane pair asymptotically, leaving a
D p — 2)-brane with finite tension [1].

One can also start with non-supersymmetric Dp-branes in type II theary (p is odd for [TA and
even for ITH). Here too there is a tachyon in the spectrum of the open string connecting the brane to
itself. It can condense into a kink and the unstable nop-supersymmetric brane will decay to yield a
atable Dp — 1) brane. This type of brane production was studied in detail in [2] where it was argued
that all superaymmetric D-branes in LA can be constructed as bound states of & number of DO-branes.
Further examples of such decay processes are studied in [2-8] and can be understood within the context
of K-theary (9, 11). The unstable and non-BPS branes have also been used in testing various duality
conjectures |1, 8, 11, 12], indeed it was in this context that they made their first major appearance.

The configurations that are studied in this note are a straightforward generalisation of the scenario
deacribed in the first paragraph to N Dp-branes coincident with N Dp-antibranes. Without the antibranes
the coupling of the U[N) massless world-volume vectors (denoted by A) to the closed-string RR fields
(denoted by € is given by the ‘Wess-Zumino' action [13, 14]

8 =f OATre’ | (1)

Eipn)
where Eq,q; is the world volume, Ir is over the Chan-Paton factors and F is the field strength for A
Numerical factors such as o have been suppressed, as have the contributions from the antisymmetric
2-form and the A-roof gems [15-17). When the antibranes are included, the light degrees of freedom are
twa U[N) gauge fields — one living on the branes (A') and the other on the antibranes (A7) — and a
tachyon (1') and antitachyon (T) living in the (N, N) and (N, N') representations respectively. We would

like to know the generalisation of the Wess-Zumino action. To this end we perform a tree-level string
caleulation of the effective action to low orders in the tachyon field.

We find & non-zero eontact inberaction of the form
Af Clpny AT [u'ﬂﬁ) : (2]
Eipr) '
where the covariant derivatives are

DI =dl' + A '—TA™ and DT =dT_-TAY 4+ AT,



In this nobe we will not caleulate the overall normalisation of such terms [ eccept to say their coefficients
are not zero) since they are unimportant for our purposes. We also consider the brane-antibrane pairs to
have ind istinguishable world volumes." The result Eq. (2) means the total charge of the (p —2)-brane is
measured by [ Tr [:F R M[Imj:] which contains the first Chern clasa of the gauge configuration
on the brane, the antibrane, and the winding number of the tachyon configuration, However, this latter
term does not add nowanted charge to the (p — 2)-brane because the covariant derivative, DX, must
vanish at infinity in order for the solitonic confignration to have finite energy..

The coupling to the RR (p — 1)form given by Eqs. (1) and (2) can be rewritten to read
Jl::w.f:[, p ATy (FY—F" - L{F* 0T} 4+ L{F TT} +D1'ﬂﬁ:] : ()
Interestingly, this can be written in & more compact form by employing the superconnection [189-21)
d+ A T
A_( T d+ A J=
which transforms under the U(N]=1U(N) symmetry as

ASGAGT"  where Q:(ﬁI '_]]
il g

I+ _71T DT
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Er ( “ &] = Tra—"Trd.
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Then the terms in Eq. () are just those in an expansion of

The mrvature of this is

and & “supertrace” is defined by

8= CASTre” . (4]

Eiprr)
We propose that this generalises the usual Wess- Zumino action Eq. (1).

Before moving on to the string caleulation, let us show that our proposal gives the correct charges
for all decay products. This can be seen by using the ‘transgression formmla® [#), p. 47| which reads

! d.Ay
STrexp A —STrexp Ry = l'].)r dt ST rry apFy
o

'Further comments on this point are made in [18] in which the tachyon potential wes shown to assume a Mewican hat
shape for weak fields



where A, is & superconnection depending on a contimons parameter £, and JF; is its curvature. Let us

choose
d+ At tr
A"l_( th' d+ A ]

When the transgression formula is integrated over the 2k directions perpendicular to the (p —2k)-brane’s
world volume we can set DT = (= DT on the RHS. The RHS then integrates to zero because it contains
only odd dimensional forms. This implies

fﬂ'l‘rmpf:f 'l‘rnpr'—f Tr exp F
2k 2k 2k

A& reuired.

2 The calculations

The process of interest is one where a BR boson annihilates onto the brane-antibrane world volume to
create some open strings. By string duality this is just an open string graph with insertions on the
boundary (the brane's world wolume) and one RR insertion in the interior. Similar caleulations have
been performed in [22-27) and we will follow their notations and convent ions:

Map the disc to the upper-half plane so the boundary of the disc becomes the real axis. On this axis
the worldsheet besons (X*) and fermions (9] obey the following boundary conditions

Neumann: { Xelz) = KB 0 Dirichle: { Xz) = X3

Wz = () Wz = —d()
while the ghosts (¢} and superghosta (¢) obey trivial boundary conditions. Indices g = {),... .89, while
an index a lives on the world volume (a = 0,...,p) and i filla the transverse space (i = (p+ 1),...,9).

Because of these bound ary conditions the correlators mix

Meumann {X“[sj]f*‘[wj} —q“*‘lngl:s — ) and {Jf“[sjf*‘[tﬁj} = —ﬂ“l@[s — 1) |
Dirichlet: (X'[z)XY(w]) = —"loglz —w) and (X2 X@) = +n'log(z — ) .
(5)
and similarly for the fermions (we use the conventions o = 2). Now use the “doubling trick™ in which
the fields X (2] and #(z) are extended to the lower-half plane by defining

JT‘.'I:EJ Meumann

"%()  Divichlst (z€ LHP) .

X(z) ={
Then if we think of @ being in the LHP the correlation function of this extended holomor phic field

(XH(2) X (w])) =~ log(z — w)



correctly reproduces all of Eq. (5). Thus, when considering scattering off p-branes, the rule is to replace

XK(z) - DEXY(2), $(3) — DIw*(2), $(5) > $(2) and &) - (3)

ool 0
0 —lag )

(X#(2) X*(w)) = —n*loglz —w)

and then use the usual correlators

W (w)) = —9z—w)",
felzle(w)) = (z—w),
((=)p(w)) = —log(z—w).

The vertex operators for the tachyon are

Vi (z) = ke ¥ (z) and Vi V(z) = e ¥ ¥ (x)

where the superscripts label the superghost number. The momentum k is constrained to lie in the world
volume; k* = (k%,0) with ¥* = 1/4 in our conventions (o = 2). In the coincident brane-antibrane system
the vertex operators for the tachyon and the antitachyon look the same — in order to distinguish them
a Chan-Paton factor mst be understood. After doubling, the vertex operators become [28]

ViTz) = kape®X(z)
Vi Mz = e X (s

The RR vertex operators are
Vﬁ['nl?ff-l?: @) = (P .{,f[m:.:l“'ﬂ et g, P (w)::e Mjﬂ'ﬂ?”"’titﬁj :

with the projector P = %{1 — "'} assuring that we are using the correct chirality and

1
j).[[m':. = EIIFL ...}LETFL i .Tl-l-m ¥

where m = 2,4 for type IIA and m = 1,1, 5 for type IIB. The spinorial indices are raised with the charge
conjugation matrix, eg (P .H[m:,:l"'ﬂ = e[ p .H[m:,j,-'ﬂ (further conventions and notations for spinors
can be found in appendixz B of [2:]). The RR bosons ave massless so p° = (). The spin fields can also be
extended to the entire complex plane. In calculations we replace

Bal@) — _Mn'ﬁS'ﬁl:tE'_] .
where .
_M = ET“’T“" ‘a ."}'ﬂ"ﬁm__ﬂp N
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Finally, a couple of correlators containing two spin fields are

Balw)8g) = w™C ],
(W[ Sa(w)Sg) = (z—w) M2a~ 12y 30

where S5 = Sp(l)] and Clag is the charge conjugation matrix

2.1 The two-paoint amplitude

The amplitude containing one BR field and one tachyon (or antitachyon) is

L ViR w, @)
le dzh 2k X (2], "'[‘":"m;'i'n{f.u_]e”"x[w}[.!? -i,]'[m':--?l"ﬂnﬂ

xe PO 2G, () ete ALY

dﬂdﬂﬂw
Vewa

We have chosen the vertex operators according to the rule that the total superghost number must be —2.
Including the ghost contribution, {e(z)dw)d®@)) = (2 — w)(z — @) (w — @), and using the kinematic
constraint, k* + p® = (), the volume of the conformal Killing group can be canceled by fixing the three
insertion points. The amplitude then reads

ATEE = 0y (P f M)
Repeated use of {*, "} = 2™ yields
Tr (y . qpmlyion @]} = 139(p + 1)lfp yapi=toppo-tan . pios

implying that the amplitude vanishes since there is no Hypyg; in the type Il string. On the other hand,
in the case of A non-BPS brane (as studied recently in [24]) this amplitude implies the offective action
containg the term [ O A dT

2.2 The three-point amplitude

The three-point amplitude between one RR field, and two tachyonic particles is

dzdz" duwdhis beghyprl=tt
ATTRE Ve S e v () Vg (w, )
[ 1 1 gl ) 1T )
= [EEdud dﬂ_ﬁw (ke )t Xlehg-al R 200X - Blul/2g (o0 X Wl p_ g M)

Veke
we~ HON2 gar g g AT

i}



It is convenient to fix the points (2, 2°,w, ) = (z,—2,1, —) to cancel the volume Vi g by inserting the
ghost contribution
lelz e w)e(@)) = (2’ — w)(2' — @) (w — &) .

Introduce the Mandelstam variable t = —(k + k)%, Then using various kinematic constraints such as
Fik*+p*=0 and pDp=-2t=-2plk+¥),

the amplitude reduces to

ATTRE .
- 16iz2

r[—2t]
T

1
= 4y 1 .
/ dz( ) ] T (P Hy M
T (P Wy Mo ke (6)
Mext the trace must be evaluated;

Tr [kt |, phmeg®o | fead) IIJ-I-I.---J-I-mFﬂI:I---ﬂp = %;{g[;_. + 1:|!Jmp[_1 JF[F ”"l’r'jHau..n,_Lﬁm g 18

The trace containing the factor of 4" ensures the following results also hold for p > 3 with Hp =
«H{jg.mmy for m = b

The prefactor of Eq. (6) has the interesting property that at non-negative integer values of ¢ there is
a pale corresponding to an open-string resonance with mass-squared m* = ¢t = —pi. On the other hand,
at positive haltinteger values of ¢ it vanishes, implying that strings with half-integer mass-squared do
not propagate in this channel. In [24] it was shown that these are also properties of the amplitude for
one NS-N§ string to decay info two massless open strings stuck to a D-brane.

The low-energy effective Lagrangian of massless and tachyonic particles will contain the terms
.I.".dTHH[F:,AF+E=,M + D1 OT (7]

as well aa the terms we are looking for. Here Ly is the Yang-Mills Lagrangian and in keeping with
the spirit of the rest of this note all constants have been cmitted. At low energies (—t = g ~ (1] the

prefactor of Eq. (6) may be expanded

I[-21]

=1 4
=3 + 2log 2 + O(t) .

The first term corresponds to the HE particle decaying into a massless open string (via the first term
in BEq. (7)) which propagates (resulting in the pole)] and decays into two tachyons (via the third term in
Eq. (7]). Because the second term is non-zero, the effective action contains a coupling between the RR
field, the tachyon and the antitachyon.



In summary, in this subsection we have shown that the effective action contains the term

S = f Higy A Tr 1T
Eipry

which is Eq. (2) after integrating by parts and covariantising. As an aside, if there is no antitachyon (in
the case of the non-supersymmetric brane) the integration by parts gives zero.

3 Summary and Discussion

In coincident brane-antibrane systems we have shown, by calmlating tree-level string amplitudes, that
in addition to the usual Wess-Zuming terms the world-volume effective action contains

Jl' Clp-ry Ad Te (TTT)
- .

o

B0 {']{'J!'J!_'J. After tachyon condensation the correct charges for decay products are obtained. We pro-
pose that the full result (to all orders in the tachyon) can be written in terms of the curvature of the

superconnection:

Jf CASTr exp F .
b

e+l

It is amusing to note the connection of our propoaal with noneommm tative geometry. It would be very
interesting to show that & similar sort of substitution F — F could be made in the Dirac-Born-Infeld
part of the effective action.
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