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1 Overview

This article is meant to provide a leisurely and expository overview of some
classical results, along with some modern theory. Topics from Euclidean geom-
etry, projective geometry and more recent geometric results are discussed with
the principal section being a generalisation of Menelaus’ theorem originally
due to the French politician and mathematician Lazare Carnot (1753-1823).

2 A Classical Result from Euclidean Geometry

2.1 Menelaus’ Theorem

Here we prove a classical Euclidean theorem due to Menelaus of Alexandria (c.
70-140 CE).

Proposition 2.1 Menelaus’ Theorem
Let EFG be a triangle (with sides suitably extended) in the plane. Let L be any line
cutting EF at g, FG at e and EG at f. Suppose L is not parallel to any side of EFG and
that it does not pass through any of the vertices of EFG1. Then the following identity
holds:

|Ge|
|eF |

.
|Fg|
|gE|

.
|Ef |
|fG|

= 1 (1)

Proof: Draw a line segment from the point E parallel to the line segment GF
so that it intersects the line L at O.

1These two conditions on L ensure that the equation 1 is well defined



Note that the triangles Gef and EOf are similar, thus the ratios of the lengths of
their sides are in proportion:

|EO|
|Ef |

=
|Ge|
|Gf |

(2)

Similarly the triangles EOg and Feg are similar and we have:

|OE|
|gE|

=
|eF |
|gF |

(3)

Subbing (2) and (3) into equation (1) gives us the required identity:

|Ge|
|eF |

.
|Fg|
|gE|

.
|Ef |
|fG|

=
|EO|
|Ef |

.
|Fg|
|eF |

.
|Ef |
|gE|

=
|OE|
|gE|

.
|Fg|
|eF |

=
|eF |
|Fg|

.
|Fg|
|eF |

= 1

Where we have used the fact that |fG| = |Gf |, |EO| = |OE| and |Fg| = |gF |.

�

There is also a version of Menelaus’ theorem allowing signed lengths. In this
case, each side of the triangle EFG is assigned an arbitrary direction. The length
of a line segment |ab| from point a to b is considered positive if the direction
of the vector ~ab is the same as the direction assigned to the side of the trian-
gle. Conversely the length is considered to be negative if the directions are
opposite, that is to say |ab| = −|ba|. In this version of Menelaus’ theorem, the
product of the ratios is as follows:

|Ge|
|eF |

.
|Fg|
|gE|

.
|Ef |
|fG|

= −1

To see this we follow the same line of reasoning as in the proof above, but
note that the ratio |Ge||eF | (for example) is positive if e lies inside the line segment
GF, and negative if e lies outside. It is clear from inspection that the line L
will either cut the triangle EFG twice between the vertices of the triangle and
once outside, or will cut all of the sides outside the triangle. In either case the
product of the ratios will be -1.
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2.2 A Generalisation to Polygons

There is also a painless generalisation from triangles to convex n-gons with
n ≥ 2:

Proposition 2.2 Let P be a convex n-gon. Label these vertices by P1, P2, ..., Pn in the
clockwise direction. Let L be a line which is not parallel to any side of the polygon nor
passes through any of the vertices Pi. Denote the point which L cuts the side PiPi+1

(taking Pn+1 = P1) by the point Qi. Then the following relation holds:

n∏
i=1

|PiQi|
|QiPi+1|

= (−1)n

where the ratio |PiQi|
|QiPi+1| is considered positive if Qi lies between Pi and Pi+1, and

negative otherwise.

Proof: Triangulate the polygon by joining P1 to each other point. Denote by
ri the point where L cuts the line joining P1 to Pi for 2 ≤ i ≤ n (note that
in this notation r2 = Q1 and rn = Qn. Consider the triangles P1PiPi+1 for
2 ≤ i ≤ n − 1. Let the line segments PiPi+1 and P1Pi be assigned arbitrary
directions, as in the discussion following Menelaus’ theorem. Apply Menelaus’
theorem to each triangle P1PiPi+1 for 2 ≤ i ≤ n− 1 to get:

|P1ri|
|riPi|

.
|PiQi|
|QiPi+1|

.
|Pi+1ri+1|
|ri+1P1|

= −1
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So multiplying all the expressions together we get:

n−1∏
i=2

|P1ri|
|riPi|

.
|PiQi|
|QiPi+1|

.
|Pi+1ri+1|
|ri+1P1|

= (−1)n−2 = (−1)n

n−1∏
i=2

|P1ri|
|riPi|

.
|Pi+1ri+1|
|ri+1P1|

.

n−1∏
i=2

|PiQi|
|QiPi+1|

= (−1)n

n−1∏
i=2

|P1ri|
|P1ri+1|

.
|Pi+1ri+1|
|Piri|

.

n−1∏
i=2

|PiQi|
|QiPi+1|

= (−1)n

|P1Q1|
|Q1P2|

.
|PnQn|
|QnP1|

.

n−1∏
i=2

|PiQi|
|QiPi+1|

= (−1)n

n∏
i=1

|PiQi|
|QiPi+1|

= (−1)n

�

3 Carnot’s Theorem

Carnot’s theorem is a generalisation of Menelaus’ theorem which arises when
we attempt to loosen the hypothesis to admit arbitrary curves C rather than just
a line L. It is too much to hope for that a canonical relation exists between the
points of intersection of C with a triangle. However it turns out that one does
hold for algebraic curves, that is curves which are described by an algebraic
equation such as x2 + y2 = 1 or x3 − 3y5 = 0.

Taking for example the case where the curve C is a circle, then a relation very
similar to the relation in Menelaus’ theorem holds:

|Ea|
|aF |

.
|Eb|
|bF |

.
|Fc|
|cG|

.
|Fd|
|dG|

.
|Ge|
|eE|

.
|Gf |
|fE|

= 1

An algebraic curve C of degree n will cut a side of the triangle at at most n
points. To see this, suppose that C is given by the equation the polynomial
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in 2 variables of degree n p(x,y) and that the side of the triangle is given by
y=mx+c. Upon substitution of the equation of the line in p(x,y) it should be
clear that we are left with a polynomial in one variable of degree n, which by
the fundamental theorem of algebra has at most n real roots. Note if the poly-
nomials were taken over C then there would be exactly n complex roots.

In generalising Menelaus to Carnot, we cannot simply substitute algebraic
curve for line, and replace the relation with one along the lines of the above. A
problem we run into is that not all algebraic curves of degree n will cut each
side of the triangle at n points (counting multiplicity), and it appears that this
is a necessary condition. Taking the above example, the degree of the algebraic
curve C in the above example is 2 (as C is described by the polynomial equa-
tion of degree 2: x2 + y2 = r2). In this case C cuts each side of the triangle in
two places, so there are six ratios in the relation. If C does not cut each side of
the triangle at the maximal of n points, then a relation similar to the one above
does not necessarily hold, as would be the case for the following:

In light of the proceeding remark on the degree of the curve, we formulate a
naive version of Carnot’s theorem. In this formulation we consider the lengths
of line segments to be signed, in exactly the same manner as the signed version
of Menelaus’ theorem.

Theorem 3.1 Carnot’s Theorem (Naive Version)
Let EFG be a triangle (with sides suitably extended) in the plane. Let C be an algebraic
curve of degree n cutting side EF at the points gi, FG at ei and EG at fi. Suppose
C cuts each side of EFG at n points (counting multiplicity) and that it does not pass
through any of the vertices of EFG. Then the following identity holds:

n∏
i=1

|Egi|
|giF |

|Fei|
|eiG|

|Gfi|
|fiE|

= (−1)n

Let us compare the statements of Menelaus’ theorem and Carnot’s theorem.
They are almost identical. The line L becomes an arbitrary algebraic curve C,
while the condition suppose L is not parallel to any side of EFG is replaced by sup-
pose C cuts each side of EFG at n points (counting multiplicity). Finally the identity
in Carnot’s theorem is clearly a direct generalisation of that of Menelaus’ theo-
rem.
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We are not going to prove this verion of Carnot’s theorem, but in fact a more
general version which dispenses with the hypothesis that C cut each side of
EFG at n points. It should be evident to the reader that the requirement that
C cut each side n times results from the fact that we are considering algebraic
curves over R. If we consider algebraic curves over C, then C will always
intersect each side of EFG at n points, by consequence of the fundamental the-
orem of algebra as outlined before. Glancing back at the preceding two images
should convince the reader that it is not possible to remove the condition that
C cuts each side n times while working in the real plane R2, and that we must
instead work in C2.

We will however go slightly further, and will instead opt to work in the slightly
larger space of P2(C) which we will define in the following subsection 3.1 The
Projective Plane. For now let us just say that it is the way to glue to our usual
plane some “infinite part”. If we start with the usual real plane R2 we can
extend it to the real projective plane P2(R). If we already passed from R2 to C2,
C2 is contained in the complex projective plane P2(C). The following diagram
of inclusions summerises what we have said on the “extension” of the usual
plane R2:

R2 ⊂ P2(R)
∩ ∩
C2 ⊂ P2(C)

This discussion is technical, but we are going to give the assumption-free for-
mulation of Carnot’s Theorem and prove it in P2(C). The naive version of
Carnot’s theorem will follow when we restrict back to the plane, and the as-
sumptions come simply from the fact that we want to see all our objects (the
triangle, the curve and all n points of intersection with each of the three sides)
in the original plane.

3.1 The Projective Plane

In this section we describe the space P2(F ), the projective plane over a field F.
We take the field F to be either R or C.

Definition: (Projective Plane P2(F ))
The projective plane over a field F is the set of all lines over F passing through
the origin in F 3.

There is a natural way to define a coordinate system on P2(F ), called homoge-
nous coordinates.We define an equivalence relation of F 3\{(0, 0, 0)} as follows
(t0, t1, t2) ∼ (s0, s1, s2) if and only if there exists a nonzero λ ∈ F such that
ti = λsi for i=0,1,2

We denote each equivalence class by [t0 : t1 : t2], and it is clear that [t0 : t1 :
t2] = [λt0 : λt1 : λt2] for each nonzero λ ∈ F . There is a one to one correspon-
dence between equivalence classes and lines in F 3 passing through the origin,
and indeed P2(F ) is the quotient space of F 3\(0, 0, 0) by ∼.
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It was remarked in the previous section that P2(F ) can be seen to be an exten-
sion of F 2. F 2 can be embedded in P2(F ) through the map

µ : F 2 ↪→ P2(F ) (4)
µ(x1, x2) = [1 : x1 : x2] (5)

µ is thus a homeomorphism from F 2 to {[t0 : t1 : t2] : t0 6= 0)} ⊂ P2(F ), and
this set {[t0 : t1 : t2] : t0 6= 0)} is sometimes referred as a ‘copy of F 2’ sitting in
P2(F ).

3.2 Lines and Curves in the Projective Plane

From the previous section we know that points in the projective plane P2(F )
are lines in F 3 passing through the origin. Further to this lines in P2(F ) are
given by planes through the origin in F 3. In homogeneous coordinates lines in
P2(F ) are given by homogeneous linear equations of the form

t(s0, s1, s2) = as0 + bs1 + cs2 = 0

where t is a nonzero linear functional on F 3. Analogously curves of degree n
are given as the zero sets of irreducible homogeneous polynomials of degree n.
Irreducible means that the homogeneous polynomial can not be factorised into
two homogeneous polynomials of degree strictly less than n. If it were possible
to factorise a homogeneous polynomial of degree n in such a way, we would
see that its zero set would consist of the finite union of curves as defined above.

Each curve in the projective plane P2(F ) has a corresponding curve in the affine
plane F 2 which can be seen from the following example of a generic quadric
curve in P2(F ) given by

a0s
2
0 + a1s

2
1 + a2s

2
2 + b0s1s2 + b1s0s2 + b2s0s1 = 0 (6)

The corresponding affine curve is given by

a0 + a1x
2 + a2y

2 + b0xy + b1y + b2x = 0 (7)

which is a generic quadric curve in F 2. This affine curve is arrived at by re-
stricting the projective curve to a copy of F 2 ⊂ P2(F ), through the isomor-
phism µ in (4). Indeed to arrive at (7) we divide (6) across by s20 and set

x =
s1
s0
, y =

s2
s0

We note that this procedure is well defined since the particular copy of F 2 ⊂
P2(F ) given by µ is given by {[s0 : s1 : s2] : s0 6= 0}. Also it should be
noted that since there are many different copies of F 2 sitting in P2(F ) there are
many different ways of arriving at an affine curve, all of which however will
be generic quadric curves in F 2.

3.3 Statement of Carnot’s Theorem

A curve C of degree n is the set in P2(F ) given by the equation f(s0, s1, s2) = 0
where f is an irreducible homogeneous polynomial of degree n.
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Let L be a line given by a linear equation t(s0, s1, s2) = as0 + bs1 + cs2 = 0.
Then for each point P ∈ C ∩L we define the multiplicity νP as follows. To find
all points of intersection we substitute the equation of the line into the equation
of the curve, e.g. when a 6= 0 one does

s0 = − b
a
s1 −

c

a
s2,

f
(
− b
a
s1 −

c

a
s2, s1, s2

)
= 0.

The latter equation is homogeneous in two variables and of degree n. If we
divide it by sn1 we will get a polynomial equation in x = s2

s1
of degree n, and

its solutions correspond to points P ∈ C ∩ L, i.e. homogeneous coordinates
of P could be recovered from the above computation. The multiplicity of the
respective root is called νP , and since we are over C then∑

P∈C∩L
νP = n.

Indeed, every polynomial of degree n has n complex roots if one counts them
with multiplicities.

We now give the general statement of Carnot’s theorem, a special case of which
was first proved by the famous French politician and mathematician Lazare
Carnot in his 1803 work Géométrie de Position[1].

Theorem 3.2 (Carnot’s Theorem)
Consider a triangle in the projective plane P2(C) whose sides are given by the equations
{ti = 0}, i = 0, 1, 2 where ti are linear functionals of homogeneous coordinates. Let C
be a non-singular irreducible algebraic curve of degree n which does not pass through
the vertices of the triangle. Then we have the following identity:∏
P∈{t0=0}∩C

(
t2(P )

t1(P )

)νP
.

∏
P∈{t1=0}∩C

(
t0(P )

t2(P )

)νP
.

∏
P∈{t2=0}∩C

(
t1(P )

t0(P )

)νP
= (−1)n

4 The Weil Reciprocity Law

In this section we discuss the Weil reciprocity law, followed by the introduction
of Weil symbols, due the French mathematician André Weil (1906-1998). The
properties of the Weil symbol will allow us to prove Carnot’s theorem.

In what follows we shall consider X to be a connected, compact Riemann sur-
face. Let C(X) denotes the field of meromorphic functions on X. We define
C(X)× = C(X)\{0} to be all meromorphic functions on X except the zero one.
If f ∈ C(X)× then we shall denote by (f) set of zeros and poles of f. Let us begin
with the formulation of the Weil reciprocity law:

4.1 Formulation of the Weil Reciprocity Law

Theorem 4.1 (Weil’s Reciprocity Law)
Let X be a compact Riemann surface. Let Let f, g,∈ C(X)× be two meromorphic
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functions with (f) disjoint from (g), then∏
P∈X

f(P )ordP (g) =
∏
P∈X

g(P )ordP (f) (8)

where ordP (h) means the order of the zero of h ∈ C(X) at P and is negative in the
case the P is a pole and zero if P is neither a pole nor a zero of h.

We check the Weil reciprocity law for meromorphic functions on the Riemann
sphere. Let us take X = P1(C),the Riemann sphere, as our compact Riemann
surface. Let αi, βi, γi, δi ∈ C all be distinct, and let A,B ∈ C be arbitrary
nonzero constants. Define the meromorphic functions f and g as follows

f(z) = A

m∏
i=1

(z − αi)
(z − βi)

, g(z) = B

k∏
j=1

(z − γj)
(z − δj)

(9)

Then an application of Weil reciprocity would establish the following identity:

k∏
j=1

m∏
i=1

(γj − αi)
(γj − βi)

· (δj − βi)
(δj − αi)

=

m∏
i=1

k∏
j=1

(αi − γj)
(αi − δj)

· (βi − δj)
(βi − γj)

(10)

However is not hard to see that expressions on both sides of (10) are in fact
equal.

Indeed this check in fact proves theorem (4.1) for the Riemann sphere since it
is always possible to choose a coordinate system z on P1(C) such that f and g
take the forms in (9). The coordinate system z is chosen so that∞ is neither a
pole nor a zero of f or g. In this case f(∞) = A and g(∞) = B. Thus f and g
take the forms in (9), and the identity follows from the preceding discussion.

4.2 Weil Symbols

Definition: (Weil Symbol)
To each pair f, g ∈ C(X)× and to each point P on our Riemann surface X we
assign (f, g)P ∈ C× which we call the Weil symbol of f,g at P and which is
defined as follows:

(f, g)P := (−1)ordP (f)ordP (g) f
ordP (g)

gordP (f)

∣∣∣∣
P

We remark that this symbol is well-defined at every point P on X. To see this
consider the meromorphic function:

h(Q) =
fordP (g)

gordP (f)

∣∣∣∣
Q

We have to check that P is neither a zero nor a pole of h, i.e. that h assumes
a finite non-zero value at P. We expand f and g as a Laurent series in a lo-
cal coordinates around P. The first term in each Laurent series will have the
same degree (ordP (f).ordP (g)) and so their ratio will have a finite limit at P.
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Let n = ordP (f).ordP (g) and ai and bi be the Laurent coefficients of fordP (g)

and gordP (f) respectively in the coordinate system z, noting that an and bn are
nonzero. Then we have:

h(Q) =
an(z(Q)− z(P ))n + an+1(z(Q)− z(P ))n+1 + ...

bn(z(Q)− z(P ))n + bn+1(z(Q)− z(P )) + ...

=
an + an+1(z(Q)− z(P )) + ...

bn + bn+1(z(Q)− z(P )) + ...

and so in the limit as Q tends towards P we have the finite limit:

h(P ) =
an
bn

The reader could also check that this value is independent of the choice of the
local coordinate while an and bn depend on this choice. The following are some
elementary properties of the Weil symbol:

Proposition 4.2 (Properties of the Weil symbol)
i) The Weil symbol is multiplicative:

(f, g1 · g2)P = (f, g1) · (f, g2) for every g1, g2 ∈ C(X)×

ii) The Weil symbol is anti-symmetric:

(f, g)P = (g, f)−1P

iii) The Weil symbol is trivial away from (f) ∪ (g):

(f, g)P = 1 when P /∈ (f) ∪ (g)

iv) The Weil symbol takes a simple form away from (f):

(f, g)P = f(P )ordP (g) when P /∈ (f)

The previous proposition deals with a fixed point P ∈ X , and arbitrary mero-
morphic functions f, g ∈ C(X)×. In the following, it is the functions f, g ∈
C(X)×which are fixed, giving a relation between their Weil symbols as P varies
over X. It is essential that X be a compact Riemann surface for this relation to
hold.

Proposition 4.3 (Product over all Points)
Let f, g ∈ C(X)× be two arbitrary meromorphic functions, then the following relation
holds: ∏

P∈X
(f, g)P = 1 (11)

Note that in the above relation, although we are taking the product over an
infinite number of points in X, (f, g)P = 1 at all but finitely many points by
property iii) above. The reader can find proofs for both above propositions in
Jean-Pierre Serre’s Algebraic Groups and Class Fields [2]. In the case of the Weil
reciprocity law, it can be readily seen to follow directly from Proposition 4.3
and property iv) of the Weil symbol.
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5 Proof of Carnot’s Theorem

We will give a proof of Carnot’s theorem using Weil symbols.

Proof: Carnot’s Theorem

We can choose the functionals t0, t1, t2 to be the new homogeneous coordinates
in the projective plane. There will be n points of intersection of C with every
line Li = {ti = 0} (counting points with multiplicity). Choose another line
L which doesn’t pass through any of the 3n points of intersection of C with
Li’s. Let equation of L be given by at0 + bt1 + ct2 = 0. Consider three rational
functions on C given by

fi(t0 : t1 : t2) =
ti

at0 + bt1 + ct2

As a non-singular projective algebraic curve, C is also a compact connected
Riemann surface, hence Proposition 4.3 of the Weil symbol tells us that for
every i, j ∏

P∈C
(fi, fj)P = 1.

Multiplying out these identities for each of the three pairs we get∏
P∈C

(f2, f0)P ·
∏
P∈C

(f0, f1)P ·
∏
P∈C

(f1, f2)P = 1. (12)

For each i=0,1,2 the function fi on C has zeros at the points P ∈ C ∩Li , and for
each such P the order of the zero is equal to the multiplicity of the intersection
of C with the line Li at P, that is ordP (fi) = νP . The poles of fi are located at
the points P ∈ C ∩ L and in this case ordP (fi) = −νP , that is the multiplicity
of intersection at P taken with the negative sign.

Since C does not pass through any vertices of the triangle then the zeros of fi
and fj are disjoint on C, so we may split the product in (12) into the ratio of
two products over points on ti = 0 and tj = 0 separately. Furthermore the
term (−1)ordP (fi)ordP (fj) = 1 at every point since either one or both of ordP (fi)
and ordP (fi) is zero. Thus we have:

∏
P∈C

(fi, fj)P =

∏
P∈{tj=0}∩C fi(P )

νP∏
P∈{ti=0}∩C fj(P )

νP

The terms multiplied over the zeros then give:∏
P∈{t0=0}∩C f2(P )

νP∏
P∈{t2=0}∩C f0(P )

νP
.

∏
P∈{t1=0}∩C f0(P )

νP∏
P∈{t0=0}∩C f1(P )

νP
.

∏
P∈{t2=0}∩C f1(P )

νP∏
P∈{t1=0}∩C f2(P )

νP

=
∏

P∈{t0=0}∩C

(
f2(P )

f0(P )

)νP
.

∏
P∈{t1=0}∩C

(
f0(P )

f1(P )

)νP
.

∏
P∈{t2=0}∩C

(
f1(P )

f2(P )

)νP
=

∏
P∈{t0=0}∩C

(
t2(P )

t0(P )

)νP
.

∏
P∈{t1=0}∩C

(
t0(P )

t1(P )

)νP
.

∏
P∈{t2=0}∩C

(
t1(P )

t2(P )

)νP
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Recall that the poles of fi and fj coincide. Noting that the parity of ν2P is the
same as νP , the terms multiplied over the poles gives:

∏
P∈L∩C

(−1)νP
(
f2(P )

f0(P )

)νP
.
∏

P∈L∩C
(−1)νP

(
f0(P )

f1(P )

)νP
.
∏

P∈L∩C
(−1)νP

(
f1(P )

f2(P )

)νP
=

∏
P∈L∩C

(−1)νP
(
t2(P )

t0(P )

)νP
.
∏

P∈L∩C
(−1)νP

(
t0(P )

t1(P )

)νP
.
∏

P∈L∩C
(−1)νP

(
t1(P )

t2(P )

)νP
=

∏
P∈L∩C

(−1)3νP
(
t2(P )

t0(P )
.
t0(P )

t1(P )
.
t1(P )

t2(P )

)νP
=

∏
P∈L∩C

(−1)3νP

=
∏

P∈L∩C
(−1)νP = (−1)

∑
P∈L∩C νP = (−1)n

Where we have used that
∑
P∈L∩C νP = n due to the fact that the curve C will

cut L exactly n times counting multiplicities. So altogether we have:

∏
P∈C

(f2, f0)P .
∏
P∈C

(f0, f1)P .
∏
P∈C

(f1, f2)P = 1

∏
P∈{t0=0}∩C

(
t2(P )

t0(P )

)νP
.

∏
P∈{t1=0}∩C

(
t0(P )

t1(P )

)νP
.

∏
P∈{t1=0}∩C

(
t1(P )

t2(P )

)νP
.(−1)n = 1

Or ∏
P∈{t0=0}∩C

(
t2(P )

t0(P )

)νP
.

∏
P∈{t1=0}∩C

(
t0(P )

t1(P )

)νP
.

∏
P∈{t2=0}∩C

(
t1(P )

t2(P )

)νP
= (−1)n

Which is precisely what we wanted to prove.

�
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