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such that a,, b: and a,, b, are perspective pairs of elements
of Z(R).

The key idea of the proof here is that if A, B are prin-
cipal right ideals of a bisimple ring R such that A 0 B = 0
then A and B are perspective (as before we may assume A = aR
and B = bR where Ra = Rb; then ¢ = (a+b)R is a common complem-
ent of A and B).

A stronger result is also true: any complemented modular
lattice satisfying the condition (*) is easily seen to possess
a homogeneous 4-frame (or else be the lattice {0,1})and so, by
von Neumann's result, can be co-ordinatized by a (necessarily

bisimple) regular ring.
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TEN COUNTEREXAMPLES IN GROUP THEORY

John Ryan

Introduction

Many major theorems in the theory of finite groups have
been proved by the minimum counterexample technigue, which
works as follows. We assume that the theorem is false and let
G be a counterexample of smallest possible order. The assump-
tion that G exists is then used to force a contradictiaon and
the theorem in question is thereby established. In practice,
the contradiction frequently arises fram the existence of a
counterexample of order less than that of the presumed minimum
counterexample {(m.c.e.). This technique of course is merely
a disqguised form of induction or the method of infinite descent

used in number theory.

However, even when a conjecture about finite groups turns
out to be false, it is often of interest to discover an m.c.e.,
or "least criminal™ as it is often called. Note that an m.c.e.

‘need not be unique. Searching for an m.c.e, is a very good

method of becoming familiar with the groups of small order and
perhaps the size of an m.c.e. is an indication of how plausible
the conjecture was in the first place!

In this article we discuss ten "not implausible” conject-
ures about finite groups and produce an m.c.e. in each case.
We outline the arguments used in establishing that a given group
is an m.c.e.

The material in this paper is based on the author's M.A.

thesis "Minimum Counterexamplesin Group Theory", University
College, Cork, 1982, prepared under the supervision of Dr. D.
MacHale. I wish to thank Dr. MacHale for suggesting this
‘problem and the Mathematics Department of U.C.C. for their
Co-operation and facilities.
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Preliminaries

In what follows G and H will always denote finite groups
and p and q will denote prime numbers. We make use of the

following facts from elementary group theory.

1. If H <G and |Hl = 2 then H < Z(G).

2, (a) 1f |6] = pg and g # 1 (mod p), then G has a normal
Sylow p-subgroup.
(b) if |G| = p?qg then G has a normal Sylow subgroup,
([1], page 97)

3. For any finite grour 5, Inn G G/2(G).

4, If N 4 G, then G/N is abelian iff N 2 G'. ([1],page 59)

5. If H, K < G so that Hchar K ¢ G, then H ¢ G. ([2], page 73)

6. Let H < G, K9 G, and ¢{(G) denote the Frattin{ subgroup of
G, then (a) K < ¢#(G) iff there does not exist H < §
so that HK = G.

(b) K £ ¢(H) == K < ¢(G). (1], page 289)

7. If H < G then (a) G/HG can be embedded in S]G'HI
(b) NG(H)/CG(H) can be embedded in Aut(H).
([1], page 74, 84)

8. If G is a transitive permutation group on a set f, then the
stabilizers Gy(a€R) are all conjugate to one another and if
9] = n, then [6:Gql = n. (4], page 15)

8. There exist exactly two non-abelian simple groups of order
less than 360 namely As of order 60 and PSL(2:7) of order
168.

10. If G is a non abelian group then G is insoluble iff some
subgroup H of G {(possibly H = G) contains a non abelian

simple factor group (possibly the trivial factor group

H/1).

11. The following is a list of all the groups of order less
than 18,
Chy 1 £ n < 15; Cp xCp, p =2 or 3:i Dpn, 3 <n< 7

Cz x Cu4s Ca2 x Cy x Cas U3 Cz2 x Ces ARys; Qs

Conjectures
Conjecture 1: G!' =6 = 12(G) = 1.

The motivation for this conjecture is of course the fact
that if G is abelian then G' is trivial and also G' is in some
way 3 measure of the commutativity of G. Now we know that if
G is soluble then G' is properly contained in G and so a
counter-example can only be found within the class of insoluble
groups. G~ As satisfies the conjecture, Hence all groups
of order less than 120 are ruled out as counter-examples (9,
10). We show G~ SL(2:5) of order 120 is an m.c.e. The map
det  6L(2:5) + {1,2,3,4} is an onto homomorphism whose kernel
is sL(2:5). Hence |G| = 4B0/4 = 120. G/2(G) is simple
non abelian ([1], page 68) = Z(G) is maximal normal in G
(Isomorphism Theorem) =+ Z(G) is the only proper normal subgroup
in G. [For suppose there exists H # Z(G) such that H 4 G.

Then HZ(GC) 4 G and HZ(G) contains Z(G) properly. Hence

HZ(G) = G. Now

O M (R G F M

‘and K & C,.

Hence by (6) Z2(G) € ¢(G) and H = G}. G non
abelian = G' ¢ 1. G/Z(G) non abelian =G' ¢ Z(G) (4).

Since G' ¢ G we must have G' = G.

Conjecture 2: Conformal groups are isomorphic, i.e. if G and H
have exactly the same number of elements of each
order then G & H.

) This conjecture is true for abelian groups but unfortunat-
‘ily non abelian groups do not fit this pattern. In fact within
@ groups of order 16 we can find 3 non isemorphic groups all
of Qpich are conformal. We also see that an abelian and a
non abelian group may be conformal. For a counter-example it

is clear that we need tuwo nan isomorphic, non cyclic groups of

"the same order ang this condition rules out all the groups of
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order less than 16 except the groups of order 8 and 12, (11),
and these groups are eliminated by counting elements of each
order, G2 Cs x Csy and Hx Q@ x C2 supply us with an m.c.e. as
both groups each contain three elements of order 2 and twelve

elements of order. 4. H is non abelian. The

G is abelian.
group K = <x,y ¢ x* =1 =y*, xy = yx“!'> is also conformal
with G and H.

among the groups of order 16 there exist two other groups which

We also note that this m.c.e. is not unique as

are conformal, namely:

<a,b,c : a® =1 v = ¢?, abc = bca = cab>

and

<a,b,c : a* =1 =1t =¢?, ab = ba, ac = ca b, bc=cb>

Conjecture 3: Given a nilpotent group G, there'exists a finite
group H such that G ¢ (H).

For any group G, ¢ (G) is nilpotent so this conjecture
poses the interesting guestion "is every nilpotent group the
Frattini subgroup of some group?" Since_o(sz) % Cp»

(Co ) Cu, ¥(Cy x €y Vg, ¢(Cy xC W) Coand 5, is not nil-
potent all groups of order less than 8 are ruled out as count-
er-examples (11). G 2~Q is an m.c.e. _ For suppose there
exists H such that ®(H) 2 Q and let C = C,(&(H)). ThenC ¢ H.
Now M/C is max. in H/C = M max. in H(Isomorphism Theorem) =
m=&(H). Hence C®(H)/C S ®(H/C) ......(*). Alsc CO{H)/C =~
¢(H)/{(CN®(H)) (Isomorphism Theorem)., Now Z(&(H)) chard(H) g H
(2(c) and %(G) are char in G) = Z(®(H)) e H (5). JZ(&(H)] =2
(#(H) > Q). So z(%(H) < z(H) (1) and clearly C 01 &(H) = Z(&(H))
Hence C&(H)/C v, . Hence ®(H/C) contains a subgroup isomor-
phic to V, (*). On the other hand H = Ny(¢(H)) and C = Cy{e(H)
so H/C can be embedded in Aut{(Q) » S, (7).

of S4 have Frattini subgroup of order 1 or 2 which gives a

But all subgroups

contradiction.

Conjecture 4: If G is not simple then G has a normal Sylouw

subgroup.
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A p~-Qroup cannot furnish us with a counter-example and
groups of order pq and p2q are ruled out by (2). Hence all
groups of order less than 24 are ruled out as counter-examples.
we show S, of order 24 is an m.c.e. S,prime~ A of order 12.
Hence no Sylow 2-subgroup is normal (4). Aw and hence S
contains eight elements of order 3 = a Sylow 3-subgroup is

not unigue and so not normal.

If G is not simple then G has a non-trivial

Conjecture 53

endomorphism,

The motivation for this conjecture comes from the fact
that if G is not simple, G certainly has a non-trivial homomor-
phic image as there is a 1:1 correspondence betuween the normal
subgroups of G and the homomorphic images of G. Now we knouw
that if G is soluble then G contains a normal subgroup of
prime index, H say, and by Cauchy's Theorem, G/H can be embed-
ded in G.
H. So this rules out as counter-examples all groups of order
less than 120 (9, 10). We show that G » SL(2:5) of order 120
is an m.c.e. By conjecture 1, Z(G) is the unigue normal proper
subgroup of G and G/Z(G) x As.
for a non-trivial endomorphism @ is kera = Z(G).

Hence G has a non-trivial endomorphism with kernel

Hence the only possibility

But G con-
'tq@ns no subgroup, H, isomorphic to As, otherwise H < G,contra-
falctlng the unigueness of Z(G).
‘ﬁtlvial endomorphism,

Hence SL(2:5) has no non-

Conjecture 6: If an automorphism @ of G sends every conjug-
- acy class of G onto itself then a must be

inner.

» .Let A denote the set of all automorphisms of G which send
esch conjugacy of G onto itself. Then A < Aut(G) by checking

€losure. Clearly Inn(G) < A. Hence in eliminating groups

8s counter-examples we merely show |A{ < 2[Inn(G)] = 2[G/2(G)],

(;)- All groups of arder less than 32 can be eliminated as
Eounter-examples.

Much of the detail is just routine so we
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merely outline the arguments one may use, We note here that
if x € G, then |G:G'] < ICG(x)l 2 212(6)| and K(x), the con~
jugacy class of x, has |G:CG(x)l elements, If G is a non-
abelian 2-generator group of order less than 32 then x and y
can always be chosen such that G = <x,y> and |K{(x)||K(y)}| <
216/2(5)| and so |A] < 2|G6/(z(G)

group of order less than 32,

. If G is a 3-generator
then z,x,y € G can nearly always
be chosen such that G = <z,x,y> where z € Z(G) and |K(x)] |K{y)|
< 2le/z(6)].
non abelian 3-generator group of order 18 with trivial centre,
o] = 3

<a,x> i3 a proper subgroup of G and clearly
-1

There is only one exception, namely if G is a
Clearly in this case we have G
2.

<a,x> N S;3.

= <a,b,x> where |a| =

and x| =
We conc-
gnlkzg (g € G), then
-generator group).
2 and [K(x)]| = &.

a defined by ar—a?,

Hence a = g " a’g fOT SOmME Q E <a,xX>,
lude that if ki,

kyKky =1

k2 € <a,b> and k;
veees(¥*) (Dtherwise G is a 2
G = <a,b,x> where [K(a)] = |K(b) |
[a| < 36. But
the 36 possible maps in A and alab) =

Now
So
xw—ax is one of
a’b but aba’b = b? =1
Hence @ ¢ A and |A| < 36 = 2[6/2(5)].

b~>b,
contradicting (*).

In analysing the groups of order 24, it may be useful to
(1) both Sylow

subgroups normal; (2) only the Sylow 3-subgroup normal; (3)

divide them into the following four categories:

only the Sylow 2-subgroup normal, and (4) no Sylow subgroup is
In (1) 62 D, x C3 or 6 20 x Cy and G is a 2-gener-
In (2-)G_N.H¢ 8 and |K] = 3.

G may be a 3J-generator group but one generating element can

normal.

ator group. x K, where IHI =

always be chosen from the centre. In (3) G 2~ Hy x K, uwhere
|H| = 3 and |[K| = 8 and G is a 2-generator group. In (4)
G xS and Aut(S4) = Inn(S4). An m.c.e. of order 32 can be

found in [a], page 24,

If every maximal subgroup of G has prime

Lonjecture 7:

power index, then G is soluble.

The converse to this conjecture is true and in fact the
conjecture itself is "very nearly true" as PSL{2:7) seems to

be the only non abelian simple group with the property that

“‘Eonjecture g:

Sl This conjecture is true for solubility.
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evéry maximal subgroup has prime power index, Now G insoluble
of order less than 168 = G X As or |G| = 120 (8, 10). Let P
pe a Sylow 5-subgroup of As. Then NAS(P) is a maximal subgroup
of ARs of index 6. Hence by (9), (10) and the Isomorphism
Theorem all insoluble groups of order 120 also have maximal sub-
groups of composite index. The subgroup of Av-generated by
{(1234567), (26), (34)} is simple of order 168 (See [4], page
18), [6:Ng(P)| = 8 is the

number of Sylow 7-subgroups (Sylow Theorem). Hence the norm-

Let P be a Sylow 7-subgroup.

alizers of the eight Sylow 7-subgroups form a single conjugacy
¢lass of B maximal subgroups each having index 8 in G. Also
{6y :

(where G; is the stabilizer of i in G) is a conjugacy
(8).
every proper subgroup of G of composite index is contained in
But G

G is a transitive permutation group of degree 7,
‘1 5_157}-
¢lass of 7 subgroups in G each having index 7 in G

sa
Nouw
ona of the above maximal subgroups of prime power index.

is insoluble as it is simple.

Every finite group G has a maximal subgroup of

Lonjecture 8:

prime index.

Let
Suppose

Here we use the minimum counter-example technique.
iG be an m.c.e and N a maximal normal subgroup of G.
> 1.
#ﬁgine index, H/N say, == H has prime index in G. (Isomorp-
‘hism Theorem). 1 and G is simple. The two
- ‘®imple groups of order less than 360 (9) are eliminated by (8)
1!nd conjecture 7. G M Ag of order 360 is an m.c.e, for if
‘there exists H < G, such that |G:H| is prime then by (7) and

Then by hypothesis G/N contains a maximal subgroup of

Hence |N| =

. %he simplicity of G, G < Sy which is impossible.

«SE
X Let K 4 G. Then if both K and G/K are super-
soluble then G is supersoluble.

—

Groups of order
~iﬂﬂ are ruled out by (2) and finite p-groups are nilpotent and

Ménce supersoluble. This eliminates all groups of order less
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than 12. In Ay of order 12, 1 < V4 < A, is the only possible
. R . References
normal chain and V, is not cyclic. But V4 and Au/V“ are Al
supersoluble. [i] Jjohn 5. Rose, A Course on Group Theory, Cambridge Univ-

Conjecture 10: If H is a subnormal subgroup ef G, then the [2]'
sequence from H of subgroups of G formed by

taking successive normalizers in G reachesG. [3].

If H is subnormal in G, then by definition there exists tA]'
a normal chain from H to G. However the conjecture is not
true. One of the characteristics of nilpotent groups is that
every proper subgroup is a proper subgroup of its normalizer
and so all finite p-groups are eliminated as counter-examples.
In groups of order pg or p?g a non-trivial subnormal subgroup
is either normal or its normalizer is normal. This rules out
all groups of order less than 24, G S, of order 24 is an

m.C.€. since in Sy,
{1} a {(1), (12)(34)} o {(1), (12)(34), (13)(24), (14)(23)}

a A, a9 S,

is a composition series. So H = {(1), (12)(34)} is subnormal
in G but Ng(H) is a Sylow 2-subgroup of G, has index 3 in G

and is not normal in G, Hence Ng(H) is self normalizing.

We conclude with three "partially solved" problems and the

author invites comments or solutions.

(1) The kernel, K, of a Frobenius group G is abelian.

If G is an m.c.e. then 120 < |G| < 256,

(2) G non-abelian =» Aut(G) non-abelian.

If G is an m.c.e. then G is a p-group and |G|

v

(3) Every group G has a p-complement uwhere pIIGl.

If G is an m.c.e., 120 < |G| < 360,
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