The Weakly Coupled Gross-Neveu Model with Wilson Fermions

The nature of the phase transition in the lattice Gross-Neveu model with Wilson fermions is investigated using a new analytical technique. This involves a new type of weak coupling expansion which focuses on the partition function zeroes of the model. Its application to the single flavour Gross-Neveu model yields a phase diagram whose structure is consistent with that predicted from a saddle point approach. The existence of an Aoki phase is confirmed and its width in the weakly coupled region is determined. Parity, rather than chiral symmetry breaking naturally emerges as the driving mechanism for the phase transition.