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Abstract. We construct a complete formal normal form for a real 2-codimensional submanifold M ⊂ CN+1 near a CR

singularity approximating the sphere. This result gives a higher dimensional extension of Huang-Yin normal form in C2.

1. Introduction and the main result

The study of the real submanifolds in the complex space near an isolated complex tangent point goes back to Bishop
(see [1]). A point p ∈ M with the property that the map M 3 q 7→ dimC T c

q M defined near p is not continuous at p is
called a CR singularity. Here T c

q M := TqM ∩ J (TqM), where J : CN+1 −→ CN+1 is the standard complex structure.
Bishop considered the case when there exist coordinates (z, w) in C2 such that near a CR singularity p = 0, a real

2-codimensional submanifold M ⊂ C2 is given locally by

(1.1) w = zz + λ
(
z2 + z2

)
+ O(3), or w = z2 + z2 + O(3),

where and λ ∈ [0,∞] is a holomorphic invariant called the Bishop invariant. When λ = ∞, M is understood to be
defined by the second equation from (1.1). If λ 6∈

{
0, 1

2 ,∞
}
, Moser and Webster (see [15]) proved that there exists a

formal transformation that sends M into the normal form

(1.2) w = zz + (λ + εuq)
(
z2 + z2

)
, ε ∈ {0,−1,+1} , q ∈ N,

where w = u + iv. When λ = 0 Moser (see [14]) derived the following partial normal form (the Moser normal form):

(1.3) w = zz + 2Re

∑
j≥s

ajz
j

 .

Here s := {j ∈ N?; aj 6= 0} is the simplest higher order invariant known as the Moser invariant. This partial normal
form was completed by Huang and Yin (see [9]). They proved that (1.3) is either a quadric or it can be formally
transformed into the following normal form

(1.4) w = zz + 2Re

∑
j≥s

ajz
j

 , as = 1, aj = 0, if j = 0, 1 mod s, j > s.

In this paper we construct a higher dimensional analogue of the Huang-Yin normal form. If (z, w) = (z1, . . . , zN , w)
are coordinates of CN+1 and M ⊂ CN+1 a real 2-codimensional submanifold, we consider the case when there exists a
holomorphic change of coordinates (see [7] or [10]) such that near p = 0, M is given by

(1.5) w = z1z1 + · · ·+ zNzN +
∑

m+n≥3

ϕm,n(z, z),

where ϕm,n(z, z) is a bihomogeneous polynomial of bidegree (m,n) in (z, z).
Some of our methods extend those from [9]. First, we give a generalization of the Moser normal form (1.3) (see [14]),

called here the Extended Moser Lemma (Theorem 2.2), which uses the trace operator (see e.g. [16], [17]):

(1.6) tr :=
N∑

k=1

∂2

∂zk∂zk
.

In C2 the Moser normal form eliminates the terms in the local defining equation of M of positive degree in both z and
z. The higher dimensional case considered here brings new difficulties. In CN+1 the Extended Moser Lemma eliminates
only iterated traces of the coresponding terms. However, these terms can still contribute to higher order terms in the
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construction of the normal form. Similar normal forms were constructed recently for Levi-nondegenerate hypersurfaces
in CN+1 by Zaitsev (see [17]).

The Extended Moser Lemma allows us to find just a partial normal form. This partial normal form is not unique but
is only determined up to an action of an infinite dimensional group Aut0 (M∞), the formal self-transformation group
of the quadric model M∞ := {w = z1z1 + · · ·+ zNzN}. The condition that (1.3) contains nontrivial higher order terms
has the following natural generalization to higher dimension:

(1.7)
∑
k≥3

ϕk,0(z) 6≡ 0,

where here and throughout the paper we use the abbreviation

ϕk,0(z) := ϕk,0(z, z̄)

as the latter polynomials do not depend on z̄. As a consequence we obtain that s := min {k ∈ N?; ϕk,0(z) 6≡ 0} < ∞.
Then s is a biholomorphic invariant and ϕs,0(z) is invariant (as tensor). We call the integer s ≥ 3 the generalized Moser
invariant. In course of this paper we will use the following notations

(1.8) ∆(z) := ϕs,0(z), ∆k(z) := ∂zk
ϕs,0(z), k = 1, . . . , N.

Definition 1.1. For a given homogeneous polynomial V (z) =
∑
|I|=k

bIz
I we consider the associated Fisher differential

operator

(1.9) V ? =
∑
|I|=k

bI
∂|I|

∂zI
.

The polynomial ∆(z) will be assumed to satisfy the following non-degeneracy condition:

Definition 1.2. The polynomial ∆(z) is called nondegenerate if for any linear forms L1(z), . . . ,LN (z), one has

(1.10) L1(z)∆1(z) + · · ·+ LN (z)∆N (z) ≡ 0 =⇒ L1(z) ≡ · · · ≡ LN (z) ≡ 0.

In this paper we prove the following result:

Theorem 1.3. Let M ⊂ CN+1 be a 2-codimensional real (formal) submanifold given near the point 0 ∈ M by the
formal power series equation

(1.11) w = z1z1 + · · ·+ zNzN +
∑

m+n≥3

ϕm,n(z, z),

where ϕm,n(z, z) is a bihomogeneous polynomial of bidegree (m,n) in (z, z). Assume that ∆(z) is nondenerate. Then
there exists a unique formal map

(1.12) (z′, w′) = (F (z, w), G(z, w)) = (z, w) + O(2),

that transforms M into the following normal form:

(1.13) w′ = z̄′1z
′
1 + · · ·+ z′Nz′N +

∑
m+n≥3
m,n 6=0

ϕ′m,n

(
z′, z′

)
+ 2Re

∑
k≥s

ϕ′k,0 (z′)

 ,

where ϕ′m,n

(
z′, z′

)
is a bihomogeneous polynomial of bidegree (m,n) in

(
z′, z′

)
satisfying the following normalization

conditions

(1.14)

{
trm−1ϕ′m,n

(
z′, z′

)
= 0, m ≤ n− 1, m, n 6= 0;

trnϕ′m,n

(
z′, z′

)
= 0, m ≥ n, m, n 6= 0.

(1.15)

{ (
∆t
)?

ϕ′T,0(z) = 0, if T = ts + 1; t ≥ 1,(
∆k∆t

)? (
ϕ′T,0(z)

)
= 0, k = 1, . . . , N, if T = ts; t ≥ 2.
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A few words about the construction of the normal form. We want to find a formal biholomorphic map sending
M into a formal normal form. This leads us to study an infinite system of homogeneous equations by truncating the
original equation. We follow Huang-Yin strategy defining the weight of zk to be 1 and the weight of zk to be s − 1,
for all k = 1 . . . , N . Since Aut0(M∞) is infinite-dimensional, it follows that the homogeneous linearized normalization
equations (see sections 3 and 4) have nontrivial kernel spaces. Using the preceding system of weights and a similar
induction argument as in [9], we are able to trace precisely how the lower order terms arise in non-linear fashion: The
kernel space of degree 2t + 1 is restricted by imposing a normalization condition on ϕ′ts+1,0(z) and the kernel space of
degree 2t+2 by imposing a normalization conditions on ϕ′ts,0(z). The non-uniqueness part of the lower degree solutions
are uniquely determined in the higher order equations.

Our normal form is a natural generalization of the Huang-Yin normal form. Our normalization conditions are invariant
under the linear change of coordinates that preserves the model w = z1z1 + · · ·+ zNzN , namely the unitary change of
coordinates. Also, the non-degeneracy condition on ∆(z) is invariant under any linear change of coordinates.

A few words about the paper organization: In course of section 2 we will give a generalization of the Moser normal
form and make further preparations for our normal form construction. The normal form construction will be presented
in course of sections 3 and 4. In section 5 we prove the uniqueness of the formal transformation map.

Acknowledgements. This paper was written under the supervision of Dmitri Zaitsev. I would like to thank to him
for the introduction to the subject, for his patience and encouragement during the preparation of this paper. I would
like also to thank to Hermann Render for point me the Fisher decomposition generalization from [16].

2. Preliminaries, notations and the Extended Moser Lemma

Let (z1, . . . , zN , w) be the coordinates from CN+1. Assume that there exists a holomorphic change of coordinates
such that near the point p = 0 M is defined by

(2.1) w = z1z1 + · · ·+ zNzN +
∑

m+n≥3

ϕm,n(z, z),

where ϕm,n(z, z) is a bihomogeneous polynomial of bidegree (m,n) in (z, z), for all m,n ≥ 0.
Let M ′ be another submanifold defined by

(2.2) w′ = z′1z
′
1 + · · ·+ z′Nz′N +

∑
m+n≥3

ϕ′m,n

(
z′, z′

)
,

where ϕ′m,n

(
z′, z′

)
is a bihomogeneous polynomial of bidegree (m,n) in

(
z′, z′

)
, for all m,n ≥ 0. We define the hermitian

product

(2.3) 〈z, t〉 = z1t1 + · · ·+ zN tN , z = (z1, . . . , zN ) , t = (t1, . . . , tN ) ∈ CN .

Let (z′, w′) = (F (z, w), G(z, w)) be a formal map which sends M to M ′ and fixes the point 0 ∈ CN+1. Substituting
this map into (2.2), we obtain

(2.4) G(z, w) = 〈F (z, w), F (z, w)〉+
∑

m+n≥3

ϕ′m,n

(
F (z, w), F (z, w)

)
.

In the course of this paper we use the following notations

(2.5) ϕ≥k(z, z) =
∑

m+n≥k

ϕm,n(z, z), ϕk(z, z) =
∑

m+n=k

ϕm,n(z, z), k ≥ 3.

Substituting in (2.4) F (z, w) =
∑

m,n≥0

Fm,n(z)wn, G(z, w) =
∑

m,n≥0

Gm,n(z)wn, where Gm,n(z), Fm,n(z) are homoge-

neous polynomials of degree m in z, using w satisfying (2.1) and notations (2.4), it follows that

∑
m,n≥0

Gm,n(z) (〈z, z〉+ ϕ≥3))
n =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

m1,n1≥0

Fm1,n1(z) (〈z, z〉+ ϕ≥3)
n1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+ ϕ′≥3

 ∑
m2,n2≥0

Fm2,n2(z) (〈z, z〉+ ϕ≥3)
n2 ,

∑
m3,n3≥0

Fm3,n3(z) (〈z, z〉+ ϕ≥3)
n3

 .

(2.6)
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Since our map fixes the point 0 ∈ CN+1, it follows that G0,0(z) = 0, F0,0(z) = 0. Collecting the terms of bidegree (1, 0)
in (z, z) from (2.6), we obtain G1,0(z) = 0. Collecting the terms of bidegree (1, 1) in (z, z) from (2.6), we obtain

(2.7) G0,1〈z, z〉 = 〈F1,0(z), F1,0(z)〉 .
Then (2.7) describes all the possible values of G0,1(z), F1,0(z). Therefore Im G0,1 = 0. Composing with an linear auto-
morphism of Re w = 〈z, z〉, we can assume that G0,1(z) = 1, F1,0(z) = z.

Using the same approach as in [17] (this idea was suggested me by Dmitri Zaitsev), the ,,good” terms that can help
us to find the formal change of coordinates under some normalization conditions are

(2.8) ϕm,n(z, z), ϕ′m,n (z, z) , Gm,n(z)〈z, z〉n, 〈Fm,n(z), z〉 〈z, z〉n, 〈z, Fm,n(z)〉 〈z, z〉n.

We recall the trace decomposition (see e.g. [17] , [16]):

Lemma 2.1. For every bihomogeneous polynomial P (z, z) and n ∈ N there exist Q(z, z) and R(z, z) unique polynomials
such that

(2.9) P (z, z) = Q(z, z)〈z, z〉n + R(z, z), trnR = 0.

Using the Lemma 2.1 and the ,,good” terms defined previously (see (2.8)) we develop a partial normal form that
generalize the Moser Lemma. Let ∂z := (∂z1 , . . . , ∂zN

). We prove the following statement:

Theorem 2.2 (Extended Moser Lemma). Let M ⊂ CN+1 be a 2-codimensional real-formal submanifold. Suppose that
0 ∈ M is a CR singular point and the submanifold M is defined by

(2.10) w = 〈z, z〉+
∑

m+n≥3

ϕm,n(z, z),

where ϕm,n (z, z) is bihomogeneous polynomial of bidegree (m,n) in (z, z), for all m,n ≥ 0. Then there exists a unique
formal map

(2.11) (z′, w′) =

z +
∑

m+n≥2

Fm,n(z)wn, w +
∑

m+n≥2

Gm,n(z)wn

 ,

where Fm,n(z), Gm,n(z) are homogeneous polynomials in z of degree m with the following normalization conditions

(2.12) F0,n+1(z) = 0, F1,n(z) = 0, for all n ≥ 1,

that transforms M to the following partial normal form:

(2.13) w′ = 〈z′, z′〉+
∑

m+n≥3
m,n 6=0

ϕ′m,n

(
z′, z′

)
+ 2Re

∑
k≥3

ϕ′k,0 (z′)

 ,

where ϕ′m,n(z, z) are bihomogeneous polynomials of bidegree (m,n) in (z, z), for all m,n ≥ 0, that satisfy the following
trace normalization conditions (1.14).

Proof. We construct the polynomials Fm′,n′(z) with m′+2n′ = T −1 and Gm′,n′(z) with m′+2n′ = T by induction on
T = m′+2n′. We assume that we have constructed the polynomials Fk,l(z) with k+2l < T −1, Gk,l(z) with k+2l < T .

Collecting the terms of bidegree (m,n) in (z, z) with T = m + n from (2.6), we obtain

(2.14) ϕ′m,n(z, z) = Gm−n,n(z) 〈z, z〉n−〈Fm−n+1,n−1(z), z〉 〈z, z〉n−1−〈z, Fn−m+1,m−1(z)〉 〈z, z〉m−1+ϕm,n(z, z)+ . . . ,

where ,,. . . ” represents terms which depend on the polynomials Gk,l(z) with k + 2l < T , Fk,l(z) with k + 2l < T − 1
and on ϕk,l(z, z), ϕ′k,l(z, z) with k + l < T = m + n.

Collecting the terms of bidegree (m,n) in (z, z) with k := m + n ≥ 3 from (2.14), we have to study the following
cases:

(1)Case m < n− 1, m,n ≥ 1. Collecting the terms of bidegree (m,n) in (z, z) from (2.14) with m < n − 1 and
m,n ≥ 1, we obtain

(2.15) ϕ′m,n(z, z) = −〈z, Fn−m+1,m−1(z)〉 〈z, z〉m−1 + . . .

We want to use the normalization condition trm−1ϕ′m,n(z, z) = 0. This allows us to find the polynomial
Fn−m+1,m−1(z). By applying Lemma 2.1 to the sum of terms which appear in ,,. . . ”, we obtain

(2.16) ϕ′m,n(z, z) = (−〈z, Fn−m+1,m−1(z)〉+ Dm,n(z, z)) 〈z, z〉m−1 + P1(z, z),
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where Dm,n(z, z) is a polynomial of degree n − m + 1 in z1, . . . , zN and 1 in z1, . . . , zN with determined coefficients
from the induction hypothesis and trm−1 (P1(z, z)) = 0. Then, using the normalization condition trm−1ϕ′m,n(z, z) = 0,
by the uniqueness of trace decomposition we obtain that 〈z, Fn−m+1,m−1(z)〉 = Dm,n(z, z). It follows that

(2.17) Fk,l(z) = ∂z (Dl+1,k+l(z, z)), for all k > 2, l ≥ 0.

(2)Case m > n + 1, m,n ≥ 1. Collecting the terms of bidegree (m,n) in (z, z) from (2.14) with m > n + 1 and
m,n ≥ 1, we obtain

(2.18) ϕ′m,n(z, z) = (Gm−n,n(z)〈z, z〉 − 〈Fm−n+1,n−1(z), z〉) 〈z, z〉n−1 + . . .

In order to find the polynomial Gm−n,n(z) we want to use the normalization condition trnϕ′m,n(z, z) = 0. By applying
Lemma 2.1 to the sum of terms which appear in ,,. . . ” and to 〈Fm−n+1,n−1(z), z〉, we obtain

(2.19) ϕ′m,n(z, z) = (Gm−n,n(z)− Em,n(z)) 〈z, z〉n + P2(z, z),

where Em,n(z) is a holomorphic polynomial with determined coefficients by the induction hypothesis and trn (P2(z, z)) =
0. Then, using the normalization condition trnϕ′m,n(z, z) = 0, by the uniqueness of trace decomposition we obtain that
Gm−n,n(z) = Em,n(z). It follows that

(2.20) Gk,l(z) = Ek+l,l(z), for all k ≥ 2, l ≥ 0.

(3)Case m = n− 1, m,n ≥ 1. Collecting the terms of bidegree (n−1, n) in (z, z) from (2.14) with n ≥ 2, we obtain

(2.21) ϕ′n−1,n(z, z) = ϕn−1,n(z, z)− 〈F0,n−1(z), z〉 〈z, z〉n−1 − 〈z, F2,n−2(z)〉 〈z, z〉n−2 + . . .

In order to find F2,n−2(z) we want to use the normalization condition trn−2ϕ′n−1,n(z, z) = 0. By applying the Lemma
2.1 to the sum of terms from ,,. . . ”, we obtain

(2.22) ϕ′n−1,n(z, z) = − (〈F0,n−1(z), z〉 〈z, z〉+ 〈z, F2,n−2(z)〉 − Cn−1,n(z, z)) 〈z, z〉n−2 + P3(z, z),

where trn−2 (P3(z, z)) = 0 and Cn−1,n(z, z) is a determined polynomial of degree 1 in z1, . . . , zN and degree 2 in
z1, . . . , zN . We take F0,n−1(z) = 0 (see (2.12)). Next, using the normalization condition trn−2ϕ′n−1,n(z, z) = 0, by the
uniqueness of trace decomposition we obtain that 〈z, F2,n−2(z)〉 = Cn−1,n(z, z). It follows that

(2.23) F2,n−2(z) = ∂z (Cn−1,n(z, z)).

(4)Case m = n + 1, m,n ≥ 1. Collecting the terms of bidegree (n, n− 1) in (z, z) from (2.14) with n ≥ 2, we obtain

(2.24) ϕ′n,n−1(z, z) = (G1,n−1(z)〈z, z〉 − 〈F2,n−2(z), z〉 − 〈z, F0,n−1(z)〉 〈z, z〉) 〈z, z〉n−2 + ϕn,n−1(z, z) + . . .

In order to find G1,n−1(z) we want to use the normalization condition trn−1ϕ′n,n−1(z, z) = 0. Using (2.12) and by
applying Lemma 2.1 to 〈F2,n−2(z), z〉 (see (2.23)) and to the sum of terms from ,,. . . ”, we obtain

(2.25) ϕ′n,n−1(z, z) = (G1,n−1(z)−Bn,n−1(z)) 〈z, z〉n−1 + P4(z, z),

where trn−1 (P4(z, z)) = 0 and Bn,n−1(z) is a determined holomorphic polynomial. By the uniqueness of trace decom-
position we obtain that G1,n−1(z) = Bn,n−1(z), for all n ≥ 2.

(5)Case m = n, m,n ≥ 1, m + n ≥ 3. Collecting the terms of bidegree (m,n) in (z, z) from (2.14) with m = n ≥ 1
and m + n ≥ 3, we obtain

(2.26) ϕ′n,n(z, z) = G0,n(z)〈z, z〉n − 〈F1,n−1(z), z〉 〈z, z〉n−1 − 〈z, F1,n−1(z)〉 〈z, z〉n−1 + ϕn,n(z, z) + . . .

By taking F1,n−1(z) = 0 (see (2.12)), we obtain ϕ′n,n(z, z) = G0,n(z)〈z, z〉n + . . . . In order to find G0,n(z) we use
the normalization condition trnϕ′n,n(z, z) = 0. By applying the Lemma 2.1 to the sum of terms from ,,. . . ” we obtain
that ϕ′n,n(z, z) = (G0,n(z)−An) 〈z, z〉n + P5(z, z), where An is a determined constant and trn (P5(z, z)) = 0. By the
uniqueness of trace decomposition we obtain that G0,n = An, for all n ≥ 3.

(6)Case (T,0) and (0,T). Collecting the terms of bidegree (T, 0) and (0, T ) in (z, z) from (2.14), we obtain

(2.27)

{
GT,0(z) + ϕ′T,0(z) = ϕT,0(z) + a(z)
ϕ′0,T (z̄) = ϕ0,T (z̄) + b(z̄)

,

where a(z), b(z̄) are the sums of terms that are determined by the induction hypothesis . Using the normalization
condition ϕ′0,T (z̄) = ϕ′T,0(z) we obtain that gT,0(z) = ϕT,0(z) + a(z)− b(z̄)− ϕ0,T (z̄). �
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The Extended Moser Lemma leaves undetermined an infinite number of parameters (see (2.12)). They act on the
higher order terms. In order to determine them and complete our partial normal form we will apply in the course the
sections 3 and 4 the following two lemmas:

Lemma 2.3. Let P (z) be a homogeneous pure polynomial. For every k ∈ N?, there exist Q(z), R(z) unique polynomials
such that

(2.28) P (z) = Q(z)∆(z)k + R(z),
(
∆k
)?

(R(z)) = 0.

Lemma 2.4. For every homogeneous polynomial P (z) of degree (t + 1)s there exist a unique decomposition

(2.29) P (z) = L(z) + C(z),
(
∆k∆t

)? (C(z)) = 0, k = 1, . . . , N.

such that L(z) = (∆1(z)A1(z) + · · ·+ ∆N (z)AN (z))∆(z)t, where A1(z), . . . , AN (z) are linear forms.

The lemmas 2.3 and 2.4 are consequences of the Fisher decomposition (see [16]).

Remark 2.5. The Lemma 2.4 is a particular case of the generalized Fisher decomposition. The polynomial L(z) is
uniquely determined, but the linear forms A1(z), . . . , AN (z) are not necessary uniquely determined. In order to make
them uniquely determined we consider a nondegenerate polynomial ∆(z) (see (1.8) and Definition 1.2).

The following proposition shows us the nondegeneracy condition on ∆(z) is invariant under any linear change of
coordinates:

Proposition 2.6. If ∆(z) is nondegenerate and z 7−→ Az is a linear change of coordinates, then ∆(Az) is also
nondegenerate.

Proof. Let ∆̃(z) = ∆ (Az), where A = {ajk}1≤j,k≤N . Therefore ∆̃j(z) =
N∑

k=1

∆k (Az) ajk, for all j = 1, . . . , N . We con-

sider L1(z), . . . ,LN (z) linear forms such that L1(z)∆̃1(z)+· · ·+LN (z)∆̃N (z) ≡ 0, or equivalently
N∑

j,k=1

∆k (Az)Lj(z)ajk ≡

0. Since ∆(z) is nondegenerate and {ajk}1≤j,k≤N is invertible it follows that L1(z) ≡ · · · ≡ LN (z) ≡ 0. �

The system of weights : Following the line of [9], we define a system of weights for z1, z1, . . . , zN , zN as follows. We
define wt {zk} = 1 and wt {zk} = s−1, for all k = 1, . . . , N . If A(z, z) is a formal power series we write wt {A(z, z)} = k
if A

(
tz, ts−1z

)
= O

(
tk
)
. We also write Ord {A(z, z)} ≥ k if A (tz, tz) = tkA(z, z). We denote by Θn

m(z, z) a series in
(z, z) of weight at least m and order at least n. We define the set of the normal weights

wtnor {w} = 2, wtnor {z1} = · · · = wtnor {zN} = wtnor {z1} = · · · = wtnor {zN} = 1.

Notations : If h(z, w) is a formal power series with no constant term we introduce the following notations

h(z, w) =
∑
l≥1

h(l)
nor(z, w), where h

(l)
nor

(
tz, t2w

)
= tlh

(l)
nor(z, w),

h≥l(z, w) =
∑
k≥l

h(k)
nor(z, w), hl<(z, w) =

∑
k<l

h(l)
nor(z, w).

(2.30)

3. Proof of Theorem 1.3-Case T + 1 = ts + 1, t ≥ 1

By applying Extended Moser Lemma we can assume that M is given by the following equation

(3.1) w = 〈z, z〉+
T+1∑

m+n≥3

ϕm,n(z, z) + O (T + 2) ,

where ϕm,n(z, z) satisfies 1.14), for all 3 ≤ m + n ≤ T .
We perform induction on T ≥ 3. Assume that (1.15) holds for ϕk,0(z), for all k = s + 1, . . . , T with k = 0, 1 mod (s).

If T + 1 6∈ {ts; t ∈ N? − {1, 2}} ∪ {ts + 1; t ∈ N?} we apply Extended Moser Lemma. In the case when T + 1 ∈
{ts; t ∈ N? − {1}}∪{ts + 1; t ∈ N?}, we will look for a formal map which sends our submanifold M to a new submanifold
M ′ given by

(3.2) w′ = 〈z′, z′〉+
T+1∑

m+n≥3

ϕ′m,n

(
z′, z′

)
+ O(T + 2) ,
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where ϕ′m,n

(
z′, z′

)
satisfies (1.14), for all 3 ≤ m + n ≤ T and ϕ′k,0 (z′) satisfies (1.15), for all k = s + 1, . . . , T with

k = 0, 1 mod (s). We will obtain that ϕ′k,0(z) = ϕk,0(z) for all k = 3, . . . , T .
In the course of this section we consider the case when T + 1 = ts + 1. We are looking for a biholomorphic transfor-

mation of the following type

(z′, w′) = (z + F (z, w), w + G(z, w))

F (z, w) =
T−2t∑
l=0

F (2t+l)
nor (z, w), G(z, w) =

T−2t∑
τ=0

G(2t+1+τ)
nor (z, w)

,(3.3)

that maps M into M ′ up to the order T +1 = ts+1. In order for the preceding mapping to be uniquely determined we
assume that F

(2t+l)
nor (z, w) is normalized as in Extended Moser Lemma, for all l = 1, . . . T . Substituting (3.3) into (3.2)

we obtain

(3.4) w + G(z, w) = 〈z + F (z, w), z + F (z, w)〉+
T+1∑

m+n≥3

ϕ′m,n

(
z + F (z, w), z + F (z, w)

)
+ O(T + 2) ,

where w satisfies (3.1). By making some simplifications in (3.4) using (3.1), we obtain

T−2t∑
τ=0

G(2t+1+τ)
nor (z, 〈z, z〉+ ϕ≥3(z, z)) = 2Re

〈
z,

T−2t∑
l=0

F (2t+l)
nor (z, 〈z, z〉+ ϕ≥3(z, z))

〉
+

∣∣∣∣∣
∣∣∣∣∣
T−2t∑
l=0

F (2t+l)
nor (z, 〈z, z〉+ ϕ≥3(z, z))

∣∣∣∣∣
∣∣∣∣∣
2

+ ϕ′≥3

z +
T−2t∑
l=0

F (2t+l)
nor (z, 〈z, z〉+ ϕ≥3(z, z)) , z +

T−2t∑
l=0

F (2t+l)
nor (z, 〈z, z〉+ ϕ≥3(z, z))


− ϕ≥3(z, z).

(3.5)

Collecting the terms with the same bidegree from (3.5), we find F (z, w) and G(z, w) by applying Extended Moser
Lemma. Since we don’t have components of F (z, w) of normal weight less than 2t and G(z, w) with normal weight less
than 2t + 1, collecting in (3.5) the terms with the same bidegree (m,n) in (z, z) with m + n < 2t + 1, we obtain that
ϕ′m,n(z, z) = ϕm,n(z, z).

Collecting the terms of bidegree (m,n) in (z, z) with m + n = 2t + 1 (like in the Extended Moser Lemma proof) we
find G

(2t+1)
nor (z, w) and F

(2t)
nor (z, w) as follows. We make the following claim:

Lemma 3.1. G
(2t+1)
nor (z, w) = 0, F

(2t)
nor (z, w) = awt − z〈z, a〉wt−1, where a = (a1, . . . , aN ) ∈ CN .

Proof. Collecting the pure terms of degree 2t + 1 from (3.5), we obtain that ϕ2t+1,0(z) = ϕ′2t+1,0(z). Collecting the
terms of bidegree (m,n) with m + n = 2t + 1 in (z, z) and 0 < m < n− 1 (3.5), we obtain

(3.6) ϕ′m,n(z, z) = −〈z, Fn−m+1,m−1(z)〉 〈z, z〉m−1 + ϕm,n(z, z).

Since ϕm,n(z, z), ϕ′m,n(z, z) satisfy (1.14), by the uniqueness of the trace decomposition, we obtain Fn−m+1,m−1(z) = 0.
Collecting the terms of bidegree (m,n) in (z, z) with m + n = 2t + 1 and m > n + 1 from (3.5), we obtain

(3.7) ϕ′m,n(z, z) = Gm−n,n(z)〈z, z〉n − 〈Fm−n+1,n−1(z), z〉 〈z, z〉n−1 + ϕm,n(z, z).

Since Fm−n+1,n−1(z) = 0 it follows that Gm−n,n(z) = 0. Collecting the terms of bidegree (t− 1, t) and (t, t− 1) in (z, z)
from (3.5), we obtain the following two equations

ϕ′t−1,t(z, z) = − (〈F0,t−1(z), z〉 〈z, z〉+ 〈z, F2,t−2(z)〉) 〈z, z〉t−2 + ϕt−1,t(z, z),

ϕ′t,t−1(z, z) = G1,t−1(z)〈z, z〉t−1 − (〈F2,t−2(z), z〉+ 〈z, F0,t−1(z)〉 〈z, z〉) 〈z, z〉t−2 + ϕt,t−1(z, z).
(3.8)

Using (3.8) it follows that G1,t−1(z) = 0. We set F0,t−1(z) = a =: (a1, . . . , aN ) and we write F2,t−2(z) =(
F 1

2,t−2(z), . . . , FN
2,t−2(z)

)
. Since ϕm,n(z, z), ϕ′m,n(z, z) satisfy (1.14), by the uniqueness of the trace decomposition,

from (3.8) we obtain the equation 〈z, a〉〈z, z〉+ 〈F2,t−2(z), z〉 = 0, that can be solved as

(3.9) F k
2,t−2(z) = − ∂

∂zk
(〈z, a〉〈z, z〉) = −zk〈z, a〉, k = 1, . . . , N.

Therefore F
(2t)
nor (z, w) = awt − z〈z, a〉wt−1, where a = (a1, . . . , aN ) ∈ CN . �
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By Lemma 3.1 we conclude that F (z, w) = F
(2t)
nor (z, w) + F≥2t+1(z, w) and G(z, w) = G≥2t+2(z, w) (see (2.30)). We

also have F≥2t+1(z, w) =
∑

k+2l≥2t+1

Fk,l(z)wl, where Fk,l(z) is a homogeneous polynomial of degree k. It follows that

(3.10) wt {F≥2t+1(z, w)} ≥ min
k+2l≥2t+1

{k + ls} ≥ min
k+2l≥2t+1

{k + 2l} ≥ 2t + 1.

Next, we prove that wt
{

F≥2t+1(z, w)
}
≥ ts + s− 1. Since wt

{
F≥2t+1(z, w)

}
≥ min

k+2l≥2t+1
{k(s− 1) + ls}, it is enough

to prove that k(s−1)+ls ≥ ts+s−1 for k+2l ≥ 2t+1. Since we can write the latter inequality as (k−1)(s−1)+ls ≥ ts,
for (k−1)+2l ≥ 2t, it is enough to prove that k(s−1)+ ls ≥ ts, for k +2l ≥ 2t. Since s ≥ 3 it follows that ks−2k ≥ 0.
Hence 2k(s− 1) + 2ls ≥ ks + 2ls. It follows that k(s− 1) + ls ≥ s

2 (k + 2l) ≥ 2ts
2 = ts.

Lemma 3.2. Using the previous calculations, we give the following immediate estimates

wt {F≥2t+1(z, w)} ≥ 2t + 1, wt
{

F≥2t+1(z, w)
}
≥ ts + s− 1, wt

{
‖F≥2t+1(z, w)‖2

}
≥ ts + 2,

wt
{

F (2t)
nor (z, w)

}
≥ ts + 2− s, wt

{
F

(2t)
nor (z, w)

}
≥ ts, wt

{∥∥∥F (2t)
nor (z, w)

∥∥∥2
}
≥ ts + 2,

wt
{〈

F (2t)
nor (z, w), F≥2t+1(z, w)

〉}
, wt

{〈
F≥2t+1(z, w), F (2t)

nor (z, w)
〉}

≥ ts + 2,

(3.11)

where w satisfies (3.1).

As a consequence of the preceding estimates, we obtain

(3.12) ‖F (z, w)‖2 =
∥∥∥F (2t)

nor (z, w)
∥∥∥2

+ 2Re
〈
F (2t)

nor (z, w), F≥2t+1(z, w)
〉

+ ‖F≥2t+1(z, w)‖2 = Θ2t+2
ts+2(z, z),

where w satisfies (3.1). We observe that the preceding power series Θ2t+2
ts+2(z, z) has the property wt

{
Θ2t+2

ts+2(z, z)
}
≥ ts+2.

In order to apply Extended Moser Lemma in (3.5) we have to evaluate the weight and the order of the terms which
appear and are not ,,good”. Beside the previous weight estimates (see (3.11) and (3.12)) we also need to prove the
following lemmas:

Lemma 3.3. For all m,n ≥ 1 and w satisfying (3.1), we have the following estimate

(3.13) ϕ′m,n

(
z + F (z, w), z + F (z, w)

)
= ϕ′m,n(z, z) + 2Re

〈
Θ2

s(z, z), F≥2t+1(z, w)
〉

+ Θ2t+2
ts+2(z, z),

where wt
{

Θ2t+2
ts+2(z, z)

}
≥ ts + 2.

Proof. We make the expansion ϕ′m,n

(
z + F (z, w), z + F (z, w)

)
= ϕ′m,n(z, z) + . . . , where in ,,. . . ” we have different

types of terms involving Fk′,l′(z) with k′ + 2l′ < m + n and normalized terms ϕk,l(z, z), ϕ′k,l(z, z) with k + l < m + n.
In order to study the weight and the order of terms which can appear in ,,. . . ” it is enough to study the weight and the
order of the following particular terms

A1(z, w) = F1(z, w)zIzJ , A2(z, w) = zI1zJ1F1(z, w), B1(z, w) = F2(z, w)zIzJ , B2(z, w) = F2(z, w)zI1zJ1 ,

where F1(z, w) is the first component of F
(2t)
nor (z, w) and F2(z, w) is the first component of F≥2t+1(z, w). Here we assume

that |I| = m− 1, |I1| = m, |J1| = n− 1, |J | = n.
Using (3.11) we obtain wt {A1(z, w)} ≥ m − 1 + ts + 2 − s + n(s − 1) ≥ ts + 2. It is equivalent to prove that

m−1+s(n−1)−n ≥ 0. This is true because m−1+s(n−1)−n ≥ m−1+3(n−1)−n ≥ m+3n−4−n ≥ 3+n−4 ≥ 0.
On the other hand, we have Ord {A1(z, w)} ≥ m− 1 + 2t + n ≥ 2t + 2.

Using (3.11) we obtain wt {A2(z, w)} ≥ m + ts + (n − 1)(s − 1) ≥ ts + 2 ⇐⇒ m + (s − 1)(n − 1) ≥ 2. We have
m + (n− 1)(s− 1) ≥ m + 2(n− 1) ≥ m + 2n− 4 ≥ 0, and this is true because m + n ≥ 3 and m,n ≥ 1. On the other
hand we have Ord {A2(z, w)} ≥ m + 2t + n− 1 ≥ 2t + 2.

In the same way we obtain that Ord {B1(z, w)}, Ord {B2(z, w)} ≥ 2t + 1. Using (3.11), every term from ,,. . . ” that
depends on F2(z, w) can be written as Θ2

s(z, z)F2(z, w). From here we obtain our claim. �

Lemma 3.4. For w satisfying 3.1) and for all k > s, we have the following estimation

(3.14) ϕ′k (z + F (z, w)) = ϕ′k(z) + 2Re
〈
Θ2

s(z, z), F≥2t+1(z, w)
〉

+ Θ2t+2
ts+2(z, z),

where wt
{

Θ2t+2
ts+2(z, z)

}
≥ ts + 2.
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Proof. We make the expansion ϕ′k (z + F (z, w) = ϕ′k(z) + . . . . To study the weight and the order of terms which can
appear in ,,. . . ” it is enough to study the weight and the order of the following terms

A(z, w) = F1(z, w)zI , B(z, w) = F2(z, w)zI ,

where F1(z, w) is the first component of F
(2t)
nor (z, w) and F2(z, w) is the first component of F≥2t+1(z, w). Here we assume

that |I| = m − 1 ≥ s. Then, by (3.11), we obtain that wt {A(z, w)} ≥ s + ts + 2 − s ≥ ts + 2. On the other hand, we
have Ord {A(z, w)} ≥ s + 2t ≥ 2t + 2. Using (3.11), every term from ,,. . . ” that depends on F2(z, w) can be written as
Θ2

s(z, z)F2(z, w). From here we obtain our claim. �

We want to evaluate the weight and the order of the other terms of (3.5). By Lemma 4.3 and Lemma 4.4, it remains
to evaluate the order and the weight of the terms of the following expression

S(z, z) = 2Re 〈F (z, w), z〉+ 2Re {ϕ′s (z + F (z, w))} ,

= 2Re
〈
F (2t)

nor (z, w) + F≥2t+1(z, w), z
〉

+ 2Re
{

∆
(
z + F (2t)

nor (z, w) + F≥2t+1(z, w)
)}

,
(3.15)

where w satisfies (3.1).

Lemma 3.5. For F
(2t)
nor (z, w) given by Lemma 4.1 and w satisfying (3.1) we have

(3.16) 2Re
〈
F (2t)

nor (z, w) , z
〉

= 2Re
{
〈z, a〉∆(z)wt−1

}
+ Θ2t+2

ts+2(z, z),

where wt
{

Θ2t+2
ts+2(z, z)

}
≥ ts + 2.

Proof. We compute

2Re
〈
F (2t)

nor (z, w) , z
〉

= 2Re
{
wt 〈a, z〉

}
− 2Re

{
〈z, a〉〈z, z〉wt−1

}
,

= 2Re
{
〈z, a〉wt − 〈z, a〉〈z, z〉wt−1

}
+ 〈a, z〉

(
wt − wt

)
+ 〈z, a〉

(
wt − wt

)
,

= 2Re
{
〈z, a〉∆(z)wt−1

}
+ Θ2t+2

ts+2(z, z),

(3.17)

where wt
{

Θ2t+2
ts+2(z, z)

}
≥ ts + 2. �

In course of our proof we will use the notation ∆′(z) = (∆1(z), . . . ,∆N (z)). It remains to prove the lemma

Lemma 3.6. For w satisfying (3.1) we have the following estimate

2Re {∆ (z + F (z, w))} =2Re
{
∆(z)− s〈z, a〉∆(z)wt−1

}
+ 2Re

〈
∆′(z) + Θ2

s(z, z), F≥2t+1(z, w)
〉

+ Θ2t+2
ts+2(z, z),

(3.18)

where wt
{

Θ2t+2
ts+2(z, z)

}
≥ ts + 2.

Proof. Using the Taylor expansion it follows that

2Re {∆ (z + F (z, w))} = 2Re

{
∆(z) +

N∑
k=1

∆k(z)F k
≥2t(z, w) + L(z, z)

}
,(3.19)

where F k
≥2t(z, w) =

(
F 1
≥2t(z, w), . . . , FN

≥2t(z, w)
)

and L(z, z) =
〈
Θ2

s(z, z), F≥2t+1(z, w)
〉
. We compute

N∑
k=1

2Re
{
∆k(z)F k

≥2t(z, w)
}

=
N∑

k=1

2Re
{
∆k(z)

(
akwt − zk〈z, a〉wt−1 + F k

≥2t+1(z, w)
)}

,

= Θ2t+2
ts+2(z, z)− 2sRe

{
〈z, a〉∆(z)wt−1

}
+ 2Re

〈
∆′(z), F≥2t+1(z, w)

〉
,

(3.20)

where wt
{

Θ2t+2
ts+2(z, z)

}
≥ ts + 2. �
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For w satisfying (3.1), by Lemma 3.5 and Lemma 3.6, we can rewrite (3.15) as follows

S(z, z) = 2(1− s)Re
{
〈z, a〉∆(z)wt−1

}
+ 2Re

〈
z + ∆′(z) + Θ2

s(z, z), F≥2t+1 (z, w)
〉

+ Θ2t+2
ts+2(z, z),(3.21)

where wt
{

Θ2t+2
ts+2(z, z)

}
≥ ts + 2. By Lemmas 3.1− 3.6 we obtain

G≥2t+2 (z, 〈z, z〉+ ϕ≥3(z, z)) =2(1− s)Re
{
〈z, a〉∆(z) (〈z, z〉+ ϕ≥3(z, z))t−1

}
+ 2Re

〈
z + ∆′(z) + Θ2

s(z, z), F≥2t+1 (z, 〈z, z〉+ ϕ≥3(z, z))
〉

+ ϕ≥2t+2(z, z)− ϕ′≥2t+2(z, z) + Θ2t+2
ts+2(z, z),

(3.22)

where wt
{

Θ2t+2
ts+2(z, z)

}
≥ ts + 2.

Assume that t = 1. Collecting the terms of total degree k < s + 1 in (z, z) from (3.22) we find the polynomials(
G

(k+1)
nor (z, w), F (k)

nor(z, w)
)

for all k < s. Collecting the terms of total degree m + n = s + 1 in (z, z) from (3.22), we
obtain

G(s+1)
nor (z, 〈z, z〉) =2(1− s)Re {〈z, a〉∆(z)}+ 2Re

〈
z, F (s)

nor (z, 〈z, z〉)
〉

+ ϕ′s+1(z, z)− ϕs+1(z, z) + (Θ1)
s+1
s+2 (z, z).(3.23)

By applying Extended Moser Lemma we find a solution
(
G

(s+1)
nor (z, w), F (s)

nor(z, w)
)

for the latter equation. We consider
the following Fisher decompositions

(3.24) ϕs+1,0(z) = Q(z)∆(z) + R(z), ϕ′s+1,0(z) = Q′(z)∆(z) + R′(z),

where ∆? (R(z)) = ∆? (R′(z)) = 0. We want to put the normalization condition ∆?
(
ϕ′s+1,0(z)

)
= 0. Collecting the

pure terms of degree s + 1 in (3.23), by (3.24) we obtain

(3.25) ϕ′s+1,0(z) = ϕs+1,0(z)− (1− s)〈z, a〉∆(z) = (Q(z)− (1− s)〈z, a〉) ∆(z) + R(z),

where Q(z) is a determined polynomial of degree 1 in z1, . . . , zN . It follows that Q′(z) = Q(z) − (1 − s)〈z, a〉 and
R′(z) = R(z). Then the normalization condition ∆?

(
ϕ′s+1,0(z)

)
= 0 is equivalent to find a such that Q′(z) = Q(z) −

(1− s)〈z, a〉 = 0. The last equation provides us the free parameter a.
Assuming that t ≥ 2, we prove the following lemma (this is the analogue of the Lemma 3.3 from [9]):

Lemma 3.7. Let Ns := ts + 2. For all 0 ≤ j ≤ t − 1 and p ∈ [2t + j(s− 2) + 2, 2t + (j + 1)(s− 2) + 1], we make the
following estimate

G≥p(z, w) =2(1− s)j+1Re
{
〈z, a〉∆(z)j+1wt−j−1

}
+ 2Re

〈
z + ∆′(z) + Θ2

s(z, z), F≥p−1(z, w)
〉

+ ϕ′≥p(z, z)− ϕ≥p(z, z) + Θp
Ns

(z, z),
(3.26)

where wt
{

Θ2t+2
Ns

(z, z)
}
≥ Ns and w satisfies (3.1).

Proof.
Step 1. When s = 3 this step is obvious. Assume that s > 3. Let p0 = 2t+ j(s−2)+2, where j ∈ [0, t− 1]. We make

induction on p ∈ [2t + j(s− 2) + 2, 2t + (j + 1)(s− 2) + 1]. For j = 0 (therefore p = 2t + 2) the lemma is satisfied (see
equation (3.22)). Let p ≥ p0 such that p + 1 ≤ 2t + (j + 1)(s− 2) + 1. Collecting the terms of bidegree (m,n) in (z, z)
from (3.26) with m + n = p, we obtain

(3.27) G(p)
nor (z, 〈z, z〉) = 2Re

〈
z, F (p−1)

nor (z, 〈z, z〉)
〉

+ ϕ′p(z, z)− ϕp(z, z) + (Θ1)
p
Ns

(z, z).

By applying Extended Moser Lemma we find a solution
(
F

(p−1)
nor (z, w), G(p)

nor(z, w)
)

for (3.27). Assume that p is

even. In this case we find F
(p−1)
nor (z, w) recalling the cases 1 and 3 of the Extended Moser Lemma proof. Using the

cases 2 and 4 of the Extended Moser Lemma proof we find G
(p)
nor(z, w). Since wt

{
(Θ1)

2t+2
Ns

(z, z)
}
≥ Ns we obtain

wt
{〈

F
(p−1)
nor (z, 〈z, z〉) , z

〉}
,wt

{〈
F

(p−1)
nor (z, 〈z, z〉) , z

〉}
≥ Ns. Also wt

{
G

(p)
nor (z, 〈z, z〉)

}
, wt

{
G

(p)
nor (z, 〈z, z〉)

}
≥ Ns.
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We can bring similarly arguments when p is even. We obtain the following estimates

wt
{

F (p−1)
nor (z, w)

}
≥ Ns − s + 1, wt

{
F

(p−1)
nor (z, w)

}
≥ Ns − 1,

wt
{

F
(p−1)
nor (z, w)− F

(p−1)
nor (z, 〈z, z〉)

}
≥ Ns − 1, wt

{
F (p−1)

nor (z, w)− F (p−1)
nor (z, 〈z, z〉)

}
≥ Ns − s + 1,

wt
{

G(p)
nor(z, w)

}
≥ Ns, wt

{
G(p)

nor(z, w)−G(p)
nor (z, 〈z, z〉)

}
≥ Ns,

(3.28)

where w satisfies (3.1). As a consequence of (3.27) we obtain

G(p)
nor(z, w)−G(p)

nor (z, 〈z, z〉) = Θp+1
Ns

(z, z)′, 2Re
〈
z, F (p−1)

nor (z, w)− F (p−1)
nor (z, 〈z, z〉)

〉
= Θp+1

Ns
(z, z)′,〈

∆′(z) + Θ2
s(z, z), F (p−1)

nor (z, w)
〉

+
〈
F

(p−1)
nor (z, w),∆′(z) + Θ2

s(z, z)
〉

= Θp+1
Ns

(z, z)′,
(3.29)

and each of the preceding formal power series Θp+1
Ns

(z, z)′ has the property wt
{

Θp+1
Ns

(z, z)′
}
≥ Ns. Substituting

F≥p−1(z, w) = F
(p−1)
nor (z, w) + F≥p(z, w) and G≥p(z, w) = G

(p)
nor(z, w) + G≥p+1(z, w) into (3.26), we obtain

G(p)
nor(z, w) + G≥p+1(z, w) =2(1− s)j+1Re

{
〈z, a〉∆(z)j+1wt−j−1

}
+ 2Re

〈
z + ∆′(z) + Θ2

s(z, z), F (p−1)
nor (z, w) + F≥p(z, w)

〉
+ ϕ′p(z, z)− ϕp(z, z)

+ (Θ1)
p
Ns

(z, z) + ϕ′≥p+1(z, z)− ϕ≥p+1(z, z) + Θp+1
Ns

(z, z).

(3.30)

Collecting the pure terms of degree p from (3.27), it follows that ϕp,0(z) = ϕ′p,0(z) + . . . , where in ,,. . . ” we have
determined terms with the weight less than p < Ns := ts + 2. Therefore ϕp,0(z) = ϕ′p,0(z). We will obtain that
ϕk,0(z) = ϕ′k,0(z), for all k = 3, . . . , T . By making a simplification in (3.30) using (3.27), it follows that

G≥p+1(z, w) =2(1− s)j+1Re
{
〈z, a〉∆(z)j+1wt−j−1

}
+ 2Re

〈
z + ∆′(z) + Θ2

s(z, z), F≥p(z, w)
〉

+ ϕ′≥p+1(z, z)− ϕ≥p+1(z, z) + J(z, z) + Θp+1
Ns

(z, z),
(3.31)

where wt
{

Θp+1
Ns

(z, z)
}
≥ Ns and

J(z, z) =2Re
〈
z, F (p−1)

nor (z, w)− F (p−1)
nor (z, 〈z, z〉)

〉
+ 2Re

〈
∆′(z) + Θ2

s(z, z), F (p−1)
nor (z, w)

〉
+ G(p)

nor (z, 〈z, z〉)−G(p)
nor(z, w).

(3.32)

Using (3.28) and (3.29) it follows that J(z, z) = Θp+1
Ns

(z, z), where wt
{

Θp+1
Ns

(z, z)
}
≥ Ns.

Step 2. Assume that we have proved the Lemma 3.7 for p ∈ [2t + j(s− 2) + 2, 2t + (j + 1)(s− 2) + 1] for j ∈ [0, t−1].
We prove the Lemma 3.7 for p ∈ [2t + (j + 1)(s− 2) + 2, 2t + (j + 2)(s− 2) + 1]. Collecting the terms of bidegree (m,n)
in (z, z) from (3.26) with m + n = Λ + 1 := 2t + (j + 1)(s− 2) + 1, we obtain

G(Λ+1)
nor (z, 〈z, z〉) =2(1− s)j+1Re

{
〈z, a〉∆(z)j+1〈z, z〉t−j−1

}
+ 2Re

〈
z, F (Λ)

nor(z, 〈z, z〉)
〉

+ ϕ′Λ+1(z, z)− ϕΛ+1(z, z) + (Θ1)
Λ+1
Ns

(z, z).
(3.33)

Here wt
{

(Θ1)
Λ+1
Ns

(z, z)
}
≥ Ns. We define the map

(3.34) F (Λ)
nor(z, w) = F

(Λ)
1 (z, w) + F

(Λ)
2 (z, w), F

(Λ)
1 (z, w) = −(1− s)j+1〈z, a〉∆(z)j+1wt−j−2 (z1, . . . , zN ) .

Substituting (3.34) into (3.33), we obtain

(3.35) GΛ+1
nor (z, 〈z, z〉) = 2Re

〈
z, F

(Λ)
2 (z, 〈z, z〉)

〉
+ ϕΛ+1(z, z)− ϕΛ+1(z, z) + (Θ1)

Λ+1
Ns

(z, z).
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By applying Extended Moser Lemma we find a solution
(
G

(Λ+1)
nor (z, w), F (Λ)

2 (z, w)
)

for (3.35). Using the same arguments
as in the Step 1 we obtain the following estimates

wt
{

G(Λ+1)
nor (z, w)−G(Λ+1)

nor (z, 〈z, z〉)
}

,wt
{

G(Λ+1)
nor (z, w)

}
, wt

{
G(Λ+1)

nor (z, 〈z, z〉)
}
≥ Ns,

wt
{

F
(Λ)
2 (z, w)− F

(Λ)
2 (z, 〈z, z〉)

}
, wt

{
F

(Λ)
2 (z, w)

}
,wt

{
F

(Λ)
2,k (z, 〈z, z〉)

}
≥ Ns − s + 1,

wt
{

F
(Λ)
2 (z, w)− F

(Λ)
2 (z, 〈z, z〉)

}
,wt

{
F

(Λ)
2 (z, w)

}
, wt

{
F

(Λ)
2 (z, 〈z, z〉)

}
≥ Ns − 1,

(3.36)

where w satisfies (3.1). As a consequence of (3.36) we obtain〈
∆′(z) + Θ2

s(z, z), F (Λ)
2 (z, w)

〉
+
〈
F

(Λ)
2 (z, w),∆′(z) + Θ2

s(z, z)
〉

= ΘΛ+2
Ns

(z, z)′,

G(Λ+1)
nor (z, w)−G(Λ+1)

nor (z, 〈z, z〉) = ΘΛ+2
Ns

(z, z)′, 2Re
〈
F

(Λ)
2 (z, w)− F

(Λ)
2 (z, 〈z, z〉) , z

〉
= ΘΛ+2

Ns
(z, z)′,

(3.37)

where w satisfies (3.1) and each of the preceding formal power series has the property wt
{

ΘΛ+2
Ns

(z, z)
}
≥ Ns. Substi-

tuting F≥Λ(z, w) = F
(Λ)
nor(z, w) + F≥Λ+1(z, w) and G≥Λ+1(z, w) = G

(Λ+1)
nor (z, w) + G≥Λ+2(z, w) in (3.26), we obtain

G(Λ+1)
nor (z, w) + G≥Λ+2(z, w) = 2(1− s)j+1Re

{
〈z, a〉∆(z)j+1wt−j−1

}
+ 2Re

〈
z + ∆′(z) + Θ2

s(z, z), F (Λ)
nor(z, w) + F≥Λ+1(z, w)

〉
+ ϕΛ+1(z, z)− ϕ′Λ+1(z, z)

+ ϕ′≥Λ+2(z, z)− ϕ≥Λ+2(z, z) + (Θ1)
Λ+1
Ns

(z, z) + ΘΛ+2
Ns

(z, z).

(3.38)

By making a simplification in (3.38) with (3.33), and then using (3.34), we obtain

G≥Λ+2(z, w) = 2Re
〈
z + ∆′(z) + Θ2

s(z, z), F≥Λ+1(z, w)
〉

+ ϕ′≥Λ+2(z, z)− ϕ≥Λ+2(z, z) + ΘΛ+2
Ns

(z, z) + J(z, z),(3.39)

where

J(z, z) = 2Re
〈
z, F (Λ)

nor(z, w)− F (Λ)
nor (z, 〈z, z〉)

〉
+ 2Re

〈
∆′(z) + Θ2

s(z, z), F (Λ)
nor(z, w)

〉
+ 2(1− s)j+1Re

{
〈z, a〉∆(z)j+1wt−j−1 − 〈z, a〉∆(z)j+1〈z, z〉t−j−1

}
+ G(Λ)

nor (z, 〈z, z〉)−G(Λ)
nor(z, w),

= 2Re
〈
z, F

(Λ)
1 (z, w)− F

(Λ)
1 (z, 〈z, z〉) + F

(Λ)
2 (z, w)− F

(Λ)
2 (z, 〈z, z〉)

〉
+ 2Re

〈
∆′(z) + Θ2

s(z, z), F (Λ)
1 (z, w) + F

(Λ)
2 (z, w)

〉
+ G(Λ)

nor (z, 〈z, z〉)−G(Λ)
nor(z, w)

+ 2(1− s)j+1Re
{
〈z, a〉∆(z)j+1

(
wt−j−1 − 〈z, z〉t−j−1

)}
.

(3.40)

Using (3.36) and (3.37) it follows that

J(z, z) = 2Re
〈
z, F

(Λ)
1 (z, w)− F

(Λ)
1 (z, 〈z, z〉)

〉
+ 2Re

〈
∆′(z) + Θ2

s(z, z), F (Λ)
1 (z, w)

〉
+ 2(1− s)j+1Re

{
〈z, a〉∆(z)j+1

(
wt−j−1 − 〈z, z〉t−j−1

)}
+ ΘΛ+2

Ns
(z, z),

(3.41)

where wt
{

ΘΛ+2
Ns

(z, z)
}
≥ Ns. We observe that

(3.42) Re
〈
z, F

(Λ)
1 (z, 〈z, z〉)

〉
= −(1− s)j+1Re

{
〈z, a〉〈z, z〉t−j−1∆(z)j+1

}
.

Since wt
{

F
(Λ)
1 (z, w)

}
≥ Ns − s and wt

{
F

(Λ)
1 (z, w)

}
≥ Ns, it follows that

(3.43) Re
〈
Θ2

s(z, z), F (Λ)
1 (z, w)

〉
= ΘΛ+2

Ns
(z, z),

where wt
{

ΘΛ+2
Ns

(z, z)
}
≥ Ns. Using (3.42) and (3.43), we can rewrite (3.41) as follows

J(z, z) =2Re
〈
z, F

(Λ)
1 (z, w)

〉
+ 2Re

〈
∆′(z), F (Λ)

1 (z, w)
〉

+ 2(1− s)j+1Re
{
〈z, a〉∆(z)j+1wt−j−1

}
+ ΘΛ+2

Ns
(z, z),(3.44)
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where wt
{

ΘΛ+2
Ns

(z, z)
}
≥ Ns. Substituting the formula of F

(Λ)
1 (z, w) in (3.44), we obtain

J(z, z) = −2(1− s)j+1Re
{
〈z, a〉∆(z)j+1wt−j−2

(
〈z, z〉+

〈
(z1, . . . , zN ) ,

(
∆1(z), . . . ,∆N (z)

)〉)}
+ 2(1− s)j+1Re

{
〈z, a〉∆(z)j+1wt−j−1

}
+ ΘΛ+2

Ns
(z, z),

= −2(1− s)j+1Re
{
〈z, a〉∆(z)j+1wt−j−2 (〈z, z〉+ s∆(z)− w)

}
+ ΘΛ+2

Ns
(z, z),

= 2(1− s)j+2Re
{
〈z, a〉∆(z)j+2wt−j−2

}
+ ΘΛ+2

Ns
(z, z),

(3.45)

where w satisfies (3.1) and wt
{

ΘΛ+2
Ns

(z, z)
}
≥ Ns. �

Collecting the terms of bidegree (m,n) in (z, z) with m + n = ts + 1 and t = j − 1 from (3.26), we obtain

G(ts+1)
nor (z, 〈z, z〉) =2(1− s)tRe

{
〈z, a〉∆(z)t

}
+ 2Re

〈
z, F (ts)

nor (z, 〈z, z〉)
〉

+ ϕ′ts+1,0(z, z)− ϕts+1,0(z, z) + (Θ1)
ts+1
Ns

(z, z).
(3.46)

By applying Extended Moser Lemma we find a solution
(
G

(ts+1)
nor (z, w), F (ts)

nor (z, w)
)

for (3.46). Collecting the pure terms
from (3.46) of degree ts + 1, it follows that

(3.47) ϕ′ts+1,0(z)− ϕts+1,0(z) = (1− s)t〈z, a〉∆(z)t.

The parameter a will help us to put the desired normalization condition (see (1.15)). By applying Lemma 2.4 for
ϕ′ts+1,0(z) and ϕ′ts+1,0(z), it follows that

(3.48) ϕts+1,0(z) = (1− s)tQ(z)∆(z)t + R(z), ϕ′ts+1,0(z) = Q′(z)∆(z)t + R′(z),

where (∆t)? (R(z)) = (∆t)? (R′(z)) = 0. We impose the normalization condition (∆t)? (
ϕ′ts+1,0(z)

)
= 0. This is equiv-

alent finding a such that Q′(z) = 0. Here Q(z) is a determined holomorphic polynomial. We find a by solving the
equation Q′(z) = (1− s)t〈z, a〉 −Q(z) = 0.

Composing the map that sends M into (3.1) with the map (3.3) we obtain our formal transformation that sends M
into M ′ up to degree ts + 1.

4. Proof of Theorem 1.3-Case T + 1 = (t + 1)s, t ≥ 1

In this case we are looking for a biholomorphic transformation of the following type

(z′, w′) = (z + F (z, w), w + G(z, w))

F (z, w) =
T−2t−1∑

l=0

F (2t+l+1)
nor (z, w), G(z, w) =

T−2t∑
τ=0

G(2t+2+τ)
nor (z, w)

,(4.1)

that maps M into M ′ up to the degree T + 1 = (t + 1)s. In order to make the mapping (4.1) uniquely determined we
assume that F

(2t+l+1)
nor (z, w) is normalized as in Extended Moser Lemma, for all l = 1, . . . T . Replacing (4.1) in (3.2),

and after a simplification with (3.1), we obtain
T−2t−1∑

τ=0

G(2t+2+τ)
nor (z, 〈z, z〉+ ϕ≥3(z, z)) = 2Re

〈
T−2t−1∑

l=0

F (2t+l+1)
nor (z, 〈z, z〉+ ϕ≥3(z, z)) , z

〉

+

∥∥∥∥∥
T−2t−1∑

l=0

F (2t+l+1)
nor (z, 〈z, z〉+ ϕ≥3(z, z))

∥∥∥∥∥
2

+ ϕ′≥3

z +
T−2t∑
l=−1

F (2t+l+2)
nor (z, 〈z, z〉+ ϕ≥3(z, z)) , z +

T−2t∑
l=−1

F (2t+l+2)
nor (z, 〈z, z〉+ ϕ≥3(z, z))

− ϕ≥3(z, z).

(4.2)

Collecting the terms with the same bidegree in (z, z) from (4.2) we will find F (z, w) and G(z, w) by applying Extended
Moser Lemma. Since F (z, w) and G(z, w) don’t have components of normal weight less than 2t + 2, collecting in (4.2)
the terms of bidegree (m,n) in (z, z) with m + n < 2t + 2, we obtain ϕ′m,n(z, z) = ϕm,n(z, z).

Collecting the terms of bidegree (m,n) in (z, z) with m + n = 2t + 2 from (4.2), we prove the following lemma:
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Lemma 4.1. G
(2t+2)
nor (z, w) = (a + a) wt+1, F

(2t+1)
nor (z, w) = wt

 a11 . . . a1N

...
. . .

...
aN1 . . . aNN


 z1

...
zN

, where a is the trace of

the matrix (aij)1≤i,j≤N .

Proof. Collecting the pure terms of degree 2t + 2 from (4.2), we obtain that ϕ2t+2(z) = ϕ′2t+2(z). Collecting the terms
of bidegree (m,n) in (z, z) with m + n = 2t + 2 and 0 < m < n− 1 from (4.2), we obtain

(4.3) ϕ′m,n(z, z) = −〈z, Fn−m+1,m−1(z)〉 〈z, z〉m−1 + ϕm,n(z, z).

Since ϕm,n(z, z), ϕ′m,n(z, z) satisfy (1.14), by the uniqueness of trace decomposition, we obtain Fn−m+1,m−1(z) = 0.
Collecting the terms of bidegree (m,n) in (z, z) with m + n = 2t + 2 and m > n + 1 from (4.2), we obtain

(4.4) ϕ′m,n(z, z) = Gm−n(z)〈z, z〉n − 〈Fm−n+1,n−1(z), z〉 〈z, z〉n−1 + ϕm,n(z, z).

Since Fn−m+1,m−1(z) = 0 it follows that Gm−n(z) = 0.
Collecting the terms of bidegree (t + 1, t + 1) in (z, z) from (4.2), we obtain

(4.5) ϕ′t+1,t+1(z, z) = (G0,t+1(z)〈z, z〉 − 〈F1,t(z), z〉 − 〈z, F1,t(z)〉) 〈z, z〉t + ϕt+1,t+1(z, z).

Then (4.5) can not provide us F1,t(z). Therefore F1,t(z) is undetermined. We obtain

(4.6) F (2t+1)
nor (z, w) = wt

 a11 . . . a1N

...
. . .

...
aN1 . . . aNN


 z1

...
zN

 , aij ∈ C, 1 ≤ i, j ≤ N.

The trace of the matrix a is determined by a11, . . . , aNN . We can write a11 = a + b11, . . . , aNN = a + bNN . We also use
the notations bk,j = ak,j , for all k 6= j. The matrix B = (bk,j)1≤k,j≤N represents the traceless part of the matrix A.
By applying Lemma 2.1 to the polynomial 〈F1,t(z), z〉, we obtain 〈F1,t(z), z〉 = a〈z, z〉 + P (z, z) with tr (P (z, z)) = 0,

where P (z, z) =
N∑

i,j=1

bi,jzizj . Using the preceding decomposition we obtain

(4.7) ϕ′t+1,t+1(z, z) = (G0,t+1(z)− a− a) 〈z, z〉t+1 + ϕt+1,t+1(z, z)− 2Re
(
P (z, z)〈z, z〉t

)
.

Since tr (P (z, z)) = 0 it follows that trt+1 (Re (P (z, z)〈z, z〉t)) = 0 (see Lemma 6.6 from [17]). �

We can write F (z, w) = F
(2t+2)
nor (z, w)+F≥2t+3(z, w) and G(z, w) = G≥2t+2(z, w) (see (2.30)). We have F≥2t+2(z, w) =∑

k+2l≥2t+2

Fk,l(z)wl, where Fk,l(z) is a homogeneous polynomial of degree k. Therefore wt {F≥2t+2(z, w)} ≥ min
k+2l≥2t+2

{k+

ls} ≥ min
k+2l≥2t+2

{k + 2l} ≥ 2t + 2. Next, we show that wt
{

F≥2t+2(z, w)
}
≥ ts + s − 1. Since wt

{
F≥2t+2(z, w)

}
≥

min
k+2l≥2t+2

{k(s − 1) + ls}, it is enough to prove that k(s − 1) + ls ≥ ts + s − 1 for k + 2l ≥ 2t + 2. Since we can write

the latter inequality as (k − 1)(s− 1) + ls ≥ ts for (k − 1) + 2l ≥ 2t + 1, it is enough to prove that k(s− 1) + ls ≥ ts
for k + 2l ≥ 2t + 1 > 2t. Continuing the calculations like in the previous case we obtain the desired result.

Lemma 4.2. For w satisfying (3.1), we make the following immediate estimates

wt
{

F (2t+1)
nor (z, w)

}
≥ ts + 1, wt

{
F

(2t+1)
nor (z, w)

}
≥ ts + s− 1, wt

{∥∥∥F (2t+1)
nor (z, w)

∥∥∥2
}
≥ ts + s + 1,

wt {F≥2t+2(z, w)} ≥ 2t + 2,
{

F≥2t+2(z, w)
}
≥ ts + s− 1, wt

{
‖F≥2t+2(z, w)‖2

}
≥ ts + s + 1,

wt
{〈

F (2t+1)
nor (z, w), F≥2t+2(z, w)

〉}
, wt

{〈
F≥2t+2(z, w), F (2t+1)

nor (z, w)
〉}

≥ ts + s + 1.

(4.8)

As a consequence of the estimates (4.8) we obtain

(4.9) ‖F (z, w)‖2 =
∥∥∥F (2t+1)

nor (z, w)
∥∥∥2

+ 2Re
〈
F (2t+1)

nor (z, w), F≥2t+2(z, w)
〉

+ ‖F≥2t+2(z, w)‖2 = Θ2t+3
ts+s+1(z, z),

where wt
{

Θ2t+3
ts+s+1(z, z)

}
≥ ts + s + 1.

In order to apply Extended Moser Lemma in (4.2) we have to identify and weight and order evaluate the terms which
are not ,,good”. We prove the following lemmas:
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Lemma 4.3. For all m,n ≥ 1 and w satisfying (3.1), we make the following estimate

(4.10) ϕ′m,n

(
z + F (z, w), z + F (z, w)

)
= ϕ′m,n(z, z) + 2Re

〈
Θ2

s(z, z), F≥2t+2(z, w)
〉

+ Θ2t+3
ts+s+1(z, z),

where wt
{

Θ2t+3
ts+s+1(z, z)

}
≥ ts + s + 1.

Proof. We have the expansion ϕ′m,n

(
z + F (z, w), z + F (z, w)

)
= ϕ′m,n(z, z) + . . . (see the proof of the Lemma 3.3). In

order to prove (4.10), it is enough to study the weight and the order of the following particular terms

A1(z, w) = F1(z, w)zIzJ , A2(z, w) = zI1zJ1F1(z, w), B1(z, w) = F2(z, w)zIzJ , B2(z, w) = zI1zJ1F2(z, w),

where F1(z, w) is the first component of F
(2t+1)
nor (z, w) and F2(z, w) is the first component of F≥2t+2(z, w). Here we

assume that |I| = m− 1, |J | = n, |I1| = m, |J1| = n− 1.
Using (4.8) we obtain wt {A1(z, w)} ≥ m − 1 + ts + 1 + n(s − 1) ≥ ts + s + 1 ⇐⇒ m + ns − n ≥ s + 1 ⇐⇒

m + s(n− 1) ≥ n + 1 and the latter inequality is true since m + s(n− 1) ≥ m + 3(n− 1) ≥ n + 1. On the other hand
Ord {A1(z, w)} ≥ m− 1 + 2t + 1 + n ≥ 2t + 3.

Using (4.8) we obtain wt {A2(z, w)} ≥ m+(n−1)(s−1)+ ts+ s−1 ≥ ts+ s+1 and the last inequality is equivalent
with m + (n− 1)(s− 1) ≥ 2. The latter inequality can be proved with the same calculations like in Lemma 3.3 proof.
On the other hand, we observe that Ord {A1(z, w)} ≥ m + 2t + 1 + n− 1 ≥ 2t + 3.

In the same way we obtain Ord {B1(z, w)}, Ord {B2(z, w)} ≥ 2t+2. Using (4.8), every term from ,,. . . ” that depends
on F2(z, w) can be written as Θ2

s(z, z)F2(z, w). This proves our claim. �

Lemma 4.4. For all k > s and w satisfying (3.1), we make the following estimate

(4.11) ϕ′k,0 (z + F (z, w)) = ϕ′k,0(z) + 2Re
〈
Θ2

s(z, z), F≥2t+2(z, w)
〉

+ Θ2t+3
ts+s+1(z, z),

where wt
{

Θ2t+3
ts+s+1(z, z)

}
≥ ts + s + 1.

Proof. We make the expansion ϕ′k,0 (z + F (z, w)) = ϕ′k,0(z) + . . . . To study the weight and the order of terms which
can appear in ,,. . . ” it is enough to study the weight and order of the following terms

A(z, w) = F1(z, w)zI , B(z, w) = F2z
I ,

where F1(z, w) is the first component of F
(2t+1)
nor (z, w) and F2(z, w) is the first component of F≥2t+3(z, w). Here we

assume that |I| = m − 1 ≥ s. From (4.8) we obtain wt {A(z, w)} ≥ s + ts + 1 = ts + s + 1. On the other hand, we
have Ord {A(z, w)} ≥ 2t + s + 1 ≥ 2t + 3. Using (4.8) each term from ,,. . . ” that depends on F2(z, w) can be written
as Θ2

s(z, z)F2(z, w). This proves our claim. �

Lemma 4.5. For w satisfying (3.1) we have the following estimate

2Re {∆ (z + F (z, w))} =2Re

{
∆(z) +

N∑
k=1

∆k(z) (ak1z1 + · · ·+ akNzN ) wt

}
+ 2Re

〈
∆′(z) + Θ2

s(z, z), F≥2t+2(z, w)
〉

+ Θ2t+3
ts+s+1(z, z),

(4.12)

where wt
{

Θ2t+3
ts+s+1(z, z)

}
≥ ts + s + 1.

Proof. For w satisfying (3.1), we have the expansion

2Re {∆ (z + F (z, w))} = 2Re

{
∆(z) +

N∑
k=1

∆k(z)F k
≥2t+1(z, w) + L(z, z)

}
+ Θ2t+3

ts+s+1(z, z),(4.13)

where F≥2t+1(z, w) =
(
F 1
≥2t+1(z, w), . . . , FN

≥2t+1(z, w)
)

and L(z, z) =
〈
Θ2

s(z, z), F≥2t+2(z, w)
〉
. We compute

N∑
k=1

2Re
{
∆k(z)F k

≥2t+1(z, w)
}

=
N∑

k=1

2Re

∆k(z)

wt
N∑

j=1

akjzj + F k
≥2t+2(z, w)


= 2Re

{
wt

N∑
k=1

∆k(z) (ak1z1 + · · ·+ akNzN )

}
+ 2Re

〈
∆′(z), F≥2t+2(z, w)

〉
.

(4.14)
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�

Lemma 4.6. For w satisfying (3.1), we have the following estimate

G(2t+2)
nor (z, w)− 2Re

〈
F (2t+1)

nor (z, w), z
〉

=2(a + a)Re
{
∆(z)wt

}
+ 2Re

{
P (z, z)wt

}
+ Θ2t+3

ts+s+1(z, z),(4.15)

where P (z, z) =
N∑

k,j=1

bk,jzkzj and wt
{

Θ2t+3
ts+s+1(z, z)

}
≥ ts + s + 1.

Proof. For w satisfying (3.1), by Lemma 4.1 it follows that

G(2t+2)
nor (z, w)− 2Re

〈
F (2t+1)

nor (z, w), z
〉

= (a + a)wt+1 − 2Re

〈
wt

 b11 + a . . . a1N

...
. . .

...
aN1 . . . bNN + a


 z1

...
zN

 , z

〉
,

= 2Re
{
awt+1

}
− 2Re

{
awt〈z, z〉+ P (z, z)wt

}
+ a

(
wt+1 − wt+1

)
,

= 2Re
{
awt (w − 〈z, z〉)

}
− 2Re

{
P (z, z)wt

}
+ Θ2t+3

ts+s+1(z, z),

= 2Re
{

awt
(
∆(z) + ∆(z)

)}
− 2Re

{
P (z, z)wt

}
+ Θ2t+3

ts+s+1(z, z),

= 2(a + a)Re
{
∆(z)wt

}
− 2Re

{
P (z, z)wt

}
+ Θ2t+3

ts+s+1(z, z),

(4.16)

where wt
{

Θ2t+3
ts+s+1(z, z)

}
≥ ts + s + 1. �

Substituting F (z, w) = F
(2t+1)
nor (z, w) + F≥2t+2(z, w) and G(z, w) = G

(2t+2)
nor (z, w) + G≥2t+3(z, w) (see (2.30)) into

(4.2) and by Lemmas 4.2− 4.6, we obtain

G≥2t+3(z, w) = 2Re

{(
N∑

k=1

∆k(z) (ak1z1 + · · ·+ akNzN )− (a + a)∆(z)

)
wt

}
+ 2Re

{
P (z, z)

(
wt − 〈z, z〉t

)}
+ 2Re

〈
z + ∆′(z) + Θ2

s(z, z), F≥2t+2(z, w)
〉

+ ϕ′≥2t+3(z, z)− ϕ≥2t+3(z, z) + Θ2t+3
ts+s+1(z, z),

(4.17)

where w satisfies (3.1) and wt
{

Θ2t+3
ts+s+1(z, z)

}
≥ ts + s + 1. It remains to study the expression

(4.18) E(z, z) = 2Re
{
P (z, z)

(
wt − 〈z, z〉t

)}
.

Lemma 4.7. For w satisfying (3.1) we make the following estimate

(4.19) E(z, z) = 2Re

{(
P (z, z) + P (z, z)

)
∆(z)

∑
k+l=t−1

wk〈z, z〉l
}

+ Θ2t+3
ts+s+1(z, z),

where P (z, z) =
N∑

k,j=1

bk,jzkzj and wt
{

Θ2t+3
ts+s+1(z, z)

}
≥ ts + s + 1.

Proof. We compute

E(z, z) = 2Re

{
P (z, z)

(
∆(z) + ∆(z)

) ∑
k+l=t−1

wk〈z, z〉l
}

+ Θ2t+3
ts+s+1(z, z),

= 2Re

{(
P (z, z) + P (z, z)

)
∆(z)

∑
k+l=t−1

wk〈z, z〉l
}

+ Θ2t+3
ts+s+1(z, z),

(4.20)

where wt
{

Θ2t+3
ts+s+1(z, z)

}
≥ ts + s + 1. �
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We consider the following notations

L(z, z) = P (z, z) + P (z, z) =
N∑

k,j=1

(
bk,j + bj,k

)
zkzj ,

Q(z) =
N∑

k=1

∆k(z) (ak1z1 + · · ·+ akNzN )− (a + a) ∆(z), Q1(z) =
N∑

k,j=1

(
bk,j + bj,k

)
zk∆k(z).

(4.21)

Then, for w satisfying (3.1), by Lemma 4.7 and the notations (4.21), we can rewrite (4.17) as follows

G≥2t+3(z, w) = 2Re
{
Q(z)wt

}
+ 2Re {L(z, z)∆(z)Et−1 (w, 〈z, z〉)}+ 2Re

〈
z + ∆′(z) + Θ2

s(z, z), F≥2t+2(z, w)
〉

+ ϕ′≥2t+3(z, z)− ϕ≥2t+3(z, z) + Θ2t+3
ts+s+1(z, z),

(4.22)

where wt
{

Θ2t+3
ts+s+1(z, z)

}
≥ ts + s + 1. Here Et−1 (w, 〈z, z〉) =

∑
k+l=t−1

wk〈z, z〉l. For p ≥ 2t + 3 we prove the following

lemma ( the analogue of the Lemma 3.4 from [9]):

Lemma 4.8. We define ε = 0 if p < 2t + s and ε = 1 if p ≥ 2t + s, γ = 1 if p < ts + 2 and γ = 0 if p = ts + 2. Let
N ′

s := ts + s + 1. For all 0 ≤ j ≤ t and p ∈ [2t + j(s− 2) + 3, 2t + (j + 1)(s− 2) + 2], we have the following estimate

G≥p(z, w) = 2(1− s)jRe
{
Q(z)∆(z)jwt−j

}
+ 2γ(−1)jRe

L(z, z)∆(z)j+1
∑

l1+l2=t−j−1

Et−j
l1,l2

wl1〈z, z〉l2


+ 2εRe

{
Q1(z)∆(z)jwt−j

j−1∑
l=0

(−1)βl(1− s)lF t−j
l

}
+ 2Re

〈
z + ∆′(z) + Θ2

s(z, z), F≥p−1(z, w)
〉

+ ϕ′≥p(z, z)− ϕ≥p(z, z) + Θp
N ′

s
(z, z),

(4.23)

where wt
{

Θp
N ′

s
(z, z)

}
≥ N ′

s and w satisfies (3.1). Here Et−j
l1,l2

with l1 + l2 = t− j − 1 and F t−j
p with l = 1, . . . , j − 1 are

natural numbers depending on some binomial coefficients. Also βl ∈ N, for all l = 1, . . . , j − 1.

Proof. For j = 0 and k = 0 we obtain p = 2t + 3. Therefore (4.23) becomes (4.22).
Step 1. We make a similarly approach as in the Step 1 of the Lemma 3.7.
Step 2. Assume that we proved the Lemma 4.8 for m ∈ [2t + j(s− 2) + 3, 2t + (j + 1)(s− 2) + 2], for j ∈ [0, t− 1].

We want to prove that (4.23) holds for m ∈ [2t + (j + 1)(s− 2) + 3, 2t + (j + 2)(s− 2) + 2]. Collecting from (4.23) the
terms of bidegree (m,n) in (z, z) with m + n = Λ + 1 := 2t + (j + 1)(s− 2) + 2, we obtain

G(Λ+1)
nor (z, 〈z, z〉) = 2Re

〈
z, F (Λ)

nor (z, 〈z, z〉)
〉

+ 2γ(−1)jRe

L(z, z)∆(z)j+1〈z, z〉t−j−1
∑

l1+l2=t−j−1

Et−j
l1,l2


+ 2εRe

{
Q1(z)∆(z)j〈z, z〉t−j

j−1∑
l=0

(−1)βl(1− s)lF t−j
t−j

}
+ 2(1− s)jRe

{
Q(z)∆(z)j〈z, z〉t−j

}
+ ϕ′Λ+1(z, z)− ϕΛ+1(z, z) + (Θ1)

Λ+1
N ′

s
(z, z),

(4.24)

where wt
{

(Θ1)
Λ+1
N ′

s
(z, z)

}
≥ N ′

s. We define the following mappings

F (Λ)
nor(z, w) = F

(Λ)
1 (z, w) + F

(Λ)
2 (z, w) + F

(Λ)
3 (z, w) + F

(Λ)
4 (z, w),

F
(Λ)
1 (z, w) = −(1− s)jQ(z)∆(z)jwt−j−1 (z1, . . . , zN ) ,

F
(Λ)
2 (z, w) = −εQ1(z)∆(z)jwt−j−1

(
j−1∑
l=0

(−1)βl(1− s)lF t−j
l

)
(z1, . . . , zN ) ,

F
(Λ)
3 (z, w) = −γ(−1)j∆(z)j+1

∑
l1+l2=t−j−1

Et−j
l1,l2

wt−j−1

 N∑
j=1

(
bl,1 + b1,l

)
zl, . . . ,

N∑
l=1

(
bl,N + bN,l

)
zl

 .

(4.25)



18 VALENTIN BURCEA

Substituting (4.25) into (4.24), by making some simplifications it follows that

GΛ+1
nor (z, 〈z, z〉) =2Re

〈
z, F

(Λ)
4 (z, 〈z, z〉)

〉
+ ϕ′Λ+1(z, z)− ϕΛ+1(z, z) + (Θ1)

Λ+1
N ′

s
(z, z).(4.26)

By applying Extended Moser Lemma we find a solution
(
G

(Λ+1)
nor (z, w), F (Λ)

4 (z, w)
)

for (4.26). By repeating the procedure
from the first case of the normal form construction, we obtain the following estimates

wt
{

G(Λ+1)
nor (z, w)−G(Λ+1)

nor (z, 〈z, z〉)
}

, wt
{

G(Λ+1)
nor (z, w)

}
, wt

{
G(Λ+1)

nor (z, 〈z, z〉)
}
≥ N ′

s,

wt
{

F
(Λ)
4 (z, w)− F

(Λ)
4 (z, 〈z, z〉)

}
, wt

{
F

(Λ)
4 (z, w)

}
, wt

{
F

(Λ)
4 (z, 〈z, z〉)

}
≥ N ′

s − s + 1,

wt
{

F
(Λ)
4 (z, w)

}
, wt

{
F

(Λ)
4 (z, 〈z, z〉)

}
, wt

{
F

(Λ)
4 (z, w)− F

(Λ)
4 (z, z)

}
≥ N ′

s − 1,

(4.27)

where w satisfies (3.1). As a consequence of (4.27) we obtain

〈
∆′(z) + Θ2

s(z, z), F (Λ)
4 (z, w)

〉
+
〈
F

(Λ)
4 (z, w),∆′(z) + Θ2

s(z, z)
〉

= ΘΛ+2
N ′

s
(z, z)′,

Re
〈
F

(Λ)
4 (z, w)− F

(Λ)
4 (z, 〈z, z〉) , z

〉
= ΘΛ+2

N ′
s

(z, z)′,
(4.28)

where w satisfies (3.1) and each of ΘΛ+2
N ′

s
(z, z)′ has the property wt

{
Θ2t+3

N ′
s

(z, z)
}
≥ N ′

s. Substituting F≥Λ(z, w) =

F
(Λ)
nor(z, w) + F≥Λ+1(z, w) and G≥Λ+1(z, w) = G

(Λ+1)
nor (z, w) + G≥Λ+2(z, w) in (4.23), it follows that

G(Λ+1)
nor (z, w) + G≥Λ+2(z, w) =2Re

〈
z + ∆′(z) + Θ2

s(z, z), F (Λ)
nor(z, w) + F≥Λ+1(z, w)

〉
+ ϕ′Λ+1(z, z)− ϕΛ+1(z, z)

+ (Θ1)
Λ+1
N ′

s
(z, z) + ϕ′>Λ+1(z, z)− ϕ>Λ+1(z, z) + ΘΛ+2

N ′
s

(z, z)

+ 2(1− s)jRe
{
Q(z)∆(z)jwt−j

}
+ 2γRe

(−1)jL(z, z)∆(z)j+1
∑

l1+l2=t−j−1

Et−j
l1,l2

wl1〈z, z〉l2


+ 2εRe

{
Q1(z)∆(z)jwt−j

j−1∑
l=0

(−1)βl(1− s)lF t−j
l

}
,

(4.29)

where w satisfies (3.1). Simplifying the preceding equation using (4.24), it follows that

G≥Λ+2(z, w) = 2Re
〈
z + ∆′(z) + Θ2

s(z, z), F≥Λ+1(z, w)
〉

+ ϕ≥Λ+2(z, z)− ϕ′≥Λ+2(z, z) + ΘΛ+2
N ′

s
(z, z) + J(z, z),(4.30)

where we have used the following notation

J(z, z) = 2Re
〈
z, F (Λ)

nor(z, w)− F (Λ)
nor (z, 〈z, z〉)

〉
+ 2Re

〈
∆′(z) + Θ2

s(z, z), F (Λ)
nor(z, w)

〉
+ 2(1− s)jRe

{
Q(z)∆(z)jwt−j −Q(z)∆(z)j〈z, z〉t−j

}
+ G(Λ+2)

nor (z, 〈z, z〉)−G(Λ+2)
nor (z, w)

+ 2γ(−1)jRe

L(z, z)∆(z)j+1

 ∑
l1+l2=t−j−1

Et−j
l1,l2

wl1〈z, z〉l2 − 〈z, z〉t−j−1
∑

l1+l2=t−j−1

Et−j
l1,l2


+ 2εRe

{
Q1(z)∆(z)j

j−1∑
l=0

(−1)βl(1− s)l
(
F t−j

l wt−j − F t−j
l 〈z, z〉t−j

)}
,

(4.31)
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J(z, z) = 2Re

〈
z,

3∑
k=1

(
F

(Λ)
k (z, w)− F

(Λ)
k (z, 〈z, z〉)

)〉
+ 2Re

〈
∆′(z) + Θ2

s(z, z),
3∑

k=1

F
(Λ)
k (z, w)

〉
+ 2(1− s)jRe

{
Q(z)∆(z)j

(
wt−j − 〈z, z〉t−j

)}
+ G(Λ+2)

nor (z, 〈z, z〉)−G(Λ+2)
nor (z, w)

+ 2γ(−1)jRe

L(z, z)∆(z)j+1

 ∑
l1+l2=t−j−1

Et−j
l1,l2

wl1〈z, z〉l2 −
∑

l1+l2=t−j−1

Et−j
l1,l2

〈z, z〉t−j−1


+ 2εRe

{
Q1(z)∆(z)j

j−1∑
l=0

(−1)βl(1− s)lF t−j
l

(
wt−j − 〈z, z〉t−j

)}
.

(4.32)

We observe that

Re
〈
F

(Λ)
1 (z, 〈z, z〉) , z

〉
= −(1− s)jRe

{
Q(z)∆(z)j〈z, z〉t−j

}
,

Re
〈
F

(Λ)
2 (z, 〈z, z〉) , z

〉
= −εRe

{
Q1(z)∆(z)j〈z, z〉t−j

j−1∑
l=0

(−1)βl(1− s)lF t−j
l

}
,

Re
〈
F

(Λ)
3 (z, 〈z, z〉) , z

〉
= −(−1)jγRe

L(z, z)∆(z)j+1〈z, z〉t−j−1
∑

l1+l2=t−j−1

Et−j
l1,l2

 .

(4.33)

Since wt
{

F
(Λ)
k (z, w)

}
≥ ts + 1 and wt

{
F

(Λ)
k (z, w)

}
≥ ts + s− 1 for all k ∈ {1, 2, 3}, it follows that

(4.34) 2Re

〈
Θ2

s(z, z),
3∑

k=1

F
(Λ)
k (z, w)

〉
= ΘΛ+2

N ′
s

(z, z),

where wt
{

ΘΛ+2
N ′

s
(z, z)

}
≥ N ′

s. Using (4.27), (4.28), (4.33), (4.34) we can rewrite (4.32) as follows

J(z, z) =2Re

〈
z,

3∑
k=1

F
(Λ)
k (z, w)

〉
+ 2Re

〈
∆′(z),

3∑
k=1

F
(Λ)
k (z, w)

〉

+ 2(1− s)jRe
{
Q(z)∆(z)jwt−j

}
+ 2(−1)jγRe

L(z, z)∆(z)j+1〈z, z〉t−j−1
∑

l1+l2=t−j−1

Et−j
l1,l2


+ 2εRe

{
Q1(z)∆(z)jwt−j

j−1∑
l=0

(−1)βl(1− s)lF t−j
l

}
.

(4.35)

Substituting the formulas of F
(Λ)
1 (z, w), F

(Λ)
2 (z, w) and F

(Λ)
3 (z, w) in (4.35) and using w satisfying (3.1), we obtain

J(z, z) = −2(1− s)jRe
{
Q(z)∆(z)jwt−j−1 (〈z, z〉+ s∆(z))−Q(z)∆(z)jwt−j

}
− 2(−1)jγRe

L(z, z)∆(z)j+1
∑

l1+l2=t−j−1

Et−j
l1,l2

wl2
(
wl1 − 〈z, z〉l1

)
− 2(−1)jγRe

Q1(z)∆(z)j+1
∑

l1+l2=t−j−1

Et−j
l1,l2

wt−j−1


− 2εRe

{
Q1(z)∆(z)j

j−1∑
l=0

(−1)βl(1− s)lF t−j
l wt−j−1 (〈z, z〉+ s∆(z)− w)

}
,

(4.36)
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J(z, z) = 2(1− s)j+1Re
{
Q(z)∆(z)j+1wt−j−1

}
+ 2γ(−1)j+1Re

L(z, z)∆(z)j+2
∑

l1+l2=t−j−2

Et−j−1
l1,l2

wl2〈z, z〉l1


+ 2(−1)j+1Re

Q1(z)∆(z)j+1
∑

l1+l2=t−j−1

Et−j
l1,l2

wt−j−1


+ 2εRe

{
Q1(z)∆(z)j+1

j−1∑
l=0

(−1)βl+1(1− s)l+1F t−j
l wt−j−1

}
+ ΘΛ+2

N ′
s

(z, z),

(4.37)

where wt
{

ΘΛ+2
N ′

s
(z, z)

}
≥ N ′

s. �

Collecting the terms of bidegree (m,n) in (z, z) from (4.23) with m + n = ts + s and t = j, we obtain

G(ts+s)
nor (z, 〈z, z〉) =2(1− s)tRe

{
Q(z)∆(z)t

}
+ 2KRe

{
Q1(z)∆(z)t

}
+ 2Re

〈
z, F (ts+s−1)

nor (z, w)
〉

+ ϕ′ts+s,0(z, z)− ϕts+s,0(z, z) + (Θ1)
ts+s
N ′

s
(z, z).

(4.38)

By applying Extended Moser Lemma we find a solution
(
G

(ts+s)
nor (z, w), F (ts+s−1)

nor (z, w)
)

for (4.38). Collecting the pure
terms of degree ts + s from (4.38), it follows that

(4.39) ϕ′ts+s,0(z)− ϕts+s,0(z) = (1− s)tQ(z)∆(z)t + KQ1(z)∆(z)t,

where K = (−1)β1k1(1− s)t−1 + · · ·+ (−1)βt−1kt−1(1− s) + (−1)βtkt, with k1, . . . , kt ∈ N. By the proof of the Lemma
4.8 (see (4.36) and (4.37)) we observe that β1 = −1, . . . , βt = (−1)t. Next, by applying Lemma 2.4 to ϕts+s,0(z) and
ϕ′ts+s,0(z), it follows that

ϕts+s,0(z) = (A1(z)∆1(z) + · · ·+ AN (z)∆N (z))∆(z)t + C(z),

ϕ′ts+s,0(z) = (A′
1(z)∆1(z) + · · ·+ A′

N (z)∆N (z))∆(z)t + C ′(z),
(4.40)

where (∆k∆t)? (C(z)) = (∆k∆t)? (C ′(z)) = 0, for all k = 1, . . . , N . We have

Q(z) =
N∑

k=1

∆k(z)
(

ak1z1 + · · ·+
(

akk −
a + a

s

)
zk + · · ·+ akNzN

)
,

Q1(z) =
N∑

k=1

∆k(z) ((ak1 + a1k) z1 + · · ·+ (akk + akk − (a + a)) zk + · · ·+ (akN + aNk) zN ) .

(4.41)

We impose the normalization condition (∆k∆t)? (
ϕ′ts+s,0(z)

)
= 0, for all k = 1, . . . , N . By Lemma 2.4 this is equivalent

to find (aij)1≤i,j≤N such that A′
1(z) = · · · = A′

N (z) = 0. It follows that

(1− s)takj + K (akj + ajk) = ck,j , for all k, j = 1, . . . , N, k 6= j,

(1− s)takk −
a + a

s
+ K (akk + akk − (a + a)) = ckk, for all k = 1, . . . , N,

(4.42)

where ck,j is determined, for all k, j = 1, . . . , N . Here Na =
N∑

k=1

akk. Using the second equation from (4.42) we find

Im akk, for all k = 1, . . . , N . By taking the reality part in the second equation from (4.42), we obtain

(4.43)
(
Ns(1− s)t + 2NKs

)
Re akk −

(
2(1− s)t + 2Ks

) N∑
l=1

Re all = Re ck,k, k = 1, . . . , N.

By summing all the identities from (4.43), it follows that (1− s)tN(s− 2)
N∑

l=1

Re all =
N∑

k=1

Re ck,k. Next, going back to

(4.43) we find Re all, for all l = 1, . . . , N . Now, let k 6= j and k, j ∈ {1, . . . , N}. By taking the real and the imaginary
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part in first equation from (4.42), we obtain(
(1− s)t + K

)
Re akj + KRe ajk = Re ck,j , KRe akj +

(
(1− s)t + K

)
Re ajk = Re cj,k,(

(1− s)t + K
)
Im akj −KIm ajk = Im ck,j , −KIm akj +

(
(1− s)t + K

)
Im ajk = Im cj,k,

(4.44)

where c′k,j is determined, for all k, j = 1, . . . , N and k 6= j. In order to solve the preceding system of equations it is
enough to observe that (1− s)t ((1− s)t + 2K) 6= 0. It is equivalent to observe that

(1− s)t + 2
(
(−1)k1(1− s)t−1 + · · ·+ (−1)tkt

)
6= 0,

(−1)t
(
(s− 1)t + 2

(
k1(s− 1)t−1 + k2(s− 1)t−2 + · · ·+ kt

))
6= 0.

(4.45)

Composing the map that sends M into (3.1) with the map (4.1) we obtain our formal transformation that sends M
into M ′ up to degree ts + s + 1.

5. Proof of Theorem 1.5-Uniqueness of the formal transformation map

In order to prove the uniqueness of the map (1.12) it is enough to prove that the following map is the identity

(5.1) M ′ 3 (z, w) −→

z +
∑
k≥2

F (k)
nor(z, w), w +

∑
k≥2

G(k+1)
nor (z, w)

 ∈ M ′.

Here M ′ is a manifold defined by the normal form from the Theorem 1.5. We have used the notations (2.30). We perform
induction on k ≥ 2.

Definition 5.1. The undetermined homogeneous parts of the map (5.1) by applying Extended Moser Lemma are called
the free parameters.

We prove that F
(2)
nor(z, w) = 0. Here we recall the first case of the normal form construction. We assume that t = 1.

By repeating the normalization procedures from the first case of the normal form construction, we find that all of
the homogeneous components of F

(2)
nor(z, w) except the free parameter are 0 and that G

(3)
nor(z, w) = 0. Using the same

approach as in the first case of the normal form construction (see (3.25)), it follows that

(5.2) ϕs+1,0(z)− ϕs+1,0(z) = (1− s)〈z, a〉∆(z) = 0.

Here a is the free parameter of F
(2)
nor(z, w). It follows that a = 0. Therefore F

(2)
nor(z, w) = 0.

We assume that F
(2)
nor(z, w) = · · · = F

(k−2)
nor (z, w) = 0, G

(3)
nor(z, w) = · · · = G

(k−1)
nor (z, w) = 0. We want to prove that

F
(k−1)
nor (z, w) = 0, G

(k)
nor(z, w) = 0. First, we consider the case when k = 2t, with t ≥ 2. Let a ∈ CN be the free parameter

of the polynomial F
(2t)
nor (z, w). By repeating all the normalization procedures from the first case of the normal form

construction it follows that all of the homogeneous components of F
(2t)
nor (z, w) except the free parameters are 0 and that

G
(2t+1)
nor (z, w) = 0. We are interested in the image of the manifold M through the map (5.1) to M up to degree ts + 1.

We repeat the normalization procedure done during Lemma 3.7 proof. In that case we have considered a particular
mapping (see (3.3)). Here we have a general polynomial map with other free parameters. They generates terms of weight
at least ts + 2 that do not change their weight under the conjugation:

wt {〈F1,m(z)wm, z〉} , wt {〈z, F1,m(z)wm〉} ≥ ts + 2, for all m > t;

wt {〈F0,r(z)wr, z〉} , wt {〈z, F0,r(z)wr〉} ≥ ts + 2, for all r ≥ t + 2.
(5.3)

Here F1,m(z)wm, F0,r(z)wr are the free parameters of F
(2m+1)
nor (z, w) and F

(2r)
nor (z, w), for all m > t and r ≥ t + 2.

Therefore they can not interact with the pure terms of degree ts + 1 (because of the higher weight). All the Lemmas
3.1− 3.6 remain the same in this general case.

Using the same approach as in the first case of the normal form construction (see (3.47)), it follows that

(5.4) ϕts+1,0(z)− ϕts+1,0(z) = (1− s)t〈z, a〉∆t(z) = 0.

It follows that a = 0. Therefore F
(2t)
nor (z, w) = 0.

We assume that k = 2t + 1, with t ≥ 2. Let (ai,j)1≤i,j≤N be the free parameter of F
(2t+1)
nor (z, w). By repeating all the

normalization procedures from the first case of the normal form construction, it follows that all of the homogeneous
components of F

(2t+1)
nor (z, w) except the free parameters are 0 and that G

(2t+2)
nor (z, w) = 0.
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We are interested of the image of the manifold M ′ through the map (3.3) to M ′ up to degree ts + s + 1. The other
free parameters of the map (5.1) generates terms of weight at least ts + s + 1 that do not change their weight under
the conjugation:

wt {〈F1,m(z)wm, z〉} , wt {〈z, F1,m(z)wm〉} ≥ ts + s + 1, for all m > t + 1;

wt {〈F0,r(z)wr, z〉} , wt {〈z, F0,r(z)wr〉} ≥ ts + s + 1, for all r ≥ t + 3.
(5.5)

All the Lemmas 4.1− 4.7 remain true in this general case.
Using the same approach as in the second case of the normal form construction (see (4.39)), it follows that

(5.6) ϕts+s,0(z)− ϕts+s,0(z) = (1− s)tQ(z)∆t(z) = 0.

It follows that (ai,j)1≤i,j≤N = 0. Therefore

(5.7) F (2t+1)
nor (z, w) = 0, G(2t+2)

nor (z, w) = 0.

This proves the uniqueness of the formal transformation (1.12).
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