
LECTURE 2

Topological Gauge Theories :

Flat Connections and Higgs Bundles

FLAT CONNECTIONS

• Σh - Riemann surface of genus h

• P - principal G-bundle over Σ; E associated vector bundle

• G - compact group (important), SU(N), in the rest

• GΣ = Map(Σ,G) - gauge group

• g = Lie(G)

• A - space of all connections in P
• A ∈ A - connection in P, [A] - its gauge equivalence class

• F -curvature of A: F = dA + A2

• ϕ ∈ A0(Σ, adg) - zero-form in adg representation

• ψ ∈ A1(Σ, adg) - odd one-form taking values in adg

Infinitesimal gauge transformations:

Lα A = dϕ + [A,ϕ]

Lα ψ = −[ϕ,ψ]

Lα ϕ = −[α, ϕ]



In the space of fields A,ϕ, ψ BRST transformation δ ex-
ists such that it squares to zero up to infinitesimal gauge
transformations with α = ϕ:

δ2 = −iLϕ

δ A = iψ, δ ψ = −(dϕ + [A, ϕ]), δ ϕ = 0,

Action functional:

S0 =
1
2π

∫

Σ

Tr(iϕF +
1
2
ψ ∧ ψ)

Flat Connections - critical points of S0 with respect to ϕ.

Consider the (path)integral over all fields with this action
functional:

ZY M (Σ) =
1

Vol(GΣ)

∫
Dϕ DADψ e

1
2π

∫
Σ

(iTr ϕ F (A)+ 1
2Tr ψ∧ψ)

Vol(GΣ) - volume of the gauge group GΣ = Map(Σ, G)

The measure DA Dψ - a canonical flat measure

The measure Dϕ - defined using the standard normalization
of the Killing form on g

In this integral one also sums over all topological classes of
the principal G-bundle over Σh.

This theory is called Topological 2d YM theory. The path
integral is invariant under δ.



• Observables - descend: Given homogeneous invariant
polynomial of ϕ(P ), I(ϕ), local observable is given by:

o
(0)
I (P ) = Tr I(ϕ) ⇒ O(0) =

∫

Σ

(volΣ)TrI(ϕ)

since o(0)(P ) is independent of position of P up to δ because:

do(k) = −iδ(o(k+1)).

Non-local observables Oi, δOi = 0, are given by:

O(0) =
∫

Σ

(volΣ)TrI(ϕ)

O(1)
I =

∫

Γ

o1 =
∫

Γ

dim(g)∑
a=1

∂I(ϕ)
∂ϕa

ψa

O(2)
I =

∫

Σ

o2 =
∫

Σ

1
2

∫

Σ

dim(g)∑

a,b=1

∂2I(ϕ)
∂ϕa ∂ϕb

ψa ∧ ψb+

+i

∫

Σ

dim(g)∑
a=1

∂I(ϕ)
∂ϕa

F (A)a

Γ ∈ Σ - a closed curve on a two-dimensional surface Σ.

Physical obesrvables ⇔ δ-equivariant cohomology classes.

Q: compute the correlators of these Observables

< Oi1 ...Oin >=
1

Vol(GΣ)

∫
DADψDϕOi1 ...OineS0



• Consider the moduli space of flat connections M : F = 0,
subspace in A.

• Consider the product M×Σ and form so called universal
bundle E , whose restriction onto [A]×Σ ⊂M×Σ coincides
with E.

• a - the universal connection in E , Fa - curvuture of a.

• {Ik} - additive basis in the space of invariants: Fun(g)G ≈
Fun(t)W ; W - Weyl group.

dk - degree of Ik, and eα cycle in Σ (points, closed curve Γ
or Σ itself)

• Restrict Ik( Fa

2πi ) to M × eα and integrate over fibres of
projection M× eα →M:

Ωα
k =

∫

eα

In(
Fa

2πi
) ∈ H2dn−dimeα(M)

Examples: I1 = Trϕ2, d1 = 2; I2 = Trϕ3, d2 = 3

Intersection theory on M - compute:
∫

M
Ωα1

n1
∧ . . . ∧ Ωαk

nk



• There is one to one correspondence between O’s and Ω’s:
δ-cohomology ⇔ H∗(M); basically through:

Fa = FA + ψ + ϕ

• Coerrelators of O’s in 2d Topological YM theory compute〈
Ωα1

n1
. . . Ωαk

nk

〉

Correlators can be combined, as in 2d topological sigma
models, in generating function:

Z(Σh; ti, ...tn) =
1

Vol(GΣ)

∫
DADψDϕeS(t1,...,tn)

S(t1, ..., tn) = S0 +
n∑

i=1

tiOi

Intuitive argument, which turns out to be correct is follow-
ing:

Consider the case when Topological YM theory, S0, is per-
turbed with local observables only, and only degree 2 oper-
ator is used - t1 = −ε:

S = S0+t1

∫

Σ

(volΣ)Trϕ2 =
1
2π

∫

Σ

(iϕF+
1
2
ψ∧ψ)−ε

∫

Σ

(volΣ)Trϕ2

This is QFT which is equivalent to physical 2d YM theory - ϕ
enters quadratically and can be integrated out (eliminated)
giving ϕ = i

2εF , thus theory with the action:

− 1
4ε2

∫

Σ

F ∧ ∗F



Topological YM theory corresponds to action S for zero cou-
pling ε = 0 : S(t1 = 0) = S0, but in above action this means
that in the remanning integral over gauge fields only flat
connections contribute, very similar to the argument in A
and B topological sigma models.

• ε = 0, Topological YM theory ⇒ integral over the moduli
space of flat connections ⇒ volume.

• As in Donaldson theory the physical approach of comput-
ing the correlators - Abelianization

After all non-abelain components are integrated out the path
integral reduces to the integral over abelian fields from Car-
tan sub-algebra.

S =
∫

Σ

[∑

k

(
∂I(ϕ)
∂ϕk

)
Fk +

1
2

∑

i,j

(
∂2I(ϕ)
∂ϕi∂ϕj

)
ψi ∧ ψj

]
+

+
∫

Σ

T (ϕ)
1
8π
R(2)

ψab
A = diag(ψ1, . . . , ψN ), Fk is the curvature, corresponding

to the k’th entry of Aab, and R(2) is the two dimensional
scalar curvature.

One needs to find two functions of abelian fields I(ϕ) and
T (ϕ). Plus - explicit form of observables in terms of abelian
fields.



For 2d topological YM theory: I(ϕ) =
∑

k ϕ2
k, T (ϕ) = 0

• Abelian theory reduces to finite-dimentional integral!

• Localization technique is a major tool in computing
correlators in all topological quantum field theories.

• The generating function for deformation with local observ-
ables only can be computed explicitly:

ZY M (Σh; t1, ..., tn) =

=
(

Vol(G)
(2π)dim(G)

)2h−2 ∑

µ∈P++

(dim Vµ)2−2h e−
∑∞

k=1
tk pk(µ+ρ)

• Vµ - unitary irreducible representation of G = SU(N)

• µ ∈ Z+, µ1 ≥ µ2 ≥ ... ≥ µN -highest weight

• pk ∈ C[h∗]W is the bases of invariant polynomials on the
dual h∗ to Cartan subalgebra h.

• ρ = 1
2

∑
α∈R+ α is a half-sum of positive roots

• P++ is a subset of the dominant weights of G



• Hamiltonian approach: consider Riemann surface with
boundary - a cylinder R× S1.

σ - coordinate along S1 and t coordinate along R.

Aσ - component of gauge field along S1, At - along R.

Action (after integrating out fermions):

S(ϕ,A) =
1
2π

∫
dtdσ Tr (ϕ∂tAσ + At(∂σϕ + [Aσ, ϕ]))

This has a form
∫

dt(
∑

i piq̇i − λΦ(p, q)) with:

• λ: lagrange multiplier → At;
∑

i →
∫

R
, pi → ϕ(σ), qi →

Aσ(σ) and Φ - constraint:

Φ(ϕ,Aσ) = ∂σϕ + [Aσ, ϕ] = 0

So, infinite-dimensional phase space M with coordinates ϕ,Aσ

is reduced with respect to constraint Φ = 0

Action functional after this infinite-dimensional Hamiltonian
reduction ∫

R

dt
∑

i

p̃i
˙̃qi =

∫
d−1ω

ω - symplectic form on reduced phase space M̃ ; p̃i, q̃i - Dar-
boux coordinates on M̃ .

M̃ - finite-dimensional:

M̃ = (T ∗H)/W

H - Cartan sub-group, W - Weyl group.

Choose polarization associated with projection π : T ∗H →
H.



The Hilbert space of the theory can be realized as a space of
AdG-invariant functions on G. The paring is defined by the
integration with a bi-invariant normalized Haar measure:

< Ψ1, Ψ2 >=
∫

G

dg Ψ1(g)Ψ2(g)

Being restricted to the subspace of AdG-invariant functions
it descends to the integral over Cartan torus H:

< Ψ1, Ψ2 >=
1
|W |

∫

H

dx ∆2
G(e2πix)Ψ1(x) Ψ2(x)

Denote H0 = H ∩Greg is an intersection of the Cartan torus
H ⊂ G with a subset Greg of regular elements of G. In the
case of G = U(N) the set H/H0 = ∪j<k{e2πixj = e2πixk} is
the main diagonal.

∆2
G(e2πix) =

∏

α∈R+

(eiπα(x) − e−iπα(x))2,

x =
∑rank(g)

j=1 xje
j and {ej} is an orthonormal bases of h,

and R+ is a set of positive roots of g.

The set of invariant operators descending onto M̃ ⇔ AdG-
invariant polynomials of ϕ (commuting set)

O(0)k(ϕ) =
1

(2π)k
Trϕk.

trace is taken in the N -dimensional representation.



Bases of wave-functions:

O(0)k(ϕ)Ψλ(x1, · · · , xN ) = pk(λ)Ψλ(x1, · · · , xN ),

Ψλ(xw(1), · · · , xw(N)) = Ψλ(x1, · · · , xN ), w ∈ W.

λ = (λ1, · · · , λN ) are elements of the weight lattice P of g

pk ∈ C[h∗]W is the bases of invariant polynomials on the
dual h∗ to Cartan subalgebra h.

Redefine
Φi(x) = ∆G(e2πix)Ψi(x)

Integration measure becomes a flat measure on H:

< Ψ1, Ψ2 >=
1
|W |

∫

H

dx Φ1(x) Φ2(x),

Then:

O(0)k =
1

(2πi)k

N∑

i=1

∂k

∂xk
i

.

These wave functions are skew-symmetric with respect to the
action of W . To get the symmetric: Φi(x) = |∆G(e2πix)|Ψi(x).

• Thus ⇒ representation theory of G enters. The bases of
W -skew-invariant eigenfunctions - characters of the finite-
dimensional irreducible representations of G:

chµ(g) = TrVµ
g



Φµ+ρ(g) = ∆G(e2πix) chµ(g), µ ∈ P++,

Φµ+ρ(x) =
∑

w∈W

(−1)l(w)e2πi w(µ+ρ)(x),

l(w) is a length of a reduced decomposition of w ∈ W .

Generating function for Σ being cylinder thus is the sum
over whole spectrum:

G(x, x′|t1, ..., tn) =
∑

λ

Φλ(x)e−
∑

k
tkO0k

Φλ(x′) =

=
∑

λ

Φλ(x)e−
∑

k
tkpk(λ)Φλ(x′)

For Σ = T 2 we need to set x = x′ and integrate over x:

ZT 2 =
∫

dxG(x, x) =
∑

λ

e−
∑

k
tkpk(λ)

Relation with representation theory of compact Lie group al-
lows to evaluate the generating function ⇔ intersection form
on moduli space of flat connections, for any Riemann surface
with boundaries.



Gauged WZW Model - Flat connections continues

The Topological Yang-Mills theory allows the following non-
trivial generalization to the G/G gauged WZW model.

ZGWZW (Σh) =
1

Vol(GΣh
)

∫
Dg DA Dψ ekS(g,A,ψ),

S(g, A, ψ) = SWZW (g)− 1
2π

∫

Σh

d2z Tr (Azg
−1∂̄z̄g+g∂zg

−1Az̄+

gAzg
−1Az̄ −AzAz̄) +

1
4π

∫

Σh

d2z Tr(ψ ∧ ψ),

SWZW (g) - action functional for Wess-Zumino-Witten model:

SWZW = − 1
8π

∫

Σh

d2z Tr(g−1∂zg · g−1∂z̄g)− iΓ(g),

Γ(g) =
1

12π

∫

B

d3y εijk Tr g−1∂ig · g−1∂jg · g−1∂kg.

k - a positive integer and ∂B = Σh.

δA = iψ, δψ(1,0) = i(Ag)(1,0) − iA(1,0)

δψ(0,1) = −i(Ag−1
)(0,1) + iA(0,1), δg = 0

Lg A(1,0) = (Ag)(1,0)−A(1,0) Lg A
(0,1)
A = −(Ag−1

)(0,1)+A(0,1),

Lg ψ(1,0) = −gψ(1,0)g−1+ψ(1,0), Lg ψ(0,1) = g−1ψ(0,1)g−ψ(0,1)

Lg g = 0.



Ag = g−1dg + g−1Ag is a gauge transformation, and:

Q2 = Lg

In contrast to YM theory these transformations include the
finite (from the gauge group) symmetries of the action in-
stead of those from Lie algebra.

In the limit g → 1 + iεϕ, ε → 0 one recovers topological YM
theory.

Local observables - functions of g. Deform as in YM theory:

∆S =
∑

µ∈P++

tµ

∫

Σh

d2z TrVµg volΣh
.

tµ = 0 for all but finite subset of P++ to make the path
integral well defined.

As in 2d YM theory the generating function can be exactly
computed and is related to representation theory of quantum
groups for q root of unity and representations of Kac-Moody
algebras at level k:



ZGWZW (Σh) = |Z(G)|2h−2(
k + cv

4π2
)

1
2dimMG(Σh)Volq(G)2h−2×

×
∑

µ∈P k
++

(dimq Vµ)2−2h e
−

∑
µ∈P k

++
tµchVµ (e2πiλ̂)

.

dimMG(Σh) = dim G(2h−2) - the dimension of the moduli
space of flat G-bundles on Σh, |Z(G)| is a dimension of the
center of G and:

dimq Vµ = TrVµ
q−ρ̂ =

∏

α∈R+

(q
1
2 (µ+ρ,α) − q−

1
2 (µ+ρ,α))

(q
1
2 (ρ,α) − q−

1
2 (ρ,α))

Volq(G) =

= (2π)dimG(k+cv)−
1
2 (dim G−dim H)

∏

α∈R+

(
q

1
2 (ρ,α) − q−

1
2 (ρ,α)

)−1

the sum is over the set P k
++ of integrable representations of

the affine group L̂Gk at the level k.

The same set also enumerates irreducible representations of
Uq(g) for q = exp(2πi/(k + cv)). Define:

exp(2πiλ̂) = exp(2πi
∑

j

λj ej) ∈ H

chVµ
(e2πiλ̂) is a character of the element exp(2πiλ̂) taken in

the representation Vµ.



The expressions dimq Vµ are known as quantum dimensions
of the representations of the quantum group. For g = glN
we have:

dimq Vµ =
N∏

i<j

(q
1
2 (µi−µj+j−i) − q

1
2 (µj−µi+i−j))

(q
1
2 (j−i) − q

1
2 (i−j))

.

and µ1 ≥ µ2 ≥ · · · ≥ µN , µi ∈ Z+.

The q-analog of the character is given by:

Ψµ(x) = chµq−ρ+x



Yang-Mills-Higgs Theory: Intersection Theory

on Moduli Space of Higgs Bundles

Higgs bundles were defined by Hitchin, more than 20 years
ago, through:

F (A)− Φ ∧ Φ = 0

∇(1,0)
A Φ(0,1) = 0

∇(0,1)
A Φ(1,0) = 0

Here new ”field” enters, Φ, one-form in adjoint representa-
tion of gauge group.

These are dimensional reduction of instanton equations F+ =
0 in four dimensional space down to two dimensions.

We will need later its super-partner, Ψ, odd Grassman vari-
able, also one-form in adjoint representation:

(Φ, ψΦ) : Φ ∈ A1(Σ, adg), ψΦ ∈ A1(Σ, adg)

the decompositions

Φ = Φ(1,0) + Φ(0,1)

ψΦ = ψ
(1,0)
Φ + ψ

(0,1)
Φ

will correspond to the decomposition of the space of one-
forms A1(Σh) = A(1,0)(Σh)⊕A(0,1)(Σh) defined in terms of
a fixed complex structure on Σh.



The space of the solutions has a natural hyperkähler struc-
ture and admits compatible U(1) action.

• Write the QFT similar to topological Yang Mills theory
where the flat connection condition is replaced by Hitchin
equations for Higgs bundle.

• More general question - write the integral representation
for integration over moduli space of linear hyperkähler quo-
tients. Hitchin equation defines infinite-dimensional hyperkähler
quotient.

Answer to both was given by MNS (Moore, Nekrasov and S.
Sh.) in mid 90’s.

Introduce extra fields ϕ0 similar to ϕ in case of flat connec-
tions:

ϕ0 ∈ A0(Σ, adg)

In addition one needs to introduce more fields, ϕ+, ϕ−, 0-
forms in adjoint representation, and their super-partners χ,
odd Grassman variables also in adjoint representation:

(ϕ±, χ±) : ϕ± ∈ A0(Σ, adg), χ± ∈ A0(Σ, adg)

MNS defined Action functional and δ-operator acting on the
space of these fields:

S = S0 + S1

such that:



S0(ϕ0, ϕ±, A, Φ, ψA, ψΦ, χ±) =
1
2π

∫

Σh

d2z Tr(iϕ0 (F (A)−Φ∧Φ)−

−cΦ ∧ ∗Φ + ϕ+∇(1,0)
A Φ(0,1) + ϕ−∇(0,1)

A Φ(1,0))

S1(ϕ0, ϕ±, A, Φ, ψA, ψΦ, χ±) =
1
2π

∫

Σh

d2z Tr(
1
2
ψA ∧ ψA+

1
2
ψΦ∧ψΦ++χ+[ψ(1,0)

A , Φ(0,1)]+χ−[ψ(0,1)
A ,Φ(1,0)]+χ+∇(1,0)

A ψ
(0,1)
Φ +

χ−∇(0,1)
A ψ

(1,0)
Φ )

δ-cohomology is defined through:

δA = iψA, δψA = −∇Aϕ0, δϕ0 = 0, δΦ = iψΦ

δψ
(1,0)
Φ = −[ϕ0, Φ(1,0)]+cΦ(1,0), δψ

(0,1)
Φ = −[ϕ0,Φ(0,1)]−cΦ(0,1),

δχ± = iϕ±, δϕ± = −[ϕ0, χ±]± cχ±.

and as before one has the action of vector field:

Lvϕ± = ∓ϕ±, Lvχ± = ±χ±

Lϕ0 A = −∇Aϕ0, Lϕ0 ψA = −[ϕ0, ψA]

Lϕ0 Φ = −[ϕ0,Φ], Lϕ0 ψΦ = −[ϕ0, ψΦ]

Lϕ0 ϕ0 = 0, Lϕ0 ϕ± = −[ϕ0, ϕ±]

Lϕ0 χ± = −[ϕ0, χ±],



But now, due to circle action of Hitchin there is one more
vector field:

LvΦ(1,0) = +Φ(1,0), LvΦ(0,1) = −Φ(1,0),

Lvψ
(1,0)
Φ = +ψ

(1,0)
Φ , Lvψ

(0,1)
Φ = −ψ

(0,1)
Φ ,

δ squares to zero up to action of these two vector fields:

δ2 = iLϕ0 + cLv

The action for YMH theory is sum of action of YM theory
and δ-exact term:

SY MH(ϕ0, ϕ±, χ±, A, ψA, Φ, ψΦ) = SY M (ϕ0, A, ψA)+

+δ[
∫

Σh

d2z Tr (
1
2
Φ∧ψΦ + ϕ+∇(1,0)

A Φ(0,1) + ϕ−∇(0,1)
A Φ(1,0))]

so it is obviously δ-invariant, as well as Lϕ0 and Lv invariant.

• Observables: not surprisingly local δ-cohomology is gen-
erated by same operators as in YM theory:

o
(0)
I (P ) = Tr I(ϕ0) ⇒ O(0) =

∫

Σ

(volΣ)TrI(ϕ0)

1-observable and 2-observable is defined exactly same way
as in YM theory via descend procedure, but now with new
operator δ.

Add to the action quadratic combination of scalars ϕ0, ϕ±:

SY MH + τ1

∫

Σ

Trϕ2
0 + τ2

∫

Σ

Trϕ−ϕ+

Bosonic part of the action after integration (elimination) of
ϕ0, ϕ± is:



1
τ2
1

∫

Σ

Tr|F (A)−Φ∧Φ|2+ 1
τ2
2

∫

Σ

Tr∇(1,0)
A Φ(0,1)∇(0,1)

A Φ(1,0)−

−c

∫

Σ

TrΦ ∧ ∗Φ
YMH theory corresponds to τ1 = τ2 = 0 and we see that
contributions come only from solutions of:

F (A)− Φ ∧ Φ = 0, ∇(0,1)
A Φ(1,0) = 0

Higgs bundle equations of Hitchin. We call the theory with
τ1 = τ2 = 0 topological YMH theory.

Deform the action by adding the observables:

S̃ = S + tiOi

and evaluate the integral over all fields:

ZΣ(t) =< e−S̃(t) >

This integral in topological YMH theory is (equivariant) in-
tegral over moduli space of Higgs bundles and for ti = 0
corresponds to the “regularized volume” of moduli space. Pa-
rameter c is equivariant ⇒ regularization paramter.

Moduli space of Higgs bundles equivalently can be described
and space of solutions of complexified flat connection:

F c(Ac = A + iΦ) = 0

This compexified equation is gauge invariant under complex-
ified gauge transformations and the quitient is same as space
of solutions to Hitchin equations modulo real gauge trans-
formations.



Topological YMH theory depends on one important, equiv-
ariant parameter, c. There are two key limiting cases -
c →∞ and c → 0.

• c−∞. c enters bosonic part of action through:

−c

∫

Σ

Tr|Φ|2

Thus for c →∞ only Φ = 0 contributes and Φ together with
its super-partner ψΦ drops out. We are left with topological
YM theory for real group - case already studied.

• c = 0. Oposite limit, c → 0, corresponds to flat connections
for complexefied group thus if considerations of topological
YM would apply to complexified (non-compact) groups an-
swer should be described by representation theory of com-
plex group. Unfortunately these are infinite-dimensional and
answer should diverge - and it does, the theory is not regu-
larized since c = 0.

• Topological YMH theory interpolates between represen-
tations of compact group and its complexification giving
proper treatment of latter in c → 0 limit.

Computation - intersection form, the deformed partition func-
tion, for topological YMH with group U(N) was computed
by MNS: via abelianization and hyperkähler localization tech-
nique developed there.



Abelianized action descends from functional wich coincides
with so called Yang functional introduced by C. N. Yang for
Bethe Ansatz of NLS equation!

I(λ) =
N∑

j=1

(
1
2
λ2

i − 2πnjλj) +
N∑

k,j=1

∫ λj−λk

0

arctg λ/c dλ

λ ≡ ϕ0. Last term can be written is λlogλ and in that form
sometimes is called Veneziano-Yankielovich superpotential.

Explicit form of the action also has non-zero Gauss-Bonet
term. Bosonic part of action is:

S =
∫

Σh

N∑

i=1

[(ϕ0)i +
N∑

j=1

log
(

(ϕ0)i − (ϕ0)j + ic

(ϕ0)i − (ϕ0)j − ic

)
]F (A)i+

+
1
2

∫

Σh

N∑

i,j=1

log
(

(ϕ0)i − (ϕ0)j + ic

(ϕ0)i − (ϕ0)j − ic

)
R(2)√g

As already explained the observables in topological YMH
theory are defined by same invariant polynomials as in topo-
logical YM theory (flat connection). Zero observables are:

O0
k =

N∑

i=1

(ϕ0)i
k

S̃(t) = S +
∑

k

tkO0
k

ZΣh
(t) =< e−S̃(t) >



The generating function ZΣh
(t) is still expressed in terms of

infinite-dimensional integral over abelian fields but luckily
this integral is exactly computable because of localization
technique.

Computing the Gaussian integral over fermions and sum-
ing over non-trivial topological classes of connection leads to
finite-dimensional integral representation (

∫
Σ

F k = 2πink):

ZΣh
(t) =

e(1−h)a(c)

|W |
∫

RN

dNλ

µ(λ)h
∑

(n1,···,nN )∈ZN

e2πi
∑N

m=1
λmnm

∏

k 6=j

(λk−λj)nk−nj+1−h ×

∏

k,j

(λk − λj − ic)nk−nj+1−h e−
∑∞

k=1
tk pk(λ)

a(c) - h indpendent constant

pk(λ) - SN -invariant polynomial functions of degree k on RN

µ(λ) = det ‖ ∂2I(λ)
∂λi ∂λj

‖

Collect n-depends part in the sum:

ZΣh
(t) =

e(1−h)a(c)

|W |
∫

RN

dNλ µ(λ)h
∑

(n1,···,nN )∈ZN

e
2πi

∑
j

njαj(λ)

×
∏

k 6=j

(λk − λj)1−h
∏

k,j

(λk − λj − ic)1−h e−
∑∞

k=1
tk pk(λ)

e2πiαj(λ) = Fj(λ) ≡ e2πiλj

∏

k 6=j

λk − λj − ic

λk − λj + ic



Use identity:

µ(λ)
∑

(n1,···,nN )∈ZN

e
2πi

∑
j

njαi(λ) =

= µ(λ)
∑

(m1,···,mN )∈ZN

∏

j

δ(αj(λ)−mj) =

=
∑

(λ∗1 ,···,λ∗
N

)∈RN

∏

j

δ(λj − λ∗j )

where RN denotes the set of colutions of αk(λ) = mk or the
same as set of colutions to Fj(λ) = 1:

e2πiλj

∏

k 6=j

λk − λj + ic

λk − λj − ic
= 1, k = 1, · · · , N

This is a set of transcedental equations on N real numbers λi

- it is the Bethe Ansatz equation for the N -particle sector
of quantum theory of Nonlinear Schrödinger equation.
Finally:

ZΣ(t) = e(1−h)a(c)
∑

λ∈RN

D2−2h
λ e−

∑∞
k=1

tk pk(λ)

Dλ = µ(λ)1/2
∏

i<j

(λi − λj)(c2 + (λi − λj)2)1/2



RN - C. N. Yang proved that this set can be enumerated
by the multiplets of the integer numbers (p1, · · · , pN ) ∈ ZN

such that p1 ≥ p2 ≥ · · · ≥ pN , pi ∈ Z. Thus, the sum in is
the sum over the same set of partitions as in the case of flat
connections.

• Intersection forms on moduli space of Higgs bundels are
one parameter, c, defomrations of those for the connections.

• c - equivariant parameter - regularization.

• Bethe Ansatz for N -particle sector of NLS enters instead
of highest weight representations of compact group.

A. Gerasimov, S.Sh., 2006

• Is there a nice representation theory interpretation of in-
tersection numbers for Higgs bundles, similar to that for flat
connections?

• What are wave-functions - ortho-normal bases in Hilbert
space, eigenfunctions of quantum Hamiltonians ⇔ observ-
ables? Eigenvalues known from partition function compu-
tation. Should follow for exact computations from Rieman
surface with boundaries - unknown.

• Bethe Ansatz for NLS - is the bases of wave-functions in
YMH related to wave-functions in N -particle sector of NLS?

• What is the meaning of D(λ)?



Hamiltonian picture

• Phase space of YMH theory for c 6= 0 is same as for YM
theory. Bases of wave functions - one parameter deformation
of latter. For c = 0 local δ-cohomologies contain additional
operators - phase space is T ∗Hc/W instead of T ∗H/W since
c = 0 is complexified flat connection.

Choose same polarization as before π : T ∗H/W → H.

• Wave functions - SN invariant functions on a torus H or
equivalently the functions on RN invariant under action of
the semidirect product of the lattice P0 = π1(H) and Weyl
W = SN group ⇒ under the action of the affine Weyl group
W aff ).

• The lattice P0 can be interpreted as a lattice of the RN-
valued constant connections on S1 which are gauge equiva-
lent to the zero connection.

The corresponding gauge transformations act on the wave
functions by the shifts xj → xj +nj , nj ∈ Z of the argument
of the wave functions in the chosen polarization.

It simple known fact that the wave functions in two-dimensional
Yang-Mills theory (and we will see also in YMH) can be ob-
tained by the averaging over this gauge transformations and
global gauge transformations by the nontrivial elements of
the normalizer of Cartan torus W = N(H)/H.

This infinte sum over π1’s is same as infinite sum in MNS
partition function - sum over topological classes of YM con-
nection.



Thus we conclude:

• Wave-functions - functions on Cartan Φ(c)
λ (x), peri-

odic functions of N variables.

• λ’s - labels parametrizing the state in the spectrum;
appear as eigenvalues of ϕ0 in the integral represen-
tation.

• Hamiltonians Hk- operators from δ-cohomology, lo-
cal observables Ok.

• Equation for eigenfunctions from flat connections
case gets deformed but eigenvalues - same.

HkΦ(c)
λ (x1, · · · , xN ) = pk(λ)Φ(c)

λ (x1, · · · , xN ),

Φ(c)
λ (xw(1), · · · , xw(N)) = Φ(c)

λ (x1, · · · , xN ), w ∈ W.

Latter follows from simple argument: in YMH one can con-
sider same generating function for the manifold with bound-
ary, e. g. cylinder, and then glue the cylinder in torus. From
general principles of QM:

Zcyl(t) = G(t;x, x′) =
∑

spectrum

Φ̄(c)
λ (x)e−tkHkΦ(c)

λ (x′) =

=
∑

spectrum

Φ̄(c)
λ (x)e−tkEk(λ)Φ(c)

λ (x′)

ZT 2(t) =
∫

dNxG(t; x, x) =
∑

λ∈spectrum

e−tkEk(λ)

So we see that: Hk → Ok; Ek(λ) = pk(λ); λ ∈ R.



Since explicit computations for manifold with boundary is
not available we can use indirect way of deducing the bases
of wave-functions in Hilbert space:

• Relax periodicity condition on Φc
λ. This corresponds to

QM problem, dimensional reduction of YMH to one-dimension.
This is gauge theory - QM on trivalent graph Γh.

• Phase space of such theory is almost same: T ∗h/W .

Hamiltonian equations on eigenfunctions still remain because
operators from local cohomology have same form and the
answers for dimensionally reduced theory to one-dimension
(YMH theory on Γh, trivalent graph) are known for ZΓh

(t):

ZΓh
(t) ∼

∫

RN

D2−2h
λ e−

∑∞
k=1

tk pk(λ)

for exactly same Dλ and Ek(λ) = pk(λ). For S1 → h = 1.

This need to be compared to answers for generating function
on interval I:

ZI(t) = G0(t; x, x′) =
∑

spectrum

Φ̄0
λ(x)e−tkHkΦ0

λ(x′) =

=
∑

spectrum

Φ̄0
λ(x)e−tkEk(λ)Φ0

λ(x′)

Φ0 denotes wave-function on interval; and for partition func-
tion:

ZS1(t) =
∫

dNxG0(t; x, x) =
∑

spectrum

e−tkEk(λ)



We conclude that restriction on spectrum disappears, now
λ ∈ RN , but eigenvalues are the same: Ek(λ) = pk(λ).
When imposing periodicity condition on wave-functions:

• Spectrum gets projected to the subspace in RN given by
solutions to BA equations: λ ∈ RN . And of course wave-
functions are periodic.

There is another important relation between Green function
of dimensionally reduced theory and Green function of orig-
inal theory - cylinder partition function:

G(t; x, x′) =
∫

λ∈RN/SN

dNλΦ̄0
λ(x)P (λ)e−tkHkP (λ)Φ0

λ(x′) =

=
∑

(k1,...,kn)∈ZN

G0(t;x, x′ + k)

where P (λ) projects the bases of wave-functions in QM prob-
lem to bases of periodic wave-functions in YMH theory.

This procedure is frequently used in QM and in particular
in topological YM theory.

All the properties described above are satisfied by bases of
wave-functions in NLS theory. Latter is known explicitly
both for interval I and for S1 - periodic.



N-particle wave-functions

in Nonlinear Schrödinger theory

The Hamiltonian of Nonlinear Schrödinger theory with a
coupling constant c is given by:

H2 =
∫

dx (
1
2

∂φ∗(x)
∂x

∂φ(x)
∂x

+ c(φ∗(x)φ(x))2)

with the following Poisson structure for bosonic fields φ -
function on infinite line R or on a circle S1:

{φ∗(x), φ(x′)} = δ(x− x′).

The operator of the number of particles is:

H0 =
∫

dxφ∗(x)φ(x)

and it commutes (has zero Poisson bracket) with Hamilto-
nian - conserved charge.

Equation for eigenfunction in fixed particle number sector
H0 = N is:

(−1
2

N∑

i=1

∂2

∂x2
i

+c
∑

1≤i<j≤N

δ(xi−xj))Φ0
λ(x) = 2π2(

N∑

i=1

λ2
i )Φ

0
λ(x)

Quantum integrability implies the existence of higher Hamil-
tonians - Hk; their eigenvalues are symmetric polynomials
pk(λ) from previous part.



Finite-particle sub-sectors of the Nonlinear Schrödinger the-
ory is described in terms of the representation theory of a
particular kind of Hecke algebra

R = {α1, · · · , αl} - root system, W - corresponding Weyl
group and P - a weight lattice.

Degenerate affine Hecke algebra HR,c associated to R is de-
fined as an algebra with the basis Sw, w ∈ W and {Dλ, λ ∈
P} such that Sw w ∈ W generate subalgebra isomorphic to
group algebra C[W] and the elements Dλ, λ ∈ P generate
the group algebra C[P] of the weight lattice P .

In addition one has the relations:

SsiDλ −Dsi(λ) Ssi = c
2(λ, αi)
(αi, αi)

, i = 1, · · · , n.

si - the generators of the Weyl algebra corresponding to the
reflection with respect to the simple roots αi.

The center ofHR,c is isomorphic to the algebra of W -invariant
polynomial functions on R⊗C. The degenerate affine Hecke
algebras were introduced by Drinfeld and independently by
Lusztig.

For U(N) YMH theory we are interested in case of glN root
system and thus we have W = SN .

Introduce the following differential operators (Dunkle/Lax
operators):

Di = −i
∂

∂xi
+ i

c

2

N∑

j=i+1

(ε(xi − xj) + 1)sij



ε(x) - sign-function and sij ∈ SN is a transposition (ij).
These operators together with the action of the symmetric
group provide a representation of the degenerate affine alge-
bra HN,c for g = gl(N):

Ssi → si, Di → Di, i = 1, · · · , N

The image of the quadratic element of the center is given by:

1
2

N∑

i=1

D2
i = −1

2

N∑

i=1

∂2

∂x2
i

+ c
∑

1≤i<j≤N

δ(xi − xj)

which is the Hamiltonian on the N -particle sector of Nonlin-
ear Schrödinger theory. Higher Hamiltonians: Hk =

∑N
i=1Dk

i .

We need SN -invariant solutions. They play the role of spher-
ical vectors (with respect to the spherical subalgebra C[W] ∈
HN,c) in the representation theory of degenerate affine Hecke
algebra.

Normalized eigenfunctions are:

Φ0
λ(x) =

∑

w∈W

(−1)l(w)
∏

i<j

(
λw(i) − λw(j) + icε(xi − xj)
λw(i) − λw(j) − icε(xi − xj)

) 1
2

×

× exp(2πi
∑

k

λw(k)xk)



Periodic case is given by Hamiltonian equation:

(−1
2

N∑

i=1

∂2

∂x2
i

+ c
∑

n∈Z

∑

1≤i<j≤N

δ(xi − xj + n))Φλ(x) =

= 2π2(
N∑

i=1

λ2
i )Φλ(x)

with conditions:

Φλ(x1, · · · , xj + 1, · · · , xN ) = Φλ(x1, · · · , xN )

Φλ(xw(1), · · · , xw(N)) = Φλ(x1, · · · , xN ), w ∈ SN

Solution to this problem is given by same wave-functions as
in case of infinite line but with restriction on λ’s - Bethe
Ansatz equations:

Fj(λ) ≡ e2πiλj

∏

k 6=j

λk − λj − ic

λk − λj + ic
= 1

The normalized wave functions in the periodic case are:

Φnorm
λ (x) =

(
det ‖∂ logFj(λ)

∂λk
‖
)−1/2

Φλ(x) = µ(λ)−1/2Φλ(x)



• c →∞: Representation theory of compact Lie groups

In this case we must get topological YM theory for unitary
group from YMH theory. Indeed Bethe Ansatz becomes:

(−1)N−1e2πiλk = 1

with solutions:
λj =

N − 1
2

+ mi

YMH partition function becomes identical to that for YM
theory.

At the same time the normalized wave-functions of NLS the-
ory:

Φc=∞
λ (x) = |∆(ex)|chλ(x)

thus giving the wave-function of YM theory.

• c → 0: Representation theory of complex Lie groups

This limit is more complicated both in MNS computation in
YMH theory and in NLS theory.

Limiting Bethe Ansatz equation is:

e2πiλk = 1

The interpretation of the limit in YMH theory is not so ob-
vious because the localization technique does not straight-
forwardly applicable for c = 0. But we shall get answers in
YM theory for complexified group Gc.



In the Yang-Mills theory for Gc one expects to have a sum
(integral and the sum ) over the set of unitary representa-
tions arising in the decomposition of the regular representa-
tion of G in L2(G), i.e. over the principal series of unitary
representations.

The simplest example is a representation of GL(N,C) ob-
tained by quantization of the regular coadjoint orbit general-
izing two-sheet hyperboloid for GL(2,C). The correspond-
ing character is given by:

chλ(ex) =
1

|∆G(ex)|
∑

w∈SN

e
2πi

∑N

j=1
λw(j)xj

λj = mj + iρj and SN is a Weyl group of GL(N,C).

In the case of the finite-dimensional representations the di-
mension of the representation is given by the value of the cor-
responding character at the unit element of the group. But
in case of infinite dimensional representations this doesn’t
work because value at unit element diverges.

The correct definition of the dimension Dλ of the principal
series unitary representations:

δ(G)
e (g) =

∑

λ∈Ĝ

Dλ chλ(g)

δ
(G)
e (g) - delta-function with the support at the unit element

e ∈ G of the group, chλ(g) is a character and Ĝ is a unitary
dual to G.

Dλ - formal degree of representation.



Both in YMH ad NLS in the limit c → 0 the subset of
the principal series of representations corresponding to λk =
mk ∈ Z (i.e. ρk = 0) enters.

• c 6= 0,∞: Representation theory of p-adic Lie groups

Definition - Hall-Littlewood polynomials, special case of
Macdonald polynomials:

{Λi}, i = 1, · · · , N - set of formal variables; µ = (µ1, · · · , µN )
be a partition of length N .

Pµ(Λ1, · · · , ΛN |t) =
1

vµ(t)

∑

w∈SN

w


Λµ1

1 · · ·ΛµN

N

∏

i<j

Λi − Λjt

Λi − Λj


 =

=
1

vµ(t) ∆(Λ)

∑

w∈SN

(−1)l(w) w (ΛX1
1 · · ·ΛXN

N

∏

i<j

(Λi − Λjt))

where for the partition µ = (1m1 , 2m2 , · · · , rmr , · · ·):

vµ =
N∏

j=1

mj∏

i=1

1− ti

1− t
, ∆(Λ) =

∏

i<j

(Λi − Λj).

The spherical functions for G = GL(N,Qp), K = GL(N,Zp)
(here Zp is a ring of p-adic integers) has the following repre-
sentation in terms Hall-Littlewood polynomials:

ωs(pµ1 , · · · , pµN ) = p−
∑N

i=1
(n−i)µi

vµ(p−1)
vN (p−1)

Pµ(p−s1 , · · · , p−sN |p−1)



where s = (s1, · · · , sN ) ∈ ZN and

vN (t) =
N∏

i=1

1− ti

1− t



Now we are ready to check whether normalized wave-function
in NLS on infinity line and on circle lead to correct properties
for cylinder partition function in YMH theory.

As explained we need to check in NLS:

G(t;x, x′) =
∑

(λ1,...,λN )∈RN

Φ̄λ(x)e−tkHkΦλ(x′) =

=
∫

λ∈RN/SN

dNλΦ̄0
λ(x)P (λ)e−tkHkP (λ)Φ0

λ(x′) =

=
∑

(k1,...,kn)∈ZN

G0(t; x, x′ + k) =

=
∑

k∈Z

∫

λ∈RN/SN

dNλΦ̄0
λ(x)e−tkHkΦ0

λ(x′ + k)

with Φ0
λ(x) normalized wave-function on infinite line, Φλ(x)

normalized periodic wave-function and projector P (λ) is:

P (λ) = µ(λ)
∑

m∈ZN

N∏

j=1

δ(αj(λ)−mj) =

=
∑

(λ∗1 ,···,λ∗
N

)∈RN

∏

j

δ(λj − λ∗j )

and verify if:

ZY MH
T 2 (t) =

∫
dx1dx2...dxNG(t; x, x)

Explicit computations confirm each of these conditions.

• Topological YMH theory for U(N) is completely
equivalent to N-particle sector of NLS.



• : G/G gauged WZW model

Set of fields: (A,ψA, Φ, ψΦ, χ±, ϕ±, g)

Equivariant parameter: t ∈ R∗

Odd and even symmetries, with Ag = g−1Ag + g−1dg:

L(g,t) A(1,0) = (Ag)(1,0) −A(1,0)

L(g,t) A
(0,1)
A = −(Ag−1

)(0,1) + A(0,1),

L(g,t) ψ
(1,0)
A = −gψ

(1,0)
A g−1 + ψ

(1,0)
A

L(g,t) ψ
(0,1)
A = g−1ψ

(0,1)
A g − ψ

(0,1)
A , L(g,t) g = 0,

L(g,t) Φ(1,0) = tgΦ(1,0)g−1 − Φ(1,0)

L(g,t) Φ(0,1) = −t−1g−1Φ(0,1)g + Φ(0,1),

L(g,t) ψ
(1,0)
Φ = tgψ

(1,0)
Φ g−1 − ψ

(1,0)
Φ

L(g,t) ψ
(0,1)
Φ = −t−1g−1ψ

(0,1)
Φ g + ψ

(0,1)
Φ ,

L(g,t) χ+ = tgχ+g−1 − χ+, L(g,t)χ− = −t−1g−1χ−g + χ−

L(g,t) ϕ+ = t−1gϕ+g−1 − ϕ+, L(g,t)ϕ+ = −tg−1ϕ+g + ϕ+

δ A = iψA, δ ψ
(1,0)
A = i(Ag)(1,0) − iA(1,0)

δ ψ
(0,1)
A = −i(Ag−1

)(0,1) + iA(0,1),

δΦ = iψΦ, δψ
(1,0)
Φ = tgΦ(1,0)g−1 − Φ(1,0)

δψ
(0,1)
Φ = −t−1g−1Φ(0,1)g − Φ(0,1)

δχ± = iϕ±, δϕ+ = tgχ+g−1−χ+, δϕ− = −t−1g−1χ−g+χ−.

δg = 0



Action:

S = SGWZW + δ(
∫

Σh

d2z Tr (
1
2
Φ ∧ ψΦ+

+τ1 (ϕ+∇(1,0)
A Φ(0,1)+ϕ−∇(0,1)

A Φ(1,0))+τ2(χ+ϕ−+χ−ϕ+)volΣh
)

Applying localization technique we get for partition function
Z =< e−S >:

ZΣh
∼ 1
|W |

∫

H

dNλ µq(λ)h
∑

(n1,···,nN )∈ZN

e2πi
∑N

m=1
βm(λ)nm×

×
∏

j<k

(eiπ(λj−λk)−eiπ(λk−λj))2−2h
∏

j<k

|teiπ(λj−λk)−eiπ(λk−λj)|2−2h

Integral is over Cartan torus H,

µq(λ) = det ‖∂βj(λ)
∂λk

‖

e2πiβj(λ) = e2πiλj(k+cv)
∏

k 6=j

te2πi(λj−λk) − 1
te2πi(λk−λj) − 1

In partition function summation over integers leads to the
restriction on the integration parameters (λ1, ..., λN ) ∈ RN

q :

e2πiλj(k+cv)
∏

k 6=j

sin(iπ(λj − λk + ic))
sin(iπ(λj − λk − ic))

= 1 , t = ec

This is the s → −i∞ limit of Bethe equations for XXZ
quantum integrable spin chain:
(

sin(iπ(λj − isc))
sin(iπ(λj + isc))

)(k+cv) ∏

k 6=j

sin(iπ(λj − λk + ic))
sin(iπ(λj − λk − ic))

= 1



Finally:
ZΣh

=
∑

λi∈RN
q

(Dq
λ)2−2h

Dq
λ = µq(λ)1/2

∏

i<j

(q
1
2 (λi−λj)−q

1
2 (λj−λi))

∏

i<j

|tq 1
2 (λi−λj)−q

1
2 (λj−λi)|

q = exp(2πi/(k + cv))

• XXZ spin chain is solved using the representation of dou-
ble affine Hecke algebra and has full affine quantum group
symmetry.

• Hall-Littlewood polynomials are replaced by Macdonald
polynomials.

• Since partition function (correlators) in G/G WZW model
gives partition function for CS theory on Σ×S1 (3-manifold
with boundary Σ) above model can be considered as defin-
ing the partition function for yet unknown CS theory for
complexified group.

• The meaning of Dλ (Dq
λ), replacing the dimension of ir-

reducible representation of compact group (quantum group)
for case of flat connection - still not known but obviousely
it shall be some natural object for Yangian in YMH theory,
described in terms of degenerate double affine Hecke algebra
(affine quantum group for G/G model, described in terms of
double affine Hecke algebra).


