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A nascent theory of near division is presented, from which an efficient quanti-
sation algorithm for rhythm intervals is derived. Based on a number theoretic
analysis of the uniqueness and convergence of this first algorithm, a generalised
algorithm is presented. An empirical study of the algorithm’s performance re-
veals a readily computable criterion within which the perceived ratio may reli-
ably be produced on real performance data. Distribution properties are shown
to be reasonable for computation.
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1. Introduction

Consider a sequence of Inter-Onset Interval (IOI)s in milliseconds. For each pair of con-
secutive IOIs, it will be claimed that there is a limited number of plausible ratios that
may reasonably be perceived, without considering any other information than the onset
times. At the core of the paper is an algorithm to generate the set of all such possible in-
terpretations for each pair of consecutive intervals. Calculation is based on a formulation
of approximation that is amenable to the constraints of the model.
The quantisation work presented here is perhaps unorthodox in that it does not pre-

sume a tactus or metre at the outset. It is in fact developed for a system for metre infer-
ence and beat tracking wherein higher-level structure is primarily composed of lower-level
structure that has already been inferred (attempting to avoid the circular dependency of
some earlier musical theories). Certainly some feedback from higher levels to lower levels
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may be present, but the micro-temporal structure is in place (albeit provisionally) before
constructing the macro-level structure comprising it.
The modelling requirements are threefold: a need for (1) a complete set of plausible

ratios, (2) computational feasibility, and (3) psychological plausibility. The paper will
focus mainly on the first two criteria. The second criterion partly depends on requirements
downstream of the work presented here: this will be discussed later but due attention
is given to computability of the algorithm proposed herein. Discussion of the relevant
literature from psychology of perception and cognitive science is beyond the scope of this
paper [1–7].
The main modelling assumptions are: (1) a reliable stream of IOIs is available, (2) only

ratios of a certain form may be perceived.
After a brief recollection of related research, the concept of a plausible ratio is defined

and discussed. Calculation of plausible ratios is based on a nascent theory of near division,
which is then introduced. The next section derives an algorithm for producing plausible
ratios under certain criteria. Its behaviour is then analysed and used to explain a more
general version of the algorithm. The adequacy and typical performance of the general
algorithm on performance data are then presented and discussed.

2. Related Work

Contrary to the approach of this paper of constructing higher-level structure from lower-
level structure, many published approaches to quantisation try to coerce the IOIs so as
to align with previously computed higher level structure such as metre, phrase group-
ing, or repeated patterns. Others treat entire sections all at once, and as such are not
psychologically plausible as models [8]. Such approaches will not be considered further:
a far-reaching survey article of general computational approaches to metrical analysis is
presented in [9].
Although the presented quantisation algorithm assumes the availability of reliable note

onset times, it is worth noting other beat tracking systems that do not. Sethares et al.
[10], operating on an audio stream, first compute a number of reduced streams or rhythm
tracks. Each rhythm track is a signal processing feature offering an interpretation of what
may constitute a phenomenal accent. No attempt is made to infer metrical structure.
They compare two different stochastic models operating on the rhythm tracks: Bayesian
particle filter and gradient descent. Quite another approach, [11], uses adaptive oscillators
or resonators, operating directly on an audio source. Both approaches are quite successful
without reliable onsets or inducing metre.
Longuet-Higgins [5, 12], presented a quantiser that is primed with the mean interval

(and optionally subdivisions) of the meter. It reconciles observed onsets with expected
beats within a fixed tolerance. A mean of the observed onset and the expected beat
point for the current metrical subdivision is used to update the forthcoming beat-point
expectations. Duple and triple metrical subdivisions are both available as alternatives.
Both quantisation and a degree of metre inference are performed in tandem. It does not
claim to be a comprehensive model, although it performs remarkably well in as far as it
goes.
The connectionist quantisation model of Desain and Honing [13] requires priming with

the tactus and adjusts floating point IOI values so as to reduce discrepancy between close
values. (A quantiser such as the one presented here would still be necessary to produce
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whole number ratios.) Desain [14] argued for the importance of what he termed the
decomposability of holistic theories into constituent low-level components, such that the
theory may be used to estimate individual intervals and be compared with performance
data. He showed how their earlier work [13] may be so decomposed. By contrast, the
approach of this paper is bottom-up, facilitating construction of higher-level structure
from the lower-level constructions presented.
Fraise [4] may have been the first to point out the role of low primes in rhythmic ratios.

This relative simplicity facilitates a richness of gestural expressive timing. Resolving data
into low numbers occurs for other aspects of musical structure [5, 15].
In the realm of perception, the first call for formalisation of metrical cognition may have

been Simon [16]. Fraise distinguished between perception (“immediate” phenomena) and
estimation (involving memory) of time, and identified a preferred interval, ˜600ms, for
estimation: shorter estimates tend to be overestimated and vice versa [6]. The “law of
low numbers” appears elsewhere, e.g. [7].
We will be concerned with round ratios. As discussed by Hardy &Wright [17], a number

is called round if it is “the product of a considerable number of comparatively small
[prime] factors”. By natural analogy, this extends to ratios as consisting of two round
factors. Let n = pa1

1 p
a2

2 · · · pak

k be the prime decomposition of n ∈ N. Define ω(n) = k

and Ω(n) =
∑k

i=1 ai. It is proved in [17] how ω(n) and Ω(n) are both approximated by
loglog n. Thus round ratios are very sparse in Q: the analogy with plausible ratios being
sparse among possible, approximate ratios is proposed.

3. Plausible Ratios and Near Division

Table 1 presents sample performance data from the literature, e.g. [13]. IOIs are listed,
along with their desired quantised values, 〈qi〉i, derived from the desired ratios, 〈qi/qi+1〉,
which may be chosen from among the plausible ratios produced for each consecutive IOI
pair. The criteria used to determine whether a given ratio is “plausible” or not are based
on the devised criterion of near-division. The rationale is that the exact ratios of pairs of
consecutive IOIs generally involve rather larger factors than the corresponding perceived
ratios. The difference between the measured and perceived ratios may be accounted for
by introducing some “slack”, i.e. tolerating a certain amount of inaccuracy, in order to
infer which ratio(s) could possibly have been intended. However, once any amount of
slack is introduced into the concept of integer division, were this criterion to be used
alone, then an unlimited number of close but different ratios could be claimed for any
given pair of numbers. In keeping with the approach to modelling stated in § 1, this is
restricted to favour the more round ratios. The most important constraint is Hyp. 3.1
below.
When considering rhythm of polyphonic music, the question arises as to whether to

consider IOIs as they occur within a given voice, melodic line, or instrument, or whether
to consider onsets grouped together across all such voices. The latter approach is taken
and will be termed pan voice.

Hypothesis 3.1 At least one of the factors of a perceived ratio between two pan-voice
IOIs must be a power of two.

This is a modelling hypotheses: the algorithms have been crafted to conform to it.
While its validity has no bearing on the mathematical logic of the results that follow,
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Table 1. Plausible ratios for consecutive IOI pairs

〈qi/qi+1〉i 2 2 1 3/4 1 1 2/3 1 2 1 1 1 1/4

〈qi〉i 12 6 3 3 4 4 4 6 6 3 3 3 3 12

IOIs 1177 592 288 337 436 337 387 600 634 296 280 296 346 1193
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Figure 1. Counterexample for Hyp. 3.1 for intra-voice IOIs

practical application of the algorithms (which apply these results) will be compromised
if it should turn out to be false. In practice this would mean that not all desired ratios
would be produced. It is simply a matter of tentative observation that this hypothesis
appears to hold without exception for the metrical intervals of tonal music considered.
The most round ratios rejected by this assumption are 3:5 and 5:3.
Hypothesis 3.1 does not necessarily hold for IOIs within a given voice of polyphonic

music: Fig. 1 gives a counterexample. The ˘` and ˘
6

(ˇ of the right hand of bars 4–6
are in the ratio 6:5, yet each consecutive pair of pan-voice IOIs is in one of the simple
ratios 1:1, 1:2, 2:1, 2:3, 3:1 or 1:4. An unaccompanied, monophonic melody bears the
onus of outlining the metre and so, under this hypothesis, a ratio of 6:5 would rather be
interpreted as, e.g. 1:1 with expressive timing or an accelerando.
Another constraint on the number of plausible ratios is given by limiting the range

of the aforementioned power of 2. In general, as the sequence 1, 2, 4, 8, 16, . . . increases,
a ratio involving the latest member as a factor will tend to become less round if the
opposite factor increases correspondingly in order to approximate the original ratio more
accurately.
To define near division, let a, b ∈ N, and recall that a divides b, written a | b, iff ∃ q ∈ N

such that aq = b. For a ≥ 1, b ∈ Z, recall also that r = (b mod a) means that r ∈ N,
0 ≤ r < a, and ∃ q ∈ Z such that b = aq + r. The two concepts are related by the
statement a | b iff b = (0 mod a). Exact integer division may be relaxed by considering
“a divides b within a factor of ∆” as follows.

Definition 3.2 Let a, b ∈ N and fix a constant ∆ ∈ [0, 1
2
) ⊂ R. We write a ≀∆ b iff a | c

for some c satisfying |b− c| ≤ ∆a.
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Figure 2. Sketch of cases in proof of Theorem 3.3

Definition 3.2 plainly formulates the desired intuitive concept, but it gives rise to the
question of how to establish the existence or otherwise of such a “dividend” c given a, b.
This is addressed by the following result.

Theorem 3.3 Let a, b ∈ N and ∆ ∈ [0, 1
2
). Then a ≀∆ b iff either (b mod a) ≤ ∆a or

(b mod a) ≥ (−∆a mod a).

Proof : To prove the first part (⇒), say that aq = c and |b − c| ≤ ∆a. Then −∆a ≤
b− aq ≤ ∆a, which gives

aq −∆a ≤ b ≤ aq +∆a. (1)

Say we have b ≥ aq, as depicted in Fig. 2 by b = b′. Then aq ≤ b ≤ aq +∆a and, since
∆a < a, we must have (b mod a) ≤ ∆a, by definition of mod. Otherwise it must be the
case that aq −∆a ≤ b < aq, depicted by b = b′′ in Fig. 2, and since ∆a < a we have

a(q − 1) < aq −∆a ≤ b < aq (2)

which proves the first part.
To prove the converse (⇐), say that (b mod a) ≤ ∆a. Then ∃ q, r ∈ N such that

aq + r = b, 0 ≤ r < a, and r ≤ ∆a. That is, 0 ≤ b − aq = r ≤ ∆a and the required
dividend c is given by aq.
Now say that (b mod a) ≥ (−∆a mod a). This means that ∃ q, r ∈ N such that

aq + r = b, 0 ≤ r < a, (3)

and

r ≥ (−∆a mod a) = a−∆a (4)

since 0 ≤ ∆a < a. So we have

0 < a(q + 1)− b = a− r by (3), (5a)

≤ ∆a by (4), (5b)

and the required dividend c is given by a(q + 1). �

Definition 3.2 and Theorem 3.3 require that 0 ≤ ∆ < 1
2
. In fact, the proof of Theo-

rem 3.3 holds for ∆ ≥ 1
2
, but then a ≀∆ b ∀ a, b ∈ N and the concept degenerates as it
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stands. We will see that there may be sufficient metrical structure to allow occasional
deviations of b exceeding ±a/2, but that the integrity of the near division concept is
nonetheless sufficient to be instrumental in the calculation for the case of arbitrary ∆.

4. Calculation of Plausible Ratios (Converging)

A simplified version of the algorithm for generating plausible ratios follows. It takes a
pair of IOI values (such as those in Table 1) and returns a list of all the plausible ratios
between them (listed below each pair of consecutive IOI values in Table 1). This is applied
in turn to consecutive pairs of IOIs.
Near division has been formulated by Definition 3.2 in such a way as to allow one

factor of a prospective ratio to be set while Theorem 3.3 tests all possible matches in the
other factor within the corresponding range specified by ∆. This formulation facilitates
direct calculation of round ratio approximations subject to Hyp. 3.1 and the parameters
∆,M . Only integer arithmetic is necessary and so the algorithm permits a very efficient
implementation.

Algorithm 4.1 For ∆ ∈ [0, 1
2
), M,n1, n2 ∈ N, n1, n2 > 0,

PlausibleRatios1∆,M (n1, n2) returns a set of plausible ratios. An annotated listing is
given in the supplementary electronic appendix A.1.

Algorithm 4.2 For a, b,∆a ∈ N, a, b > 0, NearDivides(a, b,∆a) returns c such that
a | c and |b − c| ≤ ∆a, or else null. A listing is given in the supplementary electronic
appendix A.1.

Figure 3 plots a geometrical interpretation of Algorithm4.1 for (3,7) with ∆ = 1
3
, M =

2. The green bands mark the acceptable ranges about the exact ratio as a small red circle.
The values produced, prior to “cancelling down”, are indicated by the red crosses. The
three values returned, viz., {1

2
, 2
5
, 4
9
}, have their slopes plotted to the points that produced

them. Two superfluous points (i.e. c 6= ∅ and Qi = Qi−1 in Steps 5,6) have their slopes
as dotted lines. At 20·7 on the abscissa, it can be seen that there was no multiple of 7
within 3± 2 along the ordinate. The decreasing angles subtended by the green bands in
Fig. 3 suggest the following result.

Lemma 4.3 Taking n1, n2,m as in Algorithm4.1, the values produced by (Step 6 of)
Algorithm4.1∆(n1, n2) converge to n1/n2 with increasing m:

lim
m→∞

2mn1
cm

=
n1
n2

= lim
m→∞

c′m
2mn1

whenever c, c′ are defined for m, where c is the value produced by Algorithm4.2 during
the first pass of the outer loop (p = 1) and c′ that for the second pass (p = −1).

Proof : The proof is given in the supplementary electronic appendix A.3. �

Corollary 4.4 The rate of convergence of Algorithm4.1∆(n1, n2) decreases with ∆.

Proof : The proof is given in the supplementary electronic appendix A.3. �
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Figure 3. Geometrical interpretation of Algorithm4.1 1
3
(3, 7).

Note that Lemma 4.3 is contingent upon the existence of plausible ratios. In theory,
this may or may not be the case. The case of extreme convergence is given by n1 |n2 (or
n2 |n1) when n1 ≀∆ n2 (or n2 ≀∆ n1) for M = ∆ = 0 and convergence is immediate. The
opposite extreme is given by the austere case of the following lemma.

Lemma 4.5 Given primes p1, p2 > 2, p1 6= p2 and ∆ = 0, then ∄M ∈ N for which
Algorithm4.1∆(p1, p2) returns a value.

Proof : Assume, to the contrary and without loss of generality, that ∃m ∈ N such that
p1 | 2

mp2. Then ∃ cm ∈ N such that cmp1 = 2mp2; that is,

cm
p1
p2

= 2m, (6)

and cm must be a multiple of p2 in order that the left hand side be a natural number.
Thus the scenario reduces to the statement that p1 | 2

m which cannot be the case by the
Fundamental Theorem of Arithmetic. �

Whenever a plausible ratio does exist, there is a sense in which it is unique. This will
be of crucial importance in § 6.

Theorem 4.6 Let a, b ∈ N and ∆ ∈ [0, 1
2
). There is at most one c ∈ N such that a | c

and |b− c| ≤ ∆a.

Proof : If a | c and |b − c| ≤ ∆a then ∃ q ∈ N such that aq = c. Suppose also that
∃ c′ ∈ N, c′ 6= c, |b − c′| ≤ ∆a and aq′ = c′ for some q′ ∈ N. If a = 0 or ∆ = 0 then
c = b = c′.
Suppose then that a,∆ > 0. Since |b − c| < a/2 > |b − c′|, it follows that |c − c′| < a

by the triangle inequality. That is, |aq − aq′| < a, whence a|q − q′| < a and |q − q′| < 1.
But then q = q′ since q, q′ ∈ N, giving c = c′. �
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5. Behaviour (Converging)

The number of plausible ratios generated is critical: the algorithm must be liberal enough
to always include the preferred interpretation yet conservative enough to prevent com-
putational explosion when the ratios are considered in combination. Consequently, the
behaviour of Algorithm4.1∆,M will now be examined, first in terms of all possible ratios
within a given range and then in terms of the specific values arising from the test corpus.

5.1. Test Corpus

The Kostka-Payne (KP) corpus [18] was used for empirical evaluation. It was constructed
by Temperley to provide the field with a means to quantify performance of beat track-
ers. It contains both quantised and performance data for pieces spanning the “common
practice era of tonal music”, taken from [19].
The MIDI files of the performance corpus are parsed and assembled into an internal

data structure. Each MIDI file is supplemented (by the author [20]) with a control file
specifying: (1) filtering of extra-metrical notes and (2) clustering of near-simultaneous
onsets into single nominal onsets.
Flagging of notes as extra-metrical is typically used for grace notes occurring out of any

metrical context such as turns and trills. Although such grace notes are usually highly
perceptually salient, they typically have no bearing on the induced metre and are best
ignored as far as beat tracking is concerned. This facility is also useful for cleaning key
bounces and occasional spurious events (those neither in the score nor near any beat).
These events marked for cleaning are of near-zero MIDI velocity so that they cannot be
heard and are considered noise in the data.
After the removal of extra-metrical events (if any), the list of onset clusters is processed.

Events specified as belonging together in a single chord are allocated a single nominal
onset point. Grace notes such as acciaccature and mordents which are distributed tightly
around a discernible metrical beat division are typically marked as belonging to the
nominal onset of that beat division.
The timing of grace notes is something of a subject unto itself [21], tending to prefer

certain interval ranges and expressive timing deviation rather than metrical conformance.
Most grace notes in the KP performed corpus are not removed but rather blurred together
with their associated nominal onset in the prepared files used.
Even disregarding extra-metrical notes, the temporal spread of recorded onsets con-

sidered as constituting a single nominal onset (such as arpeggiation) ranges up to 514ms
while nominally-distinct IOIs range down to 48ms. This overlap of an entire order of
magnitude across the corpus precludes such heuristics as used by [22] (a 70ms thresh-
old) or [23] (pre-quantising all events to the nearest 35ms pip) if reliable nominal onset
identification is desired, as is the case for testing this model.

5.2. Distribution Profile

It has been shown that there exist extreme cases under which the set of all plausible
ratios generated is either trivial or empty. In practice, the concern will be with more
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reasonable cases that produce a variable number of ratios. Some preliminary statistics of
the number of ratios generated are plotted in the supplementary electronic appendix B.1.
As one might expect, the number of ratios generated increases monotonically both with
increasing ∆ and increasing M .
Figure 5 shows more specifically where the effect of the parameters ∆,M take place.

Each panel represents the number of plausible ratios generated by Algorithm6.1∆,M on
P1152 where Pn =

{

〈i, j〉 ∈ N × N
∣

∣ 1 ≤ i, j ≤ n
}

. Values are plotted as a greyscale
value according to the key given in Fig. 4. The constant values along radii from the origin
account for the convergence with increasing n of the previous paragraph. Of particular
note are the dark bands centred on 1 : 2m for m = −M, . . . , 0, . . . ,M , and the varie-
gated nature of the regions between them. It will be shown empirically in § 7 how these
attributes are undesirable. For now, the reason for the troughs will be explained.
Let a ∈ N and m ∈ {0, . . . ,M}. Clearly, a | 2ma, so at least one ratio will always be

generated for 〈a, 2ma〉 ∈ P . To see why not more than one ratio will be generated in
this neighbourhood, consider

〈

a, 2la+ h
〉

∈ P for l, h ∈ N, 0 ≤ l ≤ M, 0 < h < a and

let k ∈ {0, . . . , ⌊∆a⌋}. Now a ∤ 2m(2la + h) + k if 2mh + k < a, which is certainly the
case if h < ⌊(1 −∆)a⌋/2M . The case for 2la − h − k is identical but for sines, giving a
sector of approximately |h| < 2−M (1−∆)a. For the second pass of the algorithm, when
p = −1, consider

〈

2la+ h, a
〉

∈ P . Now 2la+ h | 2ma+ k if q(2la+ h) = 2ma+ k, i.e. if

(q−∆)h ≈
(

2m+2l(∆− q)
)

a, so that h ≈
[(

2m+2l(∆− q)
)

/
(

q−∆
)]

a. The guaranteed

ratio of 1:1 will be produced for q = 2m−l, and it may be shown that the closest ratio
thereto occurs for ∆ = 4/9, M = 3, l = 0 at q = 9, m = 3 with h = −5a/77. The first
pass under the same conditions gives |h| < 5a/72. The two passes together thus yield a
sector of a:a′ for h0a ≤ a′ ≤ h−1

0 a, h0 = 72/77 when ∆ = 4/9, M = 3, l = 0, as depicted
in Fig. 4.
Every single preferred ratio is produced for the 3 465 pairs of consecutive pan-voice IOIs

in the 41 KP quantised corpus excerpts. This supports Hyp. 3.1 as a sufficient condition.
There is only a single instance of a ratio requiring M = 3. An analysis is given in the
supplementary electronic appendix B.2.
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∆
=

4 9
∆

=
1 8

M = 2 M = 3 M = 4

Figure 5. Distribution of number of plausible ratios for given ∆,M . Each panel is constructed
according to the same greyscale key given in Fig. 4.

6. Calculation of Plausible Ratios (Diverging)

As mentioned at the end of § 3, it turns out that not all preferred, perceived ratios
are produced by Algorithm4.1∆ with 0 ≤ ∆ < 1

2
on performance data. (The preferred

perceived ratios are indeed produced for a more metronomic rendition, but not in all
instances of real performance data.) Algorithm6.1 lists a version generalised for arbitrary
∆ ≥ 0 and without the convergence explained in Lemma 4.3. Although this convergence
may be seen as a limitation in terms of the spread of ratios generated, it may also be taken
as a strength in terms of the uniqueness explained in Theorem 4.6. The uniqueness of each
power-of-two factor (before cancellation) within its range is harnessed in Algorithm6.1∆.
This range is extended at each power-of-two step so as the angle subtended by their ranges
remains constant1 at that of the case m = 0. The extension may be made in “window”
steps of 2⌊∆a⌋ + 1 within these bounds, safe in the knowledge that at most one ratio
may emerge each time. Thus, a complete set of ratios is produced in keeping with the
modelling rationale of § 1. A geometrical interpretation is given in Fig. 6. By comparing
with Fig. 3, it can be seen how the additional ratios of 1

4
, 3
4
are generated.

Algorithm 6.1 For ∆ ∈ R+, M, n1, n2 ∈ N, n1, n2 > 0, PlausibleRatios∆,M (n1, n2)
returns a set of ratios. An annotated listing is given in the supplementary electronic
appendix C.1.

1Semantically constant, that is. Technically, the un-rounded range θ is approached as m → ∞,
where θ = tan−1[a/(b−∆a)]− tan−1[a/(b+∆a)].
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Figure 6. Geometrical interpretation of Algorithm6.1 1
3
(3, 7).

7. Behaviour (Diverging)

For a given ratio r ∈ Q×, i.e. a positive rational p/q say, where p, q ∈ Z+, it will be
convenient to define an idempotent unary operator on Q× by:

‖p/q‖× =
max{p, q}

min{p, q}
. (7)

Thus ‖r‖× ≥ 1, and a rational less than unity maps to its reciprocal. This operator
may be thought of as a measure of the disparity of the ratio’s two factors: the closer the
numerator and denominator are to each other in terms of their magnitude, the lower their
disparity value. It could also be thought of as analogous to the absolute value operator
for the multiplicative group of Q instead of the additive group hence the notation.
Notwithstanding Lemma 4.5, every single correct ratio is produced for the 1 554 pairs

of consecutive pan-voice IOIs in the 15 KP performed corpus excerpts with a reasonable
∆. For each pair, Fig. 7 plots the barely sufficient ∆ such that the pair (p, q) is produced,
against its disparity ‖p/q‖×. Almost all of the points plotted lie under a discernible curve
approximated by ψ0,

ψ0(x) = b log(x− a) + c for constants a = 0.85, b = 1/4, c = 1/2. (8a)

As this curve is calculated as a function of the pre-quantised, performed IOIs, it gives a
practical bound on the range of plausible ratios that need to be generated. The actual
preferred values are not represented in Fig. 7, only how wide a range was necessary to
generate them. The observation is that a suitable range may reliably and simply be
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calculated from the observed values so as to include the preferred value.
Note that this curve in Eqn (8a) and Fig. 7 exists independently of both the magnitude

of the ratio factors (p:q = np:nq) and the sense of their disparity (‖p:q‖× = ‖q:p‖×), and
indeed any other parameters apparent at this stage. This means that, conveniently for
computation, the curve holds irrespective of tempo (or of the sense of direction through
time).
The data in Fig. 7 is dense for observed IOI pairs p:q in the range ‖p/q‖× ≤ 2, with

over 96% of the data there (1 498 points out of a population of 1 554). A histogram of
the distribution with logarithmic ordinate is shown in an inset of Fig. 7. With increasing
‖p/q‖×, the data rapidly becomes sparse and unreliable, but a pattern, an upper bound
on the lower bounds for ∆, can nonetheless be traced. It is not possible to say to what
extent this may be characteristic of the performer’s style (all excerpts were played by the
same musician) or of the genre, or to what extent it may be a more universal phenomenon.
Intuitively though, it would seem surprising if uncertainty were not somehow correlated
with disparity. It is useful to know that there exists this certain range, which may be
calculated in advance, within which the perceived ratio is reasonably sure to lie, despite
the fact that may be impossible as yet to know which plausible ratio it will be.
There are only five substantial outliers: they all come from the 7 : 1 : 7 : 1 : 7 : 1 : 10

sequence of Bars 5–6 of the Beethoven piano sonata, Opus 10, of Fig. 8. They could be
accounted for by interpreting the demi-semi-quavers of Bars 5–6 instead as grace notes,
or by considering a cumulative effect of uncertainty (not present in Eqn (8)) due to the
succession of such wide disparity (cf. the preferred interval of Fraise in § 2), or yet as being
compensated for by the particularly decisive and unambiguous metrical interpretation
that this passage possesses.
Of the fourteen cases that require ψ(x, l) with l > 0, three of them are hemiolas,
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Figure 8. Slow tempo and straddling of metrical levels in consecutive IOIs require greater lati-
tude.

although this number could be higher depending on interpretation as there were a few
instances of hemiola with very short intervals that were marked as extra-metrical. This
suggests that polyrhythms, unless executed very accurately, would be better interpreted
as intra-voice intervals contrary to Hyp. 3.1 and Fig. 1. Otherwise there is a kind of
temporal vernier effect under which small deviations from metronomic performance give
rise to exaggeratedly deviant observed ratios. Polyrhythm is however beyond the scope
of common practice tonal music under consideration. The remaining 11 of the 14 are
due to rubato. Seven of these come from the Beethoven Sonata Op. 10 alone, discussed
above. With l = 0, these fourteen will each be given a range of more metronomic but
less metrical interpretations.
For practical application, all preferred ratios can be ensured by using a factor, l, to

“translate the curve” by a variable amount in the direction of the (admittedly ad hoc)
vector d illustrated in Fig. 7:

ψ(x, l) = ψ0(x− ldx) + ldy, d = (dx, dy) = (−1, 1/3), (8b)

i.e. putting ∆ = ψ(‖p/q‖×, l) suffices in practice where l may be a specified rubato/
tolerance parameter. Of the consecutive interval pairs from the corpus, 99% have their
preferred ratios produced with l = 0, finding ψ0 inadequate in just 14 out of 1554 cases.
Only five remain with l = 0.18.
Figures 4–5,B1 showed how the number of ratios generated increases with ∆ and M ;

Fig. 9 shows graphically the number generated with ∆ = ψ(‖p/q‖×, 0). By comparing
with the local peaks and troughs of Fig. 5, one can see how a dynamic data-driven ∆
yields a distribution that is both reasonably smooth and increasing with disparity as
desired. By contrast, any locally fixed value of ∆ for Algorithm4.1∆ would either fail
to produce the perceived ratio for larger disparity or produce many spurious ratios for
lower disparity.

8. Discussion and Conclusion

There is a certain kind of redundancy or “latency” in the algorithm’s mechanism in that
it sometimes tentatively generates a ratio that has already been a member of the output
set. While a range of special cases such as the 1:2n troughs could be catered for, it seems
unlikely that the overhead of checking for their occurrence would be less than that of
checking for membership of a rather small set. A full treatment would appear to require
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a characterisation of the distribution of primes a subject which remains the holy grail
of number theory notwithstanding millennia of study [17].
Alternatively, all 2m factor ratios could be generated and then filtered to within a

specified tolerance. This would produce the same result but the presented algorithm is
more efficient as it directly and efficiently generates only the required ratios.
Just under 2% of the 1 554 performance ratios strictly require ∆ ≥ 1/2. Without the

generalisation to ∆ > 1/2 of § 6–7, this would correspond to a beat tracker failing once
every 50 onsets on average. For the more dense KP corpus excerpts, this corresponds to
little more than two bars at a time, yielding unacceptably poor performance. The test
corpus, including details of its preparation, along with implementations of the algorithms,
is available from [20].
Algorithms for calculating round rational approximations exist in languages

such as Haskell (Ratio.approxRational), Matlab/Octave (rat), and Mathematica
(Rationalize). Each of them use continued fractions to produce a converging sequence
of rationals, although there are implementation differences in how the continued frac-
tion is expanded and how the converging sequence is derived from it. They each take
a tolerance parameter, somewhat analogous to ∆a of Algorithm4.2. Haskell terminates
at the simplest ratio; Octave terminates when the ratios have converged to within a
supplied (or default) tolerance; Mathematica (closed source but documented) employs
convergents but also tries to minimise the denominator.
Haskell’s approxRational defines a partial order on ratios by p:q is simpler than p′:q′

if |p| ≤ |p′| ∧ |q| ≤ |q′|. It is straightforward to show that, within a given interval, there
exists a unique simplest rational; it is even easier to show that there exists a unique
simplest ratio of the form 2m:q or p:2m. It is also possible to produce the output from Al-
gorithm6.1 from approxRational by judicious choice of interval for each ratio produced,
and it is possible to substitute approxRational for Algorithm4.2 in the code for Algo-
rithm6.1. The difficulty with this approach however lies in systematically constraining
the factors of the ratios produced to the form 2m while producing all such ratios within
range. Algorithm4.2 simultaneously harnesses Theorem 3.3 and Theorem 4.6 to cover an
interval all at once with optimal efficiency, O(1). Conceptually, this is achieved by fixing
one factor (thanks to Definition 3.2) while taking advantage of modular arithmetic with
the other factor. The approach of continued fractions varies both factors at once. It should
be possible to apply approxRational within a sufficiently small tolerance (i± 1

2
, j ± 1

2
)
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about each coordinate (i, j) in range (the green band ranges in Fig. 6). When a ratio of
the correct form is found, then Theorem 4.6 can be applied to skip some neighbouring
coordinates. This involves testing most coordinates in range and invoking a recursive
algorithm at each test substantially less efficient than Algorithm4.2. Possible compu-
tational alternatives to modify approxRational may include a recursively maintained
version of the “counterbalance coefficient” mentioned in the notes to Algorithm4.1, or
a Prolog style backtracking algorithm with effective bailout heuristics for non-power-of-
two factored ratios. Both alternatives seem unwieldy compared with Algorithm4.2. The
above remarks apply also to Octave and Mathematica.
Theorems for existence and uniqueness are offered for what has been termed near

division. A few additional results characterise the behaviour of the algorithms presented.
The theory would perhaps benefit from a completeness theorem. It may be noticed that
the ratio 1:3 is not a member of the set produced by Algorithm6.1 1

3

(3, 7) as depicted in

Fig. 6, despite being within range. This is because 3 does not divide any of the multiples
of 7 employed (3 and 7 are coprime). In practice so far, this has not been problematic
for real performance values with 3–4 significant figures and M ≥ 2 as recommended.
An appropriate completeness theorem could provide formal conditions under which all
ratios of the stated form are guaranteed to be generated. Algorithm6.1 could then be
enhanced as needs be, e.g. by an additional step in the outermost loop for ratios of the
required form. Similarly, if it should transpire that Hyp. 3.1 is too restrictive for a given
application, then Algorithm6.1 can easily be amended: Definition 3.2, Theorem 3.3 and
Theorem 4.6 still apply.
A curious reader may wonder to what extent the bottom-up approach of this paper

would have on the instability of a beat tracker employing it. It turns out that a meter de-
tection layer and beat tracking layer driven by the plausible ratios of this paper performs
well compared with other systems, being both stable and adaptable, while adhering to
the modelling requirements of § 1. Demonstration of this is the subject of follow-up papers
[24, 25]. It will be shown how it is possible to choose the perceived ratio, qi/qi+1, most of
the time, so that only occasional periodic recourse to metre for coercion is necessary for
a beat tracker. Such an approach has precedent in the generate-and-test paradigm of AI
and pattern recognition [2, 3, 26–28]. It is a hope of this paper that such a “functional”
approach, as with functional programming languages, will preclude hidden side effects
and circular dependencies.
In summary, a formulation of near division is developed to facilitate direct calculation

of round approximate ratios subject to constraints of a certain form. Employing this,
an algorithm is devised to produce all plausible ratios within a given range. The be-
haviour of this algorithm is analysed: first in terms of its mathematical properties and
then empirically to establish bounds on its behaviour. A generalised algorithm is then
devised that harnesses the uniqueness property of the previous section to address the
shortcomings identified in the analysis. This generalised algorithm is tested in turn on
performance data, and criteria for more reasonable behaviour are identified.
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Appendix A. Calculation of Plausible Ratios (Converging, § 4)

A.1. Pseudocode with Annotation

Algorithm A.1 (aka Algorithm 4.1) For ∆ ∈ [0, 1
2
), M, n1, n2 ∈ N, n1, n2 > 0,

PlausibleRatios1∆,M (n1, n2) returns a set of plausible ratios.
0. Put Q0 = {}, i = 0,
1. For {a = n1, b1 = n2, p = 1} and {a = n2, b1 = n1, p = −1}:
2. Put ∆a = ⌊∆a⌋,
3. For m = 0, 1, . . . ,M :
4. Put b = 2mb1, c = NearDivides(a, b,∆a), increment i,
5. If c 6= ∅ then:

6. Put Qi = Qi−1 ∪
{

n1

n2
( b
c
)p
}

.

7. otherwise
8. Put Qi = Qi−1.
9. Return Qi.

Algorithm A.2 (aka 4.2) For a, b,∆a ∈ N, a, b > 0, NearDivides(a, b,∆a) returns c
such that a | c and |b− c| ≤ ∆a, or else null.
0. Put r = (b mod a),
1. If r ≤ ∆a then:
2. Return b− r.
3. else if r ≥ a−∆a then:
4. Return a+ b− r.
5. Return ∅.

Notes on the steps of AlgorithmA.1, PlausibleRatios1, follow:

(1) In keeping with Hyp 3.1, the first pass of the outer loop gathers all ratios within
bounds of the form n:2m while the second pass adds those of the form 2m:n.

(2) The parameter ∆ is set externally, 0 ≤ ∆ < 1
2
. There is nothing to be lost, and a

slight gain in efficiency, by rounding ∆a down at this stage.
(3) The parameter M determines the upper limit on the set of powers of two consid-

ered. It is also set externally.
(4) If a ≀∆ b then c is set such that a | c and |b − c| ≤ ∆a, as given explicitly in the

proof of Theorem 3.3.
(6) On the first pass of Step 1,

n1
n2

(b

c

)p

=
n12

mn2
n2c

=
2m

q1
for q1 =

c

n1
∈ N;

on the second pass,

n1
n2

(b

c

)p

=
n1c

n22mn1
=

q2
2m

for q2 =
c

n2
∈ N.

Thus, a ratio with 2m as one or other factor is formed each time. The ratio (b/c)p

may be thought of as a kind of “counterbalance” coefficient, one which brings
n1/n2 back to a round ratio that might have been intended.
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A.2. Haskell Implementation

There follows an implementation of AlgorithmA.1 (aka 4.1) and AlgorithmA.2 (aka 4.2)
in Haskell. See also §C.1 for the full algorithm and download details.

import Maybe

import Ratio

import List

type IOI = Int

type Delta = Rational

type PowerOfTwo = Int

type PlausibleRatio = Ratio IOI

data Pass = First | Second

nearDivides :: IOI -> IOI -> Int -> Maybe Int

nearDivides a b da = let r = b ‘mod‘ a in

if r <= da then Just (b - r)

else if r >= a - da then Just (a + b - r)

else Nothing

plausibleRatios1 :: PowerOfTwo -> Delta -> IOI -> IOI -> [PlausibleRatio]

plausibleRatios1 mM d n1 n2 = nub $ gather First n1 n2 ++ gather Second n2 n1

where gather p a b1 = let da = floor $ d * fromIntegral a in

mapMaybe (gather_m p da a b1) [0..mM]

gather_m p da a b1 m = let b = 2^m*b1

n = nearDivides a b da

in case n of

Just c -> Just $ (n1%n2)*r

where r = case p of

First -> b%c

Second -> c%b

_ -> Nothing

A.3. Lemmas

Lemma A.3 Taking n1, n2,m as in AlgorithmA.1, the values produced by (Step 6 of)
AlgorithmA.1∆(n1, n2) converge to n1/n2 with increasing m:

lim
m→∞

2mn1
cm

=
n1
n2

= lim
m→∞

c′m
2mn1
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whenever c, c′ are defined for m, where c is the value produced by AlgorithmA.2 during
the first pass of the outer loop (p = 1) and c′ that for the second pass (p = −1).

Proof : Assuming that c exists, we have

|2mn2 − cm| ≤ ∆n1. (A1)

Multiplying by n1/(n2cm) gives

∣

∣

∣

2mn1
cm

−
n1
n2

∣

∣

∣
≤

∆n21
n2cm

. (A2)

Given any ε ∈ R, ε > 0, put

m = min
{

l ∈ N
∣

∣

∣
l > log2

[∆

ε

(n1
n2

)2

+∆
n1
n2

]

and cl exists
}

. (A3)

Then

2m >
∆

ε

(n1
n2

)2

+∆
n1
n2

and

2mn2 −∆n1 >
∆n21
εn2

. (A4)

It follows from (A1) that 2mn2 −∆n1 ≤ cm; therefore, by (A4),

∆n21
εn2

< cm and
∆n21
n2cm

< ε. (A5)

The result for the first pass now follows from (A2):

lim
m→∞

2mn1
cm

=
n1
n2
. (A6)

Similarly for the second pass we have

|2mn1 − c′m| ≤ ∆n2; (A7)

multiplying by n2/(n1c
′

m) gives

∣

∣

∣

2mn2
c′m

−
n2
n1

∣

∣

∣
≤

∆n22
n1c′m

. (A8)

Given ε > 0, put

m = min
{

l ∈ N
∣

∣

∣
l > log2

[∆

ε

(n2
n1

)2

+∆
n2
n1

]

and c′l exists
}

(A9)
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so that

2mn1 −∆n2 >
∆n22
εn1

. (A10)

By (A7), 2mn1 −∆n2 ≤ c′m and so

∆n22
εn1

< c′m and
∆n22
n1c′m

< ε. (A11)

By (A8),

lim
m→∞

2mn2
c′m

=
n2
n1
, (A12)

and the result follows from a standard property of limits:

lim
m→∞

c′m
2mn2

=
n1
n2
. (A13)

�

Corollary A.4 The rate of convergence of AlgorithmA.1∆(n1, n2) decreases with ∆.

Proof : This follows from Eqn (A3) and Eqn (A9). �

Appendix B. Behaviour (Converging, § 5)

B.1. Distribution

FigureB1 plots some statistics of the number of ratios generated by Algorithm A.1 (aka
4.1) under varying parameters. As one might expect, the number of ratios generated
increases monotonically both with increasing ∆ and increasing M . For rather low values
of ∆, not every pair of numbers receives a ratio; however, all pairs of numbers up to
at least 1 152 receive a non-empty set of plausible ratios for M ≥ 1 and ∆ ≥ 13

64
. For

increasing values of M , certain pairs of numbers receive increasingly many ratios with
increasingly fine distance between them.
The two plots to the left show the mean number of plausible ratios generated for

Pn =
{

〈i, j〉 ∈ N × N
∣

∣ 1 ≤ i, j ≤ n
}

and Qn =
{

〈i, j〉 ∈ N × N
∣

∣ 1 ≤ i ≤ j ≤

n and gcd(i, j) = 1
}

for n = 12 and n = 1152 (where Q lies very close to P ); the two
plots to the right similarly show standard deviation. While the former set, P (plotted in
red), calculates over all pairs of numbers in range, the latter set, Q (in green), calculates
over all unique ratios i : j for i ≤ j in range. The symmetry of the algorithm ensures
that i:j and j:i produce isomorphic sets: each member is a reciprocal of a corresponding
member of the other (dual) set. Hence the condition that i ≤ j for uniqueness in Q. This
duality is of use in § 7. The lower plot shows how the mode and max behave.
As n increases, so does the mean while the variance decreases. In both cases, this change

is slow and the rate of change decreases: they both appear to converge. For n = 12, the
statistics are not substantially different; for large n, there is no significant difference. In
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Figure B1. Distribution of mean number of plausible ratios from AlgorithmA.1 for given ∆,M

keeping with Corollary A.4, AlgorithmA.1’s behaviour becomes increasingly stable with
increasing n. In practice then, 3–4 significant figures or a temporal resolution of ˜1ms
may be optimally adequate. There is only slight difference between the measurements
for P and Q for n = 1152 and this difference vanishes as n increases. Indeed, it can be
shown that |Qn|/|Pn| = φ(n2)/n2 ∼ 6/π2, where φ(n) is Euler’s totient function.

B.2. Outlier Requiring M = 3

There is only a single instance of a ratio requiring M = 3. Although the interval sub-
divisions used are perfectly orthodox, what makes this instance unusual is the fact that
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Figure B2. The only instance of a ratio requiring M = 3 in the corpus: that of 8:3 across bars
36–37, where 8 = 23.

it proceeds immediately from an interval of two tactus (crochet) beats to an interval
implicitly requiring a subdivision of the tactus level. Normally in common practice tonal
music, when proceeding directly from interval level 2L to L/2 say, i.e. skipping level L,
the L/2 interval level will be marked explicitly. In this instance, the L/2 (quaver) level
is straddled. The strong parallelism in the first violin part, echoed in the second violin
and viola, helps to carry an otherwise weaker sense of metre over this hurdle. The minim
interval conspicuously skips a tactus beat (like what London [29] calls a “loud rest” ex-
cept that it may be sustained). The effect is somewhat analogous to that of a fermata
in giving a sense of the piece being momentarily suspended, but discretely rather than
continuously and for tactus rather than for tempo, as the timing may be steady. All other
preferred ratios in the corpus were produced with M = 2.

Appendix C. Calculation of Plausible Ratios (Diverging, § 6)

C.1. Pseudocode with Annotation

Algorithm C.1 (aka Algorithm 6.1) For ∆ ∈ R+, M, n1, n2 ∈ N, n1, n2 > 0,
PlausibleRatios∆,M (n1, n2) returns a set of ratios.
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0. Put Q0 = {}, i = 0,
1. For {a = n1, b = n2, p = 1} and {a = n2, b = n1, p = −1}:
2. Put h′ = ⌈a/2⌉ − 1,
3. For m = 0, 1, . . . ,M :
4. Put h = ⌊2m∆a⌋, ∆a = min{h, h′},
5. If h > h′ then put s = 2∆a + 1;
6. otherwise put s = ∅.
7. If s 6= ∅ then put b′ = 2mb+ h−∆a, bs = 2mb− h+∆a;
8. otherwise put b′ = bs = 2mb.
9. Put b′s = bs,
10. Until b′s = ∅:
11. Put c = NearDivides(a, b′s,∆a), increment i,
12. If c 6= ∅ ∧ c 6= 0 then put Qi = Qi−1 ∪

{

(2
ma
c
)p
}

;
13. otherwise put Qi = Qi−1.
14. If s 6= ∅ then put bs = bs + s;
15. otherwise put bs = ∅.
16. If b′ = b′s then put b′s = ∅;
17. else if bs > b′ then put b′s = b′;
18. otherwise put b′s = bs.
19. Return Qi.

(2) If range extension is to take place at any subsequent step, then ±h′ is the full
extent within which the uniqueness of Theorem 4.6 applies.

(4) h is the full range of possibility for a “dividend” about 2mb; ±∆a is the extent
within which the existence of a dividend will be queried. ∆a effects a crossover
from h to h′ as m (or ∆) increases.

(5–6) If range extension is going to take place, then s is the maximum amount by which
the local window may step.

(7–8) bs is set to the initial window centre; b′ is the terminal window centre.
(9–11) b′s is the local window centre, stepping as it may.
(12) This is a simplified but functionally equivalent version of Step 6 in AlgorithmA.1,

PlausibleRatios1∆. It lacks the symmetry of the previous version and perhaps
conceals the semantics of its derivation.

(14–18) bs is the stepping window centre at full extent; b′s is the stepping window centre
not exceeding h in range. The local window, b′s±∆a, steps as necessary, its centre
never exceeding b′.

C.2. Haskell Implementation

There follows an implementation of AlgorithmC.1 (aka Algorithm 6.1) in
Haskell. The code of §A.2 is assumed to exist in the same file. This code,
along with implementations in Common Lisp and C, can be downloaded from
ftp://ftp.maths.tcd.ie/pub/dec/quantisation/src.tar.gz [20].
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mapGather :: (a -> Maybe b -> (a,Maybe b,Maybe c)) -> a -> Maybe b -> [c]

mapGather f a b = case f a b of

(_,Nothing,Nothing) -> []

(_,Nothing,Just c’) -> [c’]

(a’,b’@(Just _),Nothing) -> mapGather f a’ b’

(a’,b’@(Just _),Just c’) -> c’ : mapGather f a’ b’

plausibleRatios :: PowerOfTwo -> Delta -> IOI -> IOI -> [PlausibleRatio]

plausibleRatios mM d n1 n2 = nub $ gather First n1 n2 ++ gather Second n2 n1

where gather p a b = let h’ = ceiling (a%2) - 1 in

concatMap (gather_m p h’ a b) [0..mM]

gather_m p h’ a b m =

let h = floor $ (2^m * numerator d * fromIntegral a) % denominator d

da = min h h’

js = if h > h’ then Just (2*da+1) else Nothing

bm = 2^m*b

hd = h-da

b’ = if isJust js then bm+hd else bm

bs = if isJust js then bm-hd else bm

gather_b’s b_s jb’_s =

case jb’_s of

Just b’_s -> (b_si,b’_si,pr)

where pr = case nearDivides a b’_s da of

Just c | c /= 0 -> Just $ case p of

First -> (2^m*a)%c

Second -> c%(2^m*a)

_ -> Nothing

b_si = case js of

Just s -> b_s+s

_ -> undefined

b’_si = if b’ == b’_s

then Nothing

else Just $ if b_si > b’ then b’ else b_si

_ -> (b_s,Nothing,Nothing)

in mapGather (gather_b’s) bs (Just bs)
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