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0B1 TUARY

Dr. Robert Charles Geary

Dr. Roy Geary, who died on February 8th, 1983, at the age
of 86, was one of Ireland's most distinguished statisticians.
He was the first director of the Economic Research Institute,
later the Economic and Social Research Institute. As a civil
servant he founded the Central Statistics Office and he also

held senior appointments in the United Nations in New York.

For a time he was also visiting lecturer at Cambridge
University. He addressed numerous economic and statistical
conferences all over the world and published a great number of
papers. Dr. Geary was an honorary fellow of the Royal Stat-
istical Society, the American Statistical Association and the

Institute of Mathematical Statistics. He was also elected

president of the International Statistical Institute and chair-

man of the International Association for Research in Income

and Wealth.

He had been engaged in the collection of Irish official
statistics from 1923 and was responsible for inaugurating many
have since become standard. When he ret-
the Central Statistics Office in 1857 he

national accounts branch of the United

new inquiries which
ired as director of
became chief of the
Nations Statistical Office.

In 1960 he returned to become the first director of what

was to become the Economic and Social Research Institute, and

on his retirement as director, the institute honoured him by

inaugurating the annual Geary Lecture which has attracted many

of the most distinguished social scientists in the warld to

lecture in Ireland.

He held doctorates from the National University, Oublin

University and Queen's University in Belfast. In 1981 the

Royal Dublin Society awarded him the prestigious Boyle Medal

for Science.
D, Hunley

IRISH MATHEMATI CAL SOCIETY

Notice of Drdinary Meeting

An Ordinary Meeting of the
Thursday 31st March, 1983
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Society will pe held on

at 12,15 pm, The venue is the

ed Studies, 10 Burlington Road
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Treasurer G. Enright (1 year, to Dec., 1983) i
only to exceptional papers. Fommi ttes 1. hamnen) ‘ g
J. Hannah) (2 years, to Dec. 1984)
P. Boland) .

2. The prize should be restricted to mathematicians

under 35 years of age who are Irish or based in
R. Bates, D, Hurlsy and M, Stynes continue on the comm-

Ireland.
ittee until December 1983,

3., A committee should be established to look at papers

at the end of each year, and make a recommendation, 5 T . .
. here was a discussion on the notice of the election given

' The committee could arramge to get referees reports N X
o members, The committee agreed to consider this and

and analyses of papers. e .
the possibility of a postal ballot,
At the next Ordimary Meeting, at Easter, the Society will
3. T. Laffey reported on behalf of the sub-committee on the

discuss whether or not to proceed.
awarding of a prize that

Anthony G. 0'Farrell (1) On the basis of advice from other mathematical

societies the sub-committee was not in favour of

having a prize at all.

Minutes of the Ordinary Meeting Held at 12.15 on December 21st (ii) If a prize is to be founded it should be for the

best paper by an Irish Mathematician ar Mathematic- §

1982, in DIAS

1. There were 22 members present. Since the President, ian based in Ireland in the Proceedings of the ;
J.J.H. Miller was absent due to illness, it was agreed Royal Irish Academy.
that 0.J. Simms would chair the meeting. The minutes (iii) The prize should be restricted to Mathematicians

6 the 1ast Orainary Meeting on April 7th, 1982, were under 35 and should only. be awarded for an except-
ionally good paper. The‘committee of the IMS

read and signed.
should set up a jury to award the prize who would,

The Secretary's and Treasurer's reports, which were rep- in turn, solicit referees' reports if necessary

2.
roduced in the Newsletter, were taken as read.
A motion that
3. A tion proposed by the committee to change the constit- !
"o prop ty . f th et by two mem ' "(a) the report of the sub-committee should be published ‘
i i e committee wo - : ) ;
ution to increase the size O ‘ y ; in the Newsletter, and :
bers, was passed. (It must be passed again at the next i
ordinary meeting before it takes effect) (b) the next ordinary meeting of the Irish Mathematical
Society would decide whether or not to proceed with
R i "
4, The following officers and committee members were nomin- ) the prize".
: |

d d elected without a vote:
ated an ; was passed after a vote., Another motion to go ahead with

O'Farrell (2 years, to Dec. 1984) awarding the prize was defeated,

President A.G.
Vice-President F. Holland (2 years, 2nd term, to
Dec. 1984)
Secretarv R.M, Timeney (1 year, to Dec. 1983) ,




7. The meeting discussed the cases of Mathematicians
J.L. massera (Uruguay) and Victor Kipnis (USSR).
Secretary reported that he had, on the instructions of
the committee, written to the organisers of the campaign

for Massera to add the IMS to their list of supporters.
A collection

The

This action was endorsed by the meeting.
,was taken for the Massera campaign. The meeting passed

the following motion:

"The IMS is concerned about J.L. Massera and
V. Kipnis and supports the committee in what-
ever steps it considers necessary such as
writing to the appropriate embassies and to

relevant organisations",.

. Bates mentioned that the IMS might be able to take

8.
over the functions of the Irish Mechanics Group.
R. Timoney (Secretary)
Membership
Subscriptions for 1883 are now due from indivigual
members. Fees, which are still just £3.50 per person, should

be forwarded to the Treasurer as soon as possible.

Mmembers, who are not already paying by Bankers' Order,
might consider using this convenient method. Forms are
available from the Treasurer.

Overseas members, who wish to pay in foreign currency,
are asked to send the equivalent of IR£4.00 to allow for
conversion costs.

All members are asked to encourage colleagues to join
the Society in order to support Irish mathematical activities.

You might also encourage your Department to become an Instit-

utional Member.

A ) » .
rrears are still being taken from members who forgot t
renew i )
. w in 1982, Your co-operation in getting fees collected
quickly this year will bhe appreciated

. Remember: your £3.50 includes a year's supply of
improved Newsletter. e

.M. Enaight (Treasurnen)

Institutional Members of the Irish Mathematical Society

National Board for Science and Technology
National Institute for Higher Education, Limerick
New University of Ulster, Coleraine

St. Patrick's College, Maynooth

University College, Dublin




PERSONAL ITEMS

PURERERESIIREE A

Dn, P.D. Bounke of the Statistics Department, U.C.C. has been
promoted to Statutory Lecturer,
Dr. R. Harte of the Mathematics Department, U.C.C., has been
promoted to Associate Professor.
u.c.0o.

Da. P.

Da. D, Lewis of the Mathematics Department,

RGP

Hogan of the Mathematical Physics Department,

is visiting the Institute of Theoretical
Physics at the University of Warsauw, Pcland,
for two weeks during March.

u.c.D.
the Department of Mathematical Sciences at
McMaster University, Ontario, Canada, during

the month of March.
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* SUMMARY OF RESULTS
o
1982 IRISH NATIONAL MATHEMATICS CONTEST

The Fourth Irish National Mathematics Contest was held on
Tuesday, March 8, 1982 and attracted 1,538 entries from 77
schools. The total represents a decrease of about 150 cont-
estants from 1981,
increase in fee and the difficulty of the 1880 and 1981

Contests which may have deterred some schools from particip-

This is possibly accounted for by the

ating this year.

The results to hand indicate that the 1982 Contest was
more difficult than the 1881 edition. The number of those
who scored 80 or more was 26 - and includes 5 girls - as
against 45 in 19813 the ave}age mark for the top scorers was
84.9 versus 85.4 in 1881, These statistics are in line with
those that were compiled from the results obtained by 418,008
contestants from 6,623 schoals in the United States, Canada
aﬁd American schools abroad: only 221 of these scored 100 marks
or more as against 269 in 1981, when 422,231 students competed;
of the 221, two actually achieved 145, the highest score rec-

arded.

The highest score achieved so far by an Irish student
was returned this year by our winner David Donnelly, who

scored 115,
presented with prizes, for instance, David was given a ZIX8l

David and the next four top scorers were each
computer, at a reception held in U.C.D. on December 3, 1382.

The top five contestants were

Name School Score
David A. Donnelly St. Michael's College, 115
Omeath, Co., Louth.

Barry E. Ambrose presentation College, g2

Wwestern Road, Cark.

e

Name
—=2ne

Schoal T
Chris 7, s
Stenson 0'Connell School A .
Dublin 1. > %

Peter 3
» Johnston Coleraine Academica

Coleraine, Co. Lond

Christian Bro
th
St. Patrick!

1 Institutj
onderry, ton, 88

ers Colleqe
s Place, CorE ’

Patrick J, Gaffney
88

s
Sponsored by the Bank of Irelang

and the Natjo
nal Board of Science ang Technalo
8y as well ag

the Irlsll Mat lematlcal SOCJ.et
eachers ASSOCIath 1 bOtI' of whom IIEVS Suppor ted the CDIItESt
from the Sta[t- It S a pleasure to record our tllallks to
Wi tllQUt WIIOSE IEIQ and l‘ltelest the pro

ect

Y and the Irish Mathematics

these bodies,
would fail,

F. Hotlang

TR i T

TR B g
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itate the integrated development of
mathematics.

computing, statistics ang

At present, the school of Mathematical Sciences provides

service teaching, up to final year, across the entire spectrum
of undergraduate courses offered by the institute.
osal far a degree in Mathematical Sciences itself
being consideregd by the NCEA ang it is

A prop-~
is currently

hopeq that this course
will have its first intake of students in October 1983,

Besides teaching activities the school has active
interests which are fostered by weekly

colloquia for visiting Sspeakers,

research
seminars as yel] as
In 1982 the latter have
included Prof, R, Leuwis, University of Alabama
DOr. R.B, Paris, Association CEA-Euratom, Fontenay-aux-Roses,
France; and Prof, 7. Toland, University of Bath.

in Birmingham;

In addition

area and in conferences Ooverseas,

placed by the school on the develaopm
with industry,

A special significance is
ent of close cooperation
This is stimulated by meetings with members
of the industrial community and alsg by the efforts of the

institute's liasion offjice, In this context comment seeking

lateBs aimed at both informing
determining the nature of its

The school is also inuestigating the possib-

Questionnaires have been circu
industry of our activities and
Present needs.

g a course teaching mathematics through model-
ling in conjunction with the NIHE Distance Educatian unit,

On a social level, the school is working on the formation of

a "Walk-in Numeracy Centre" to cater fo
numerate in the local Community,

r the needs of the less
A Preliminary meeting of

this new venture on 13 December 1982 was well supported by the

Currently there are five full-time staff members (which

is expected to steadily increase with student intake gver the
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coming years). . . st
decided to concentrate combined research in the
e rreners analytical and numerical appr-

. . as
Besides individual research interests it b
.

differential equations: theory,

oximations together with applications.

The Staff Members are:

Dr. A.D. Wood 2%58' g St, Andreuws
(Head of School) F.I.Mm.A,)

(Differential Equations, especially
Asymptotic Theory)

(Queens University, Belfast)
Mm.Sc (Linacre College, Oxford)
Ph.D. (U.c.D.)

(Interacting Particle Systems3 Applicat-
ions of Stochastic Processes

Dr. R. Flood B.Sc.

(Lecturer)

" Assistant Lecturers

.Sc. (u.c.G.)
Dr. Mm.J. Clancy 3 ac- e .
Ph.D (University of Notre Dam
(Differential Geometry/Applications to
Physics)
Oxferd) ) )
Or. D.U. Reynolds B.g. ECarnegie-Mellon Un}verS}ty%
g% 0 (Carnegie-Mellon University

ici icity, Lifurcation
iscoelasticity, Elastici f
(zazgry, Volterra Integral Equations)

.sc. (Bath)
Dr. G. Moore Eh.o_ (Bath)
G.I.m.A.  (Bath)

(Numerical Analysis: Finite Elgme;;
Approximation. Applied Functlgn
Analysis: Bifurcation Problems

-
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Oun Lady of Mercy College (Carystont College)

Our Lady of Mercy College is a College of Education for
student teachers for Primary Schools, It was founded by the
Sisters of Mercy in 1877 and was transferred to jts present
location at Carysfort Park, Blackrock, in 1303,
changes occurred in 1975 when Carysfort became a r

Significant
ecognised
College of the National University of Ireland, the B.Ed.
degree replaced the old-style N, T, qualification and male
students were admitted for the first time.
Department was founded in 1975,

The Mathematics

0f course, Mathematics had

been taught as a subject in the N.T, qualification and indeed

the late Eamonn De Valera taught

Mathematics at Carysfort
between 1907 and 19186,

All undergraduates follow a three-year course of studies

for the B.Ed. degree, consisting of Education, theoretical

and practical, and one elective subject chosen from the
Irish, English, History,
Music,

range:
Geography, Mathematics, French and

One additional subject from this list is taken in the
first year,

The Bachelor of Education degree programme in Mathematics
centres around the core areas of AIgebra,
Theory.

Analysis and Number
Carysfort also has a well-equipped microcomputer
laboratory ang Mathematics students take Computer Studies
units in their secaond and final years. They cover topics
such as Mathematics-related computing,

uction, files and record-keeping,

Gomputer-aided instr-

The Mathematics Department

also offers courses in Carysfort's Inservice Summer School.

The members of the Department are:

Dr. Gerald Ryder B.S. (Carnegie-Mellon University)
Mm.S. \Carnegie-Mellan University)
Ph.D. {Carnegie-Mellon University)
Or. John Cosgrave B.Sc. (Landon)
Ph.D, (London)

Or. Michael Barry B.A,, m.A. (U.C.D.)

m.s., Ph.D.(University of Notre Dame)




- 18 -

Si, Putaick's College of ¢tducaleon

10 o] eachers Oor s W ccep
’

t primary sSsc wols and 1 1975 as a epted
as 4 RECD(; ised CDllEgE Q the National UIl\JErSlty o] Ireland.
. ’ =

e COllEgE s} ers a three years ionours B.td DegIee a one

e f aduates ad to a ea e Cer icate

or gr uat le ing c I's ti
yEaI." course

Prima and a one-year DlDlO a 1l SDEClal Education.
( I‘Y) Y

and
Students ollowing the B.Ed. Course, take Educatio
: - ’ g L Y
one sub ect chose o Iris £ lish, Story veograo
T H g .
t us F an olLO F t Year © Y}
S 1Cy renc d Biol qy ( 1TSS e
athematics,

f th ars ! th an additiona subject I wne bove
ar a ree years, 1 1 1 TQ a

list in first year.

. . 5
ics consists mainly o
amme in Mathematics c
The B8.Ed. programm

course n Ana S1S8 A e a Probabil 3 ac L1T Sy
s 1 lysis, lg » T b llt)’ d St 1ls S

= [} i natT-
aces anc

t € as reas 2 ‘aly51s vector sp 5] nd T

covering suc apalcs ! T

1Ces groups and - gurse 1 comp -
rings Als —included is & ¢C
.
’

te scie e 1 a rogra 1ng 1la guage 1S5 taug L. P
W c p g = =
T 1 c kS

ems 1
yurse icludes aop atio u 0O pro
lud lic 1 Q the comp ter t bl
C 1 ,

number theory and statistics.

D artment is 1 olved 1 a agviliscry
v T
= athematics ep

e i C ucatio courses ese fcocrm &
. i
capacit 1 the atr a s ed on our
< c < [ Laxe.
Y ‘ i, j
L4 ude
1 whl a 3 d ts ake
componeg t of the tducatio gurse

athem-

e c o e p 1ol s8C Lo
eti ngV and rl Y
Here the m thodo onte (o] t s 00

red.
atics curriculum are cove
s a stafi- o
The Mathematics Department has a st
e haut T 1L TS L

e Z.M
tee ol
Rev. Brendan S 5
(.'ead o DeDdI wme f} Mo 3C.

F rick 5. Kliatz 5.9,

frederick &. R1DO A
Z.5¢c.

Olivia Bree e

- ——

NUMER | CAL_ME THODS

IN_DYNAMICAL WEATHER PREDICTION
2R, Bates

1. Introduction
—_—

dynamical methods was first tackled successfully by a group
working under the leadership of John von N

eumann at the Inst-
itute for Advanced Study,

Princeton, in the late 1940 s, At
that time the first electronic computer, the ENIAC, had just
become available, Von Neumann recognised that the new mach-
ine was ideally suited to performin
Jtations necessary to predict the n
fluid systems,

9 the hugh volumes of comp-
on~linear development of

including the motions of the atmosphere.
observed initial data derived from balloon a
continental U,S.

Using

scents over the
?

(Charney, Fjértoft and Von Neumann, 1950),

The integration
took 24 hours of computer time,

however!

due to von Neumann himself,

was the development of a comput-
ationally stable numerical sc

heme for representing the diff-
erential equations governing the floy,

It had been discov-
ered two decades earlier (Courant,

Friedrichs and Lewy, 1928)

The vast increase in the speed of computers

over the past
three decades,

more effica
of motion,
enough for

The computer fore-

coupled with progress in devising
ient numerical schemes for solving the equations
has made it passible to compute the weather fast
the forecasts tg be used Operationally,

tasts have for some time been more accurate than those which

e R

e ——




- 20 =~

can be produced using traditional methods alone. Even with
the most powerful eomputers available today, however, the
spatial truncation errors associated with the numerical repr-
esentation of the governing differential equations are still a
factor limiting the accuracy of forecasts. The search for
more efficient and accurate schemes therefore remains a cent-

ral problem in dymamical weather forecasting.

In this article, some of the main numerical technigues

used in this field will be briefly outlined.

2. The Simplified Governing Egquations

The large-scale motions of the atmosphere are quasi-
horizontal and, to a very high degree of approximation, hydro-
statically balanced (i.e. the vertical component of the press-
ure gradient force eguals the force of gravity). They are

also shallow, in the sense that_the vertical scale of the

Vmotions is small by comparison with the earth's radius.

These facts allow one to adopt simplified versions of the
general equations of fluid dynamics for the purpose of weather
prediction. A simplified set of equations, which are capable
of describing the flow at the atmosphere's middle level (the
500 mb level, approximately) with reasonable accuracy, are the

"shallow water" equations,

du = g—{ + DR Y

dt 3 x v (l)

dv a f . 2
u s 00 ( )

eeee (3

n1a
ol

1l
r—"\
°’|

=
°’l

<
— s

where (x,y) are the eastward and northward coordinates, (u,v)
are the corresponding velocity components, h is the height of
the 500 mb surface, g is the gravitational acceleration,
f (= fo + By) is the Coriolis parameter representing the

effects of the earth's rotation, and 4 (= %T + ¥H-V) is the

ry
C
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-derivative following a fluid particle. In these simplified

equations, the effects of friction, thérmodynamic forcing and
spherical geometry (except for the y-variation aof the Coriolis
parameter) have all been neglected.

‘ The above eguations possess tuwo distinct types of linear-
ized wave solution:

(a) gravity-inertia waves, for which the phase speed in the
one~dimensional case (with f regarded as constant) is
given by

£2)4%
= # —_—
c _[gH + k2) cees (4)
Here H is the mean height of the surface and k is the
wavenumber,
(b) Rossby waves, for which the phase speed.in the one-dimen

sional case (with no perturbation in the height of the
surface) is given by

- _B
c = = ceees {5)

The gravity~inertia waves are fast (phase speeds of hundreds

of metres per second) but have onl}‘very small amplitudes in

the atmosphere. The Rossby waves are slow (phase speeds of

ten metres per second or less) and are very important in the

development of weather systems. In the original governing

equations used by the Princeton group, the gravity-inertia

waves were filtered out by using a modified version of equat

ions (1)-(3). The filtering procedure introduces some inacc-

uracies however, and the modern practice is not to use it

In almast all meteorological applications. an Eulerian

approach has been used for solving the equatlons of motion
’

i.e. the derivatives ( 5T ) are expressed as ( + VH. V) and
the VH V term is brought to the right hand 51de of the equat-

ions, Only partial derivatives in space and time then occur

and one forgets about fluid particles, An alternative is the

L
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Lagrangian approach in which one follows the fluid particles,
retaining (%?) in its original form and doing the numerical
calculations accordingly. The Irish Meteorological Service
is the first to use a Lagrangian method operationally; we
have been using this method for our daily forecasts since May
1982 and find it to be more efficient than the Eulerian appr-

oach (see Section 4 below).

T

3. Main Categories of Numerical Methods used for Solving

the Eguations in Eulerian Form

The methods used for solving the equations in Eulerian

form can be classified under two headings:

(i) The Grid Point Method

Here the partial derivatives in the equations of motion
are replaced by finite difference approximations at a

diécrete set of points regularly distributed in space and

time. The difference eauatiéns are then solved using
algebraic methods.

(ii) Galerkin Methods

The Galerkin procedure represents the dependent variables
as a sum of functions that have a prescribed spatial
structure. The coefficient associated with each funct-
jon is then a function of time. This procedure trans-
forms a partial differential equation into a set of
ordinary differential equations for the coefficients.
These equations are usually solved with finite differen-
ces in time. Examples of the Galerkin method are (a)
the Spectral Method (using orthogonal functions as basis
functiaons), and (b) the Finite Element Method (using
functions that are zero except in a limited region where

they are low-order polynomials).

The grid point method has been the most widely used
method in meteorology, but spectral methods, using surface

spherical harmonics as basis functions, are now being used

- 23 -

for hemispheric or global forecasting mbdels at a number of

centres, e.g. the European Centre for Medium Range Weather

Forec i i
asts. Some numerical experiments have also been carried

out using the finite element method, but so far this has not

been found to be competitive in efficiency with the other
methods.

. Some examples will now be given to illustrate the stab-
ility properties of numerical schemes using thé grid point
method. We consider the equation

2
e

= -u

vees (B)

(=51
cr

L=%3
X

governing the advection of a scalar ¢ by a mean flow U {(here
considered a positive constant). Equation (B6) contains a
subset of the terms of, equations (1) - (3)

The analyti
solution to (6) is. e

v = F(x - ut)

where F(x) is the initial distribution of v,

Consider the following simple difference approximatiaon

to equation (8): .
.

PRSI r.‘] =--[n
[ J WJ v wj+l - wg_l oo (T)

At 24

where t = ndt, x = jAx. This is a "formard-in-time, centred-

We examine the stabilij
ity of (7) b
the von Neumann method, i.e. we assume o

in-space" approximation.

N _ 4N ik(ij)
by o= Ae v° vev. (8)

where A is the amplification factor.

Substitutin
then gives 9 in (7)

= . =4t o,
Ao=1-14 Uz Sinkax

2
Thus [A]? > 1 for all values of (Gat/ax) for general values

4
i
[
f
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. soluti
of k, i.e. unlike cne analytical solution, the numerical so.- ution to (11) of the form (8) we fing

ution amplifies with time and the difference approximation \ .

' \\_

7) is unstable. 5
- 1+ 1(UK;) Sin kax
1

i.e, [A[Z
_ 1

At
1+ (“K;)z Sin? kAx

i

Next consider the difference approximation

IR G ) Q)

At Ax

so t 2
0 that [A]2 ¢ ; for all values of (Gat/ax)

equati . :
Quation (11) is thys dnconditiopally stab) The oifference
e.

i.e. a "forward-in-time, upstream-in-space™ approximation.

Again assuming a solution of the form (8), we find that ‘
When the Temaining terms of (1)

13 s .
inearized analysis shoys that Eulerian

represe ltatlolls are in all kr own cases either unstable or

P a P . :
cor dlth ally Stable, the stablllt CIltEIlOlI bei 19 t at |
(CAt/Ax) be lESS tha 4 |

(3) are included, a

] - UH [l - exp(-ikAX)]

so that

At -4t
x (1-050 (1 - Coskax)
where ¢ rep-

—_—
. his repr-

In this case |A]? < 1,(i.e. stability obtains) provided
the fast 9Tavity-inertia

— At lall o] ly Olse
— < ( )
lo -
y »

ation being carried by the s
terms in the equations of motion

b .
€ circumvented by adopting an implic

The difference approximation (89) is thus conditicpally stable,
the stability criterion being that the distance covered by a

particle in the time interval At be less than the spatial grid This problem can in theory

it differencing scheme

ion, which gives uncond-

interval. 1s real stic or dES(:]‘II) n the sSlow mot n
itio al abili
all S
( ( ) Se a ti e step Uhlch :
eq ations ) a . s

g 1 ions,
httheIlg't n+l . tained b
t = sense thsa is obta e Y

ur '3 r, the Tl 1

nversions valv

involve known guantities, and the unknoun wj
ed in integratj . .

o] 10ns with implicit schemes ar

So costly that gne & computationally

a simple operation at each grid point.

1S no better off than if one had adopted
e

| . |
We now consider an implicit numerical representation of an explicit h
ptieit Scheme with a Very small time st
ep.

i (6): 1 n+l n+l
! n+ n 1
W7t - W-] = ‘”E“' " Y- ] "o .
| l;l_____?l_ L3+ "3-11 vens (11) ?ceSSFUI Compromise between these two :
| — ™ use a semi-implicit approach, uwhe th Sxtremes is to
. y re 3
Fast motions ape treated tnpiy e terms governing the

Citly while the terms governing

‘ Here the right-hand side involves the unknouwn gquantities at
xplicitly (Kwi zak and Robert
’

+1 1

time level (n+l), and the values of w? can only be obtained 1971), This leads ¢t i
. Seeking a 0 conditional stability, but with

[ a

by a matrix inversion involving the whole grid.

the sloy motions are treated e
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stability criterion which is much more lenient than that for

fully explicit methods. At the same time, the matrix inver-

sions are much simplified. The semi-implicit approach is now

widely used, with both grid points and spectral models.

An alternative efficient method is to adopt the splitting
approach pioneered by Soviet mathematicians (Marchuk, 1874).
In this approach the equations (1)-(3) are split into the tuwe

sets:
2u -ugﬁ - \/-22—li u . _gih + fv
it X 3y 35t © T9%x
%—‘ti = -u%—‘; - v-g—‘yi (12) %—‘é = -g-a—'; - fu (1L3)
3h 3h _ 230 3h . Lpfdv . 2
5t - Y Ex Viy 3t ax y

A stability analysis shows that these two sets have independ-

ent stability criteria, The set (12) can be stepped forward
.in time with a long (advective) time step, while the set (13)
can be updated successively with a fractional time step. With

both sets treated explicitly, a ratic of 3:1 in the respective

time steps can be used, This leads to an efficiency compar-

able to that of the semi-implicit method, with much simpler

programming. This method is also widely used by meteorclog-

ists.

[ The Semi-Langranaian Method

A fully Lagrangian approach to salving the equations of
fluid motion would involve following 2 fixed set of particles

throughout the period of the integration. In atmospheric

a set of particles which are initially regularly distr-

flow,
ter to adopt

ibuted soon become greatly deformed so it is bet
a semi-lLagrangian approach, where 2 set of particles which
arrive at a regular set of grid points are tra
arval to their departure points.

ced backuwards

aver a single time int The
values of the dynamicel gquantities at uhe dJeparture points are

o . . .
btained by interpolation from the surrounding grid point
nts.

A ew set o particles is tne considered at each time StED
.

. A splitting approach can be combined with the Semi-La
angian technique by writing (12) in the form o

d

&
o
)
Q
-
o
pre
il
o
i
Q

eene (14)

whi . .
ile keeping the remaining terms as in (13) The equati
. ions

(14) are integrated to give

n+l
(U’V’h)i,j = (u,v,h)]
where the guantities n+l
( )i ; are the new values at the grid

point (i,j) and the quantities ( )% are the old val
the departure point of the particle ves et

BaFes and McDonald {1982) have shouwn that for line
q?a?ratlc interpolation in the one-dimensional case S e
::i:neii anz biguadratic interpolation in the tuo—dim:::i:::l

y €@ above explicit method gives iti ili
For'the advective part of the in2egrat;Z:?ndl:;an:eSt:blllty
semi-tagrangian method has led to a saving of a thirdo' o
coTputer time required to produce ouf daily Forécast %n e
Irish Meteorclogical Service compared‘to the Euleri e
previously used, while giving equal accuracy, " nethes

5. Lonclusions

On t =} o] above ex n-—-
lY e barest outline as been ive v o] a t
e

sive ie i i i »
1d o lllVEStlgath . lar Y i portant questions suct

as non- 1 an
linear computatlolal lnStablllt)’p Staggered grids d
e Y an
th aintena ce of i ntegral constraints (SUC! as energ d
Y) um an lave not even
squared vor ticit L t erical i tegratJ. s
bee
2l o on, 2 governi 1Q e use 1 ct
-ouched n Th 4 quations sed n
pra lce
are much more co pllcal‘.ed than t e simple s 1allow water equa-

[»] lcC ave bee . ampr S1 -
tions sh h h egan dlS(:USSEd ere A com enen ve caover

age of numerical methods used in metecrology can be f d
ound in

TR s
e e e

T e s
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) 1 )-
WMo (1925) Cha o] (lg l) and Haltiner a d Williams ( 980
DESD te the progress that has been made, it appear
1 e S
k that there s sti a lor g way to 9} before e e
1i Ely 1 [=] T th ideal
numerica method is found whi ch inte rates the governin
T g 1Nng
equatlo s and glives clearly aximum accuracy OorT 38 give comp-

utational cost.
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RECENT DEVELOPMENTS IN L INEAR PROGRAMM I NG

Fergus J. Gaineas

Let A be an mxn matrix, let be R"and c¢ RO, The basic

problem in linear programming is to find, for xe¢ RN,
max ctx, subject to Ax < b, x >0 (1)

For vectors, X <y means Xj <yi for all i; x <y means x,

i <yi for
all i.)

The standard way of solving this problem is to use the

celebrated simplex method of G. Dantzig (1], The idea is to

note that the feasifle solutions of (1),

i.e. the x e RMwith
Axib, xz_D,

form a convex polytope K in RN,

The vertices of
K are those feasible x with either x = 0 or such that the

positive components of x correspond ta linearly independent
columns of A, The typical step in the simplex
proceeds from vertex x(k) to a vertex x(kfl) so that ctx(k+l)z
ctx(k). Since max ctx is attained at 'a vertex of K,
orithm eventually givgs the answer,

algorithm

the alg-

w

L]
This algarithm is arguably the most widely used algorithm
of the present day and it is probably safe to say that most of

those who use it do not understand it, whereas most of those

capable of understanding it never use it. Its Popularity is
probably the reason for the widespread,

if in many cases inacc-
urate,

coverage in the newspapers given to the discovery in
1979 of a new algorithm for solving (1),

"unknown" L.G, Khachiyan [2]. (One American Newspaper rep-
orted bitterly (but incorrectly) that a Soviet m
had solved the

the work of a Soviet

athematician
"travelling salesman pProblem", despite the fact
that the U.5.5.R has no travelling salesmen!)

The immediate reason why Khachiyan's algorithm is impor-

tant is because it is in theory more computationally efficient




- 30 -

than the simplex method. Dne of tne noteworthy features of
the simplex algorithm (~ and its variants) is that it is very
efficient in all practical cases, 1.e. it uses very little
machine time, Empirical data show that the number of operat-
jons (+,x, etc.) in a typical application is 0(mn?®), Houwever,
Klee and Minty [3] have produced an example with m=2n where
the simpl'ex method requires more than 27 steps. In contrast,
Khachiyan's algorithm is "polynomially bounded" in all cases,

but it has serious drawbacks (see below).

But why does the simplex method work so well in practice?
In a recent, highly significant paper, [a], Steve Smale has

given a very satisfactory explanation. We discuss Smale's

result below.

Khachiyan's Algorithm

Since Khachiyan's paper contains no proofs we follow the
presentation in [5]. We note that the Zinear programme (LP)
(1) can be reduced to the problem of solving a system of linear
inegualities. We see this as follows. With LP (1) we can

associate the duel LP, which is to find, for y ¢ Rr™
min bly, subject to Aty>c. y>0 (2)

The Duality Theorem says (1) has an optimal solution if and
only if (2) has, and in the event, max ctx = min bty. Thus
(1) has a finite optimum if and only if the system of inequal-
ities

Ax < b, x>0, Aty>c, y2>20, ctxzoty (3)

has a solution, If (x,y) is a solution of (3) then x is an

optimal solution of (1). The inequalities (3) can be re-
written
Mz < d, z >0
where
A 0 X b
m = g -at z = |y and d = |[-C
-ct bt 0 o

PR

x &€ R yith ax > b, x >0

W R
e describe the algorithm for the problem:

fi " wi
nd x € R with Ax < b, x > 0, where

A and B have integer entries,

(Th
€ case Ax < b can be reduced to this case)

to integers. But this seems

behaviour of the algorithm in practice

The algorithm determines a sequence x(k)

n
sequence ¢of ellipsoids E(k> in RP G e

with centre x(k) and

If L i
1s the length of the binary encoding of (4) th
e

either gives, for some k < 4(n+1)2L an x(k)
. ’ ‘
ion of (4) or, if a solution can

algorithm
which is a solyt-

not be f
shows that no solution exists ~~Ound or s oo

If 8, i -
k 1S a positive definite Symmetric matrix th
en
(k)
£ - n. k -
{xem .(x-x( ))tBkl(x—x(k))< 1}
is an ellipsoid with centre x(k)

s The steps in the algorithm

1. set x(0) _ g g(0) _ 2%y 1

(k) .
2. If x 1s a solution to (4),

If k < 4(n+1)2L 90 to 3,
luding (4) has ng solution

terminate,

Otherwise termihate, cong-

Choose one of the inequalitie
« (k)
’

s in (4) not satisfied by

say a; by (k) . :
i “x 2 b5 (ajt is the throw of a)

R T8 T v




Let |
(k to(k H
ML R x(k)—(l/(n+l)ﬁ‘k)ai/(ai 5 )ai)
and
) K)ot to (k).
s (1) (272 1y 5% L(2/ms1) (8085 ) (89 et Aa; e ) a0 )]
Go to step 2 with k+1 in place of k.
The ellipscid E(k+l) contains the semi-ellipsoid
i (k) 5
E(k) n{x = Pn:aitax-\\ 7y <}
Alsc 0 (o)
vol(E(k+*’ = c{n)lvol (')
where o
c(n)él-:_ é
The ellipsoid algorithm in the worst case is O{(n’{m+n)L) in
contrast tﬁ the exponmential behaviocur of the Klee-Minty exam-

ple. However, the ellipscid 2% haves very beadly in

practice. As Dantzig point:z ou 8]} 2 typical economic

H
[
=g
L)

planning problem which takes half an hour machine time fo
simplex method to solve, would take the ellipscid algorithm

- [ U Lo l’ . & an
fifty million years! Traub anod Wezniakcuwski L5] give &

r ~e ~F W = LN ':‘
explanation for the poor performance of Khachivan's

They show that fer the real number compu

H 3 e — " = - v«_&il
R with exact arithmetic and wurnit "cost" for sach operstion
] T 1 J o - - 5 ] '_"J
the ellipscid algorithm in the worst case 1s not polynomially

bounded,

Despite its failure to cust the simplex m=thod, the ell-
ipsoid algorithm appears to have a future in the solution o
combinatorial optimization problems nother than linear prog-
ramming. The paper [7} of Grotschel, Lovasz and Schrijver

deals with this topic.

Smale's Theorem

Dantzig ([1], p.160) conjectured that for a randomly

chosen LP, with fixed number of constraints- m, the number of

_operations in the simplex method grows in propertion to n.

Smale [4] not only proved this result but improved on it con-

siderably.

The first problem is to define the average number of
steps in the simplex method for a Le. We get a probability
measure u on the unit sphere SP-1 in RP, by normalizing the
standard uniform (Lebesque) measure. The paints of sP~1
correspond te the rays of Pp. If X is a set of rays in Rp,
we define the spherical measune of X by v(X) = u(XﬂSp_l).
Let A,b,c be as in (1). Then q = (c,-b) ¢ RN, yhere N=m+n.
Let 0(A,q) be the number of steps required to solve (1) by
the simplex method. Since o(A,Xq) = o(A,q) for A > 0, we
identify g with a ray in RN, The average number of steps

required to solve (1), with A fixed, is

o4 fo(ﬁ\.q)du

qesp-l

Now identify the space A of all real mxn matrices with R™",

Since o(XA,g) = o(A,q) for XA > O we identify A with an element

of A1, the set of rays of 4. Put a spherical measure v on
A4y, Then the average number of steps required to solve (1)
is
p(m,n) = oy dv
ACr‘ll

We now have Smale's result,

Thearem Let p be a positive integer. Then

depending on p and m, there is a positive

constant Cm such that for all n

p(m,n) < cmnl/p




The case p=1 is Dantzig's conjecture.

a
t
m

s

a special case of the LCP,
RV so that the LCP becomes:
If go = (l: “o

segment dqo,
If Yo is the component of Y containing Qo

{thm can be viewed geometrically as "following" Yo.

of the algorithm c
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Smale considers

The proof of the theorem is not easy.

version of the simplex method, Lemke's algorithm,
iven an NxN real

applied

o the €inean complementanity proklem (LecP): g

atrix M and g € FN, find w,z € Fg, the positive orthant,
t, = 0 and w-Mz = q. The primal-dual problem (3) is

Next he defines a mapping 2y on
find x € RV so that ¢m(x) = q.

o] tha’t w

, te RV, the inverse image of the line
¢i‘(qqo), is a piecewise linear curve Y in R
then Lemke's algor-

N

A pivot
orresponds to the intersection of Yo with a

facet (a facet is the intersection of a hyperplane with an
orthant QS; for

- {xeR':x20, i€5, x4€ 0, ] £5)).

Se{1,2, ..s N}, Og

There are three main steps in the proof of the theorem.

Firstly he derives a formula for pp in terms of the spherical

volume of certain cones.
Finally he gets a simplified version of this estimate,

Then he derives an estimate for Pp-
when m

is fixed and n is large, which gives the result.

The problem of determining the average speed of the
emains,

simplex method as a function of both m and n still r
In his Dublin lecture {(September 1982) Smale said he felt that
his general estimate for pog might be used to solve this prob-

the basic difficulty to be overcome is that &f

lem, However,

determining volumes of cones.

References
Linear Programming and Extensions, Princeton

N.J. (1983).

1. G. Dantzig.

University Press, Princeton,

e R T

R e i

2. L.G. Khachiyan,
mi i
long (Ru351an), Doklady akad, Na Kk
o ' . uk,
3-1096 (English transiation i S0

Ooklady, 20 (18739), 191-194)

S:S.S.R., 244 (1979),
viet Mathematicg

3. ) Klee and G int How 0o0d is th S A it 2
. . L e implex ori I
Yo 1
g

in 0. Shisha £
’ d.: I”eQUalit'
York (1972), lsg_l?g—‘*—————hii III,

4. 35,

Qcademic Press, New

Smale, On the Average S

: peed of ¢ i
Linear Programming (to appear) e Sntes rethed of
S. B. Aspvall and R.E

Stone, Khachiyan's Ljinear p
ro

Algo
gorithm, 7, Algorithms, 3 (1980), 1-13 gramming
’ = -

. . -
.
’
5] J raub and H Woz lakowskl Co plEXl ty ] Li 1ear png

ramming,
etters 1 (1982), 59-562

Operations Research

7. M. Grots
. chel,
L. Lovasz ang A, Schrijver, Th
s e Ellipsoig
Combinatori
al imj
S Optimi

m .
ethad and its Consequences in

Combi :
lnatorica ) (1981), zatign,

Mathematics Depantment

Unéueaaéiy College Qullin



. THE INFLUENCE CURVE

Galrielle Kelly

The influence curve of an estimator measures how much an
individual observation changes the value of the estimator.
Thus, in any estimation problem the role the i th data
point say, plays in the analysis, can be made exact. This
intuitively appealing idea of Hampels (1974) initiated inter-
est in the influence curve. Now there is a substantial
theory on its properties and uses in statistics, of which I

give here a prelinimary account.

To understand the purpose and nature of the influence

curve, we must think of parameters and their corresponding

estimators as functionals. Consider a real-valued functional

T(+) defined on the space of distribution functions and let
the parameter of interest be 8 = T(F) (usually F denates the

ttrue' underlying distribution function). To fix ideas look

at the following examples.
Example 1: (i) The mean functional is given by
b(6) = [x 06 (x)

provided the integral exists.

(ii) The variance functional is given by
07 (6) = [x* 96(x) - Ux dG(x)]z

again provided the integral exists.

In these examples the parameters of interest might be
the true mean u(F) and the true variance 02(F). To 1look at
estimators we have to consider Xis oo Xn a random sample

from a population with distribution function F(e). The emp-

iri X . . .
cal distribution function of these X's, is F_(+) h
; n , where

Fn(t) = [Xi'sit]/n -® < t <

1 . :
n many estimation problems the estimator é can b t
e pu

1 the same unctional l.e 1 8 = F hen
or as 0
( « 2. ( ) the

Again we can look at familiar examples
Example 2: (i) Th i
: e estimator corres i
ponding to th

o e mean

A n
uo= u(Fy) = fx dF (x) = ZXi/n =X
. ?

i=1

i.e. the usual sample mean.

(ii) The estimator corresponding to the
variance is

8% = 0% (F,) = E(Xi-f)z/n.
i1

Ve . .
now define the influence curve of a functianal T(-)

at a in f =
point G, IC(T, G ;+), as follows. Let W (1-¢)6 8
= - + €
z

the "distri ;
. zr stributi :
the point mass of one at z, i.,e * on function for

be a perturbation of G by §

0, x < 2z
5z(x)=
1, x >z
Then
IC(T, 6 32) = LimTW) = T(C)
€+0 € ’
= 1) |
de 4 ’
€ =0 ‘

provided the limit exists for every z € R

Pz t ‘ (It is al
wn as the GCateau differential of T at §z) Thi dSD
. s derivative
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measures the effect on the functional T of a smal% (infiTites-
imal) change in the weight the distribution function G gives
to the point z. Thues, when we consider the estimator T(in),
its influence curve IC(T, Fy 3 z) measures the "influence" on

the estimator of an additional observation at the point =z.

To see this look at the influence curve of the mean.

Example 3: Denote the mean of F by u(F). Then we
have
W = (1-e)F + €6, ,
ulw) = jx d{(1-e)F + €8,],
= (l-e)u(fF) + ez,
and "
d =z - u(F).
-—-u(w)l = z -y
de € =0
So

1c(u, F 5 z) =z - u(F).
In particular for the sample mean
IC(u, F 3 2) =z = X .

Thus the effect on the sample mean of an additional observat-

ion is directly proportional to the value of the observation

as is shown in Fig. 1.
1c(u, Frn 3 z)

N

FIGURE 1

The Influence Curve of the Sample Mean.

Here, as is often the case, the influence curve is easy to

compute, Note that the distribution functions can be multi-

variate, In such cases, the point :z corresponds te a vector-

valued observation, The influence curve has also heen def-

ined for vector-valued functionals, For example, the funct-
ional given by T(G) = (u(g), 02(6))7T has a vector-valued inf-

luence curve defined at F. as the pointwise limit:

Ic(T, F ; z) %ET(W) .

e=0

(1c(u, F 5 z), 1c(o?,r;2))T,

provided the limit exists for every z, Now we examine var-
ious aspects of the influence curve to gain insight inteo the

nature of an estimator,

Firstly, the shape of the influence curve provides inf-
ormation about the robustness properties of an estimator.
In the example above we see the influence curve is unbounded
reflecting the fact that the sample mean is sensitive to
extremely large or small aobservations, In contrast to this
the influence curve aof the median is a step function,

Example 4: The median functional, m{(-), is given by

n(F) = 4(onroxx),"
where
0* = sup{x|F(x)<$} and g¥* = inf{x[F(x)i 3}.
Then

m(Fy) = median {X,,..., Xnl,

is the sample median.
(see Fig. 2) is given by

The influence curve

- 1 s 2 F-l(i)
HGERe
IC(m, F ; 2z) =
a, otherwise,
where d
f(x) = 7% F (x)
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This influence curve is bounded and thus is not sensitive to

extreme observatiens and is robust in this sense.

IC(m, Fro5 2)

FIGURE 2

The Infiluence Curve of the Sample Median.

is used to derive new estimators with

The study of various

The influence curve
pre-specified robustness properties.
norms connected with the influence curve leads to estimators
which are "best" over a large class of distribution functions.
This breaks with Fisher's classical theory of estimation which

looks for the best estimator with respect to one particular

distribution function. The interested reader is referred to

Huber (1977).

The influence curve plays an important role in asymptotic

The asymptotic variance of an estimator, for example,

theory.
The usual

can be written in terms of the influence function,

delta method formula for calculating the asymptotic variance

of an estimator T(F,) is in fact

JICZ(T, F 3 x)dF(x)/n.

It can be estimated in the usual way by replacing F with Fp

i.e. by N
YIC2(T, Fn 5 X)/n?,
i=1

e

n .
T(Fq) = T(F) + T Ie(r, F o
i=1 ' ’
where

i p{/;‘Rn] > E} < e

5 for n large, This means

g MFL) - TE) = §oreqr, f
i=] ’

/H(T(Fn) - T(F)) P 0

whe =}
re 5 denotes conver

gence | A
Central Limit Theorem N Probability,

AOED - 1) ¢ o, i)

where 3 de
note
S convergence in distributio
Llan and

V(F) = [ICZ(T, Fs x) oF (x),

ThUS,WE have
Variance (/AT(F,)) U (F)

A simple 111
+lustration of thi
his is as f
ollous,

£ 5 F r the mean b Exam e 3 Jje h ve
nple o] » Y P » a

IO 7y x) = X = u(F)

Thus,

]

2
[re2a, ¢ 5 9 (x) = [(x=u)? g ()

o (rF),

H

So here,

V(F) = OZ(F)'

which is estimated by

Xi)/WVA ¢+ R

3 X3 )AL,

nr

Von

Then by the
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o (fFy)

chz(u, Fn 3 x) dFn(x)
- 7 (g - ®)2/n.
i=1

Our formula for the estimated variance of X

is then

" < - 2
Variance (X) = (xy - X)2/n?,

Il ~12
—

i i yrve
A more recent development concerning the influence ¢

. e e b
is its use in outlier detection. In many statistical pro

lems it is assumed that the form of the underlying distrib-
rt from an unknown parameter 0.
; 6). A familiar

Let

ution function F is known apa
The assumed model is then denoted by F(*

example is the normal distribution with unknown mean 8.

§ = 8(Fy) be the estimator and

% 1c2(e, Fn s Xg)/n?

i=1
its estimated variance. We denote this as
- Y n 2
var (8) = I Ic2(e, Fa & X3)/n?.

i=1

The statistic

n
- 1c2(e, Fn 5 X3)/ L 1C*(8, Fno5 X3)
i=1

0

' s of fit' of
can be interpreted as a measure of the 'goodnes

the i th data point to the model F (- 5 8). It can be sh?wn
¢ - e F(1, n-1) is the F-distr-

that for n large DX F(1, n-1), wher wh

ibution with 1 and n-1 degrees of freedom. The symbol

i i i " yhen n + @, Thus
denotes "is asymptotically distributed as" w

of fit of the i th data point in terms

: rovides a measure
Dl ; For p vector-valued

of descriptive levels of significance.

T
i i by IC'IC and then
influence curves, Ic? in Di is replaced by

d

is
D5 ~ Flp, n=-p).

Another interesting interpretation of Di

as follows. Let é—i be 8 with the i th observation omitted.
Now

(n-1)(8-6_) = &) - 0(F)

_l.' (l)

and this together with the definition of the influence curve
implies

0 (8 ?:i)
Var §

{€quation (1) also provides the connecting link between the
influence curve and the jackknife; c.f. Miller (1974).}

This can be used in the following way. Let F(1, n-1, l-a)
denote the (l-@) th probability point of the F(l, n-1) dist-
ribution, Then for example, if D = F(1, n-1, 5), removal of
the i th data point moves the estimator to the edge of the 50%
confidence region for 6 based on 6. Measures of large res-
iduals from regression models surveyed by Atkinson {(1982) can

be- shown to be all versions of the statistic D; above.

The following example serves as a demonstration of the
use of Dj. No attempt at a complete analysis is made.
‘t

Example B: Miller (1982) presented simul taneous pairs of
measurements of serum kanamycin levels in bloeod
samples drawn from twenty babies, One of the
measurements was obtained by a heelstick methad
(X), the other using an umbilical catheter (Y).
The heelstick method had been customarily used
but due to the necessity of frequently drawing
samples, this left neonates with badly bruised
heels, The aim of the experiment was to see if
the two methods measured the same levels except
for error variability, If true, this would elim-
inate the unnecessary trauma to the newborn of-

repeated venapunctures. Since both measurements
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are subject to error, an error in variables rather

than regression analysis is used (c.f. Kendall and
Stuart). It was assumed the true F was the bi-
variate normal and that the points followed a line 35
with unknown slope 8 and intercept «a. The para-
meter of interest then is § = (a,8)T and the inf-
luence curve is bivariate. 30 .
The twenty pairs of heelstick and catheter values
are presented in Table 1. 25 .
Baby Heelstick Catheter . ¢ ¢
[ [ )
1 23.0 25.2 2 .
2 33.2 26.0 g 20
3 16.6 16,3 S e
4 26.3 27.2 9 iy
Q L4 L]
5 20.0 23.2 = 15 . .
B 20.0 18.1 )
7 20.6 22.2 =
8 18.9 17.2 10
9 17.8 18.6
10 20.0 16.4 "~
11 26.4 24,8
12 21.8 26.8 3
13 14,9 15.4
14 17.4 14,9
15 20.0 18.1 0 i
16 13.2 16.3 5 10 15 20 25 30
17 28.4 31.3 Heelstick
18 25.9 31.2 FIGURE 3
18 18.8 18.0 —_————
20 13.8 15.6 Plot of the Twenty p?i;; ggbferm Kanamycin levels
TABLE 1

Serum kanamycin levels in blood samples drawn
simultaneously from an umbilical catheter and
a heel venapuncture in twenty babies




for each data point

Estimates of the influence curvé and deleted estimates,

.
.

TABLE 2

Slope

t

Interce

1C(a,Fp32)

1C(B,F,3Z)

a
Deleted

Estimate

Normalised
Influence

Deleted
Estimate

Sample
Influence

Sample
Influence

Baby

.012
. 768
.001
.000
.051
.046
012
041
.010
175
.025
.088
.009
117
.048
.290
.045
.145
.013
.103

1.086
1.29
1.07
1.07
1.07
1.06
1,07

.26
-3.36

.96
-5.26
-1.07
-1.10
-1.21

-31,68

61.66

.06

1.64
1.06
1,07

.08

.08

.20

.83
-1,20

B.34

.77
7,35
3,36

~14,71

46

.03

.08
1.08
1.04
1.10
1.03
1.08
1.04
1.06
1.13
1.01

.26

.77
-1.34

.12
.52
.49
.74
-0.17

.39
~-1.61

10

11

12

13
14
15
16
17
18
19
20

02

-10.85

.58
-1.40

21
-14,.83

. 58
.20

.34
.83
-2.57

6. 34
23.83
~16,20
-30.47

.98

.88
1.68

.14

.87
1.06
1,04

. 58
.96
-2,01

A3
.59

3.75
14,40
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A graphical display of these twenty pairs is rep-
roduced in Fig. 3. The estimates of intercept

and slope from the analysis are

-

§ = -1.16, & =1.07

The line with a4 and é is drawn in Fig. 3. Table
2 presents the influence curve of the slope and
intercept at each data point. The estimates of
@ and B obtained by deleting each data point in
turn are also tabled as well as the values of D; .
We see Babies 2 and 16 have the largest values of
the influence curve and have a negative influence
on the slope estimate. If we look again at Fig.
J we realise how difficult it is to detect and
agree on what an 'outlier'is, without some object-
From Table 3, we have D; = ,688 =

F(2, 18; .45), so removal of Baby 2 maves the

ive measure.

estimate of Q to approximately the edge of a 55%
Removal of Baby 16
moves the estimate of 2 to the edge of a 40%

~
confidence region around 8.

confidence region around g.

The influence curve is easy to explain and interpret in

consultancy work and we could make ‘the argument that it

become an integral part of all data analysis,

For this

reason, I have emphasised mathematical rigor less than intuit-

ive meaning in this article.

There are still many open math-

ematical details, like regularity conditions, to be addressed.

Many other influence curves of widely used estimators, need to

be derived,
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FEIGENBAUM'S NUMBER

Z. Kennedy

In 1875 Mitchell J. Feigenbaum [}] of the Los Alamos
National Laboratory, whose work concerns the transition from
periodic to aperiodic bahaviour, discovered a new universal
constant which has since been called Feigenbaum's number,

He had been using a programmable calculator to examine the

iteration of One~parameter families of maps af a finite inter-
val into itself, One map he looked at was x + fg(x)=Bx(1l-x);
another was x + 8 sin mx, both on the interval [D,l]. Feigen~
baum observed same commor features of the Parameter dependence

of these maps which he suspects would not have been noticed

Tather than a smal] calculatorLN__Tbe theory of these maps has
been extended by Pierre follet of Paris, Jean-Pierre Eckmann

of Geneva angd H, Koch of Harvard, The topic is reviewed in

For the most part, Collet and Eckmann consider mappings
X > f{x) which are Cl-unimodal. A mapping f of the interval
[-1,1] into itself is Cl-unimodal }f f 1s continuous; fF(0)=1;
fis strictly decreasing on (D,l] and stricfly increasing on
[-1,0); and f ;s once continuously differentiable with f'{x)AD
when x £ 0,

Denoting by £° the identity, flsf, f2=for, fn_popn-1 the
sets of iterates of points x g [-l,l]

Or(x) = {x, f(x), F2(x), £3(x) ...}

are called the orbits of f. A point x ¢ [-l,l] is called a
periodic point for f if Op(x) is a finite set, The cardin-

ality of this set is called the period of x ang O0f(x) is called
the periodic orbit of X,

It is then also the periodic orbit of



means d
dx*
neighbourhood of
periodic orbit of period p fo
periodic orbit when, for x € P, [DFP(x) | < 1.
rule,
points of P are then fixed points of P,
a stable periodic orbit, many starting points give rise to

definition of a Cl-unimodal function th
orbit is superstable iff DfFP(x) = 0 for x € P.

used the concept of ne

to discuss the existence of stable periodic orbits.
at 5SFf(x) < 0 for all x € [-1,1] is a more precise
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f0(x) for all n > 0.

It is well known that if X is a fixed point of x + g(x)

it will be a stable fixed peint provided [0g(X) | <1 where Og

£a Then iterations of the map which start in the

% will eventually converge to X. If P is a
r f the orbit is called a stable
By the chain

DFP(x) takes the same value for all x € P, and all the
Thus in the case of

similar behaviour as the number of iterations becomes large.

A periodic orbit P is called superstable if Q0 ¢ P.

From the
is means that a periodic
Singer [4] has

gative Schuwartzian derivative defined by

p(x) 3| En(x)
£1(x) 2{F ' (x)

Hl

5 f(x)

The

requirement th
t of the shape of functions considered than Cl-unimod-

statemen
Singer concludes

ality.
that a function f which is c!
for all x e’[-l,l] has at most one stable periodic orbit plus

interval [-1, f(1)).
then f has

Ignoring some technical details,
-unimodal and for which §f(x) <0

possibly a stable fixed point in the
If 0 is not attracted to a stable periodic orbit,
no stable periodic orbit in [f(l), l]. Further, there exist
ying Singer's conditions which do not have a

functions satisf
periodic orbit and maps of swuch functions have ergodic

stable
properties.

Collet and Eckmann use numerical results for the mapping

x + fg{x}) = 1 - Bx?2,
where B is a parameter in the range [0,2] to illustrate these
.75 iteration of the mapping

ideas. For a value of B £ Ba=

Periog 2n-
Bm = 1_401

orbi .
Thits which have y
@ppear, &

. F
0T .75 = g« B<B, -

1
1] are eventuajly

By is

et . F w
Or most values of Bn hich Converge tq

uired, n Mult]
COllet and Eck Dle-preclslo” a
mann gjiye the "fo1 Tithmetic is re
Ollowin Q-
9 table
n
8
n B - Br.y
1 Bn+1 Bn
2
: et I
1.3660389 4.233
5 394 .« 738275
: I e
7 1. i0ngai2389 4 a5807493
g 14008287424 4 oo3938185
9 10401} eg2)t3 i 5ogy03872
10 104017 e02h4698 il 5agy 08942
11 1.4 51982029 4' 9147452
o 01154502237 .559190003

8h - B

N=]
—— -1
8n+1 <78,

1.401155041999 4+ 589196223
Not onj
y d
G the B Converge tg 4 1i
imit g
o

but the ratips



also seem to converge to a limit § .

It has been established ([2], [5]) that, for sufficiently

smooth families of mamss, the number 6 does not in general

depend on the family and families similar to the one discussed

here produce asymptotically

N

|B, - Bl ~ canst. s,

where 7

§ = 4,6692016 ...

the universality of
d on the

is Feigenbaum's number. More precisely,

what relative in that its value does depen

§ is some
re assumed to

function space in which the mapping functions a
lie.

Feigenbaum discovered the universality of § experimentally

and then proposed an explanaticn suggested by the renormaliz-
Collet, Eckmann

ation group. approach to critic3l phenomena.

and Laﬁford [5] have proved rigorously, at least in a certain

limiting regime, tbe existence of the scheme outlined by

Feigenbaum.

There is another type of scaling which can again be ill-

ustrated by the mapping.
x » 1 - Bx2,

For large n it is found that as each bifurcation point is

passed the pattern of the orbits exhibits a certain reqularity.

nsidering the parameter range

This may be exemplified by co
It is

(8, B where stable orbits of period 20 gccur.
n n+l
s one value of B in this range which

found that there is alway
= 0.

a superstable orbit containing the point x

gives rise to
d that on such a superstable orbit the

foun

It is further
the point at zero to its nearest neighbour is,

distance from

for large n, A" where A is another universal constant

A = -0,3895 ...

e

nonlinear,

route
to chaos with univers

- 53 -

1 :
nNdeed if o jg defined by

(=)
Q
]
b

e x(B-8,) and a

hori
1zontal scale log B~
for lar
ge n,

Bml then,

diagram
appear .
S 8 periodic

Finally the value, B
@’

itio . of th
N to ergodic behaviour o € Parameter at yhic

ccurs is, h trans-

in general,
ass consi

) ) Nsidere
Swever the function >

differeht
435 are the funct-

F(x) = Lim 2
£ n
Lin f30%)

is i
8 universal function

to f(0) - P to 2 change of scale

Xxpansion If scaleg

1 it has the e

f -
(x) =1 - 1.52753x2

- 0.267057 , 3

+ 0-10481§x“ :
L] s X +

e

8
Y construction f satisfi
es

Fof(Ax) = ar(x)
which evaluated at x=0 gi
= ves
Py =

(1) 1

al
SO show that f may pe
used

eigenvaluye gof the linear

h(.) > i,
AT s et nea. |

1 I e,
lll v ¢ d a sSimpl ‘
Receut Y Ro ns and Hur t 6 ‘ave mo ielle

m which exhibits the
al scaling,

electronic Syste

Period-doubling
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PATHS IN A GRAPH

dohannes Siemons

In a connected graph any two vertices can be joined by a
sequence of edges, This is the definition of connectedness
for graphs. However, how do you find a path joining a given
pair of vertices, and houw do you decide effectively if & graph
is connected ? These are the questions I shall discuss in
this note. The graphs we consider are finite, undirected and
have no loops or multiple edges, A path is a sequence
{v',ui} = e, {vi,va} = e,, srees {vpog,um} = er of edges
without repetition (of edges: vertices may occur Tepeatedly),
The vertices y!? and v" are the end vertices of the path.

A popular version of this problem is to find the exit in
a maze, We have to distinguish tws cases, In the first
instance, imagine that we are actually inside a maze without
knowing its overall design, Here the only solution seems to
be trial and error., A successfuyl Toyte to the exit is very
unlikely to be a path according to our‘definition. In fact,
the pProbability to reach the exit on a path is less than 2-c,
where ¢ is the number of intermediate Jjunctions on a path to
the exit (provided that there is only one such path in the
maze), In other words, it is almost impossible to avoid
walking into a cul-de-sac! However, most commonly, maze
Puzzles are done with Paper and pencil, and the design of the
maze is right in front of your eyes, In this situation, can
You avoid a cul-de-sac? The ansuer is yes, there is a

construction for a path to the exit!

From a set P of edges let V(P) be the set of end vertices
of edges in P, For a vertex v in the graph, let do(v) be the
number of edges in P that end at v, A cycle is a Fath that
ends in its imitial vertex, Our construction is based upon

the following simple cbservation:
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Let v' and v" be two vertices in a graph and

Lemma
1et P be a set of edges such that dp(v') and
dp(v") are odd, while dp(v) is zero ar even
for all remaining vertices. Then
p = P(y',y") U Ci U ... U4 Cp where plu',v")
is {(suitably arranged) a path from v' to v"
while each Cj is a cycle that has no vertex
in common with plvt,v").

Praof Let Goy G1 eee be the connectad compaonents of

(P) and edges P.

the subgraph with vertices v
As dp(v') is at least 1, ¢' is a vertex in one
say in Go. gut then also v"

of the Gi»
for otherwise the total degree

belongs ta Gos
would be .0dd, which is
otal degree sum is even.

and the

sum in Go impossible:
In any graph the t

Therefore Go is a path from v' to v"

remaining components are cycles.

n we effectively determine such a set of edges?

How ca
P does not contain

And, secondly, how can we ensure that

(From a practical point of v
for if we start ourT
les Cy) We shall say that

cycles? iew, the second problem
is less relevant, path in v'! we will reach

" yithout entering any of the cyc

v
a set P as in the lemma is shoat if none of its subsets is a
cycle. Thus a short path from v' to uv" is a path where none

of the intermediate vertices is repeated.

s of G in some way Vi se.> vp and also

We order the vertice
presentad

The graph now can be re

order its edges €1 »ye..> €.
This is the matrix whose rows are

by. its incidence matrix I.

indexed by vertices and whose co

is 1 if e ends at v and (I)y, e
’

d by a O-l-vector S5 of length

lumns are indexed by edges,
such that (I)y,e = 0 otherwise.
A set S of vertices is represente
n where (é)i = 1 iff vj belongs ta 5. In the same way, an
s represented by 3 g-l-vector P of length m. The

ector to any edge vector:
i th component is easily

edge set P i
rix associates a vertex v

ctor of length n and its

incidence mat

£,
1P~ is a ve
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seen to be d,(vi)
piVvi/. Now we realise th
at a set P has th
e prop-

erty 8] the emma xact Yy P satis es a ea or n
1 e ctl 1 1 1
1 r c gruence

Path CQIlAt/lUC/tLOIl- A sel P Ol edg2/5 consist a ath
] O/.’ FZ4 4

P(v',u") and a n
unber of cyct iy
only if 1.pt = 5 ycles disjoint Lrom P{u',y") if and
P" = 5 modulo 2 wheae S = {v',y"} n

Thus a path from v' to v" can be c

o onstructed by s i

o i:ns:itfzzf:u:ncej for %nstance by Gauss elimi:at;i:Tng

A :n; ::::i:lin characteristic 2 where we anly

need 0 o permute rows and columns of

tote o int::: ::;iej and unions of cycles correspond to Ufi-

Joctors T the ke el of I modulo 2. In order that the graph

Lo somnee S-, Thicon?ruence has to be solvable for any

e : ?111 be the case if and only if the rank
-1 in characteristic 2. However, as each

colu o I adds up to 2! the rank will be 1 exactly.

There ore, we obtai a criteris or connectedness 1 a grapn.

The numfen
of connected com .
ponents in a .
graph (s the numb
en of

veatices minus th
e nank of 1 in
charac 1 ;
. tenistic 2.

Short aths: Vow we shall see that I-P 2 S ca be solved i
t .

suc a way that a solution autor atlcally will be short that
’

is, P does not i
. contain a cycle. Using Gauss elimi
ongruence can be transformed into semen tre
lOUOD_'.O*-)i?S %\ ( ] )
« e e P1 (
DlUDD"'D%**. 3 o] >
0100...0%%s * 3 .
. e : S3
* ®¢ & 9 s e & s *r © e » v e .pr]~l§: modz
Dl;t?‘r*. 3 ?n :
000DOCOODB . : :
a 000000000 ; :
| I
We now choose py = p = ) S
R nj X p+] = s+e« = Py = 0 and hence have p; =Si
oy ¥ . If P 1s determined in this way, n ;
, none of

its subsets can .
satisfy the homo
nogeneous congruence
and there-~




fore P does not involve any cycle. Thus P is a short path

the above tableau can usually be

to v". Of course,
This corresponds to

from v'
achieved in a number of distinct ways.
the fact that a short path is unigue only if the graph contains

no cycle,

Maximal and Minimal Short Paths: In the above tableau, the

= {v',v"} during the subseg-

entries s; are calculated from S
uent row operations. The number of sj % 0 is, as we have

seen above, the length £(P) of the short path from v' to v".

Therefore, the minimum value obtainable for ¢(P) in any tabl-

eau is the distance from v' to v". As a short path passes

through any vertex at most once, 2(P) + )1 is the number of
Thus £(P) is at most

For,

vertices en route, v' and v" included.

n-1, but this may or may not be obtainable in a tableau.

n-1, then P passes through all the vertices of the

if £(P) =
No satisfactory

graph. Such a path is called haméilienian.
criteria for the existence of such paths exist for graphs in

in a particular case, however, we notice that

general.
hamiltonian paths correspond to tableaux of the above form in
which s1 = 52 = .. = Sp_] = 1.

»

As an example consider the graph in Fig. 1. It has B
£, 9 edges 1,2, ..., 9 and its incidence

vertices a,by +.eey
We form the 6x18S

matrix is the 6x9 matrix I given below.
matrix (I,1d) where Id is the 6x6 identity matrix.

12345861788

~
ju
—

Qo O+ = O
- O O = O O
= O 0O O 0O
~ O~ O 0O O
Q o~ = 0O 0
c o oo o+~ -
-~ O O o O
o o +—= O O

- 0 a 0O o o
-~ 0O O O +~» O

o

FIGURE 1
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0000

1
(1*,s)
0
00100
o
1

0010
1111

'—‘DDP—'DO

In this proce
$s at least 1 coly
place, mn permutation has
€-9. edge 8 has to be included among th f0 take

In the event these are the edges 1,2,4,5,8 e first 5 edges,
r& 94, 0,8,

they ar e

; e the only edges effectively used in th ot
s

No cycle can be formed from them

a 4panning tree, ’

€ construction,
they automatically build

Plase) = (4,8)
Pla,c) = {4,2,1}

"«P(a,q)

{4,5)

FIGURE 2
The matrix § i
in i i
e ' a8 certain way is a generalised inverse of
o Pa3lr x,y of vertices the path P p( ) o
s among 1 4 i i ) . |
o 3 12,4,5,8 is unique and can im i D
: oomong 12 ) mediately be read
-— ’ *
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S NEVANL INNA THEORY DEAD? - AN ESSAY

o Richand M. Timoney

First of all, what is (or was) Nevanlinna theory ? It is

far-teaching elaboration of the Picard theorem mentioned in
A non rational mero-~

a
all fipst courses an complex analysis:
ned on the complex plane T takes (nearly)
with at

morphic function defi
every value in the extended plane T infinitely often,

most two exceptional values.

The question of obtaining further information about the
was studied by various

solutions of the equatian F{z) = a,
pPicard obtained his result (1880). If f(z) is

people after
then there are a finite number (2 1)

raticnal and non-constant,

of solutions of f(z) = a, for all a ¢ L.

include z = = in the domain of f to make this statement).

(To be exact we must

if we count solutions of f(z) = a, according to
then the number of solutions is independent

Furthermore,

their multiplicity,
of a. Picard tells us that, for non-rational f(z), if we avoid
exceptional values a, then the number of solutions of f(z) = a,

is countably infinite and thus independent of a.

However, something more exact is true about the "number"”

of solutions. Consider the following examples,

(i) The solutions of el? . g3 are z = a + 2nmW, n € 2,

where « is one solution (if a #+ 0,=).
s 2
(ii) e*?* = a has solutions, z = +/BZ + 2nm, n € 2,

where 8 1is one solution (as# 0,o).

Intuitively, there seem to be "more" solutions in the second

example, in the sense that the solutions are packed more dens-

ely.

A concept which expresses this is the counting function

L
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nfe(r,a) = n(r,a) = number of soiutions of f(z) = a, in |
In the first example n(r,1) is roughly 2r+l, while’in chl o
second n(r,1) is about 4r?+1. In both cases n(r,1) )
n(r,a) have the same behaviour for large r (as 10;9 a:n: # 0

,

), N i
evanlinna, as we shall see, found a way to express th
e

inde
pendence of nf(r,a) from a and the relationship of nf(r

to the size of f (for general f). '

Usi . .
) sing the counting function, Hadamard found a relatio
et i :

ween the size of f and the size of n(r,a) in the case of

the e tire unctio (Z) (Wlt out DDIES)- e order P o a

enti .
ntire function corresponds to the exponent of z in our

I3 v . exav )

ples (i) amd (ii). It is defined to be "

p = lim sup Al loaM(r,f)
T+ logr

where M(r,f) = sup{|f(z)|:|z] < r}. The order o(a) of n{r,a)

is
o(a) = 1im sup Lognir.a)
T+ logr

Using infinite products, Hadamard (1893) showed that

(a) <
po(a) < p, for all a €. Borel (1897) proved that pla) =

( Y) one EXCEDth al a [
’
(DI earl all a e € wit at most € .

o : 1s automatically exceptional in this cont-
. N exceptional a could exist only for p iti
totener o oo 4 a positive

.

}
Borel's result was, of course,

a8 co i
ening of Picard' nsiderable strength-

s theorem for the case of entire functions

tic
No e that it includes our two exa ples. Rol Vevanli a’s

celebrated contributio (1925) was to ind a way to op t
C e wl
the case o arbltrary eromorphic unctions (Z). He repl-

aced i i
the counting function n{r,a) by a logarithmic integral

( " d
N(r, = t
r,a) j;]n(t,a)_t_
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i f T difficulty was to
{changes are needed if §(0)=a). he

( ’ ) c o}
ind a replace ent ar the aximu odulus T whnl would

measure the size of a meromorphic F(z).
.

called the characteristic function

i ts T(r,f) -
Nevanlinna's N :
generalization tg the meromorphlc case of

- is more a ;
v Nevanlinna's idea was based on

log M(r,f) than of m{c,f).
the following formula due to Jensen.

I3

(zwloglf(reie)]de ¢ N(r,®) - N(r,0)

l

1
log[F(U)l = 5x

- + 01 .
log x,0) and log x = log (;) (if

¥ (
iti log x to mean max '
e : ed the above equation

x > 0), Nevanlinna rearrang

L {Zn log~|#(xet®)[de + n(r,0) + Log|f(0)]
2n

a
2n .
- X loa—|f(rele)[d8 + N(r,=).
T2 =
He defiped . .
1 tie(ret )]de + N{(r,=)
T(r,f) = 33 f log | f(
0
= m(r,m, f) + N(r,m)
(again modifications needed if f(0) = =).
Now Jensen's formula says that
Ly = F(0
T(r,f) - T(r, ) = loglf( )

1 g =£ I3 i the
( ( ) 0 m) and it is a si Dle atter to odi Y
.

argument to show that

T(r,f) - T(r, 1/(f-a))

1s a8 ounded unctic o} r >0 or eac a This 1s a
1 ( )-

stateme t alo t 1i = ’ = ave
and (Z) ’
Q he nes that f(Z) a 1 L

the same umber o solutions, EXCEDt that it is ClUttEIEd up

with m(z,=,f) and m(r,a.f) = w(r,=,1/(f-2a)).
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The term m(r,e,f) can ve expialned as measuring the aver-
age growth of log|f| on the set where [f] > 1. Its role in
T{r,f) is subservient to that of N(r,»), unless « is an exc-
eptional value - that is, unless N{(r,») is not as large as
N(r,a) usually is. This was shown in a precise form by
Nevanlinna,

Before elaborating on this, we note a basic fact about
the characteristic function. The functien f(z) is rational
if and only if

lim inf T_ILEL)
T+ ogr

This may be viewed as a generalization of Liouville's theorem
(f entire, M(r,f) < cr” 4+ ¢, implies f a polynomial) because,
if f{z) is entire,

T(r,f) < log+m(r.f} < 3T(2r, F)

(This ineguality can be shown using the fact that log |f] is
subharmonic).

Nevanlinna called ‘i E
Sgla) = §(a) = 1 - lim sup N(i'f)
Lo *

the deficiency of the value a ¢ T. It is easy to see that,
if f is not ratienal, then &§(a) < 1 implies f(b) = a has inf-
initely many solutions. Also O < §(a) < 1 is always true.
Nevanlinna showed that (if f is not constant) 6&(a) # 0 for at
most countably many a e & and

I, 8(a) <2
This is a quantitative version of Picard's theorem,

Nevanlinna's characteristic function T{r,f) became the

magic tool for studyina the distribution of f-1(a) c f, for




f{z) meromorphic. All sorts of results were obtained under

various restrictions on the function - mainly restrictions an

the order

o(€5 = 1im sup loa T{(r.f)
e log T

wer= also investigated as were

simultaneous sciutions of f(z) = a and a{z) = a. Ahlfors

developed a geometrical approach to the characteristic funct-
field was that there were interesting

Relations between f and f!

ion. The beauty aof tha
results to be proved which were simple to state, but tequired
ingenuity to derive. Nevanlinna's theory can justifiably be
described as one of the greatesst of mathematical theories.

It is a marvellaus simplification of the difficult problem of

studying solutions of f(z) = a, which nevertheless has great

depth,

Now, however, this gre=at industry started by Nevanlinna

seems to be suffering from the worldwide ecanomic recession.

One might argue that David Crasin hammered the last nail in
the caffin when he settled one of the most fundamental out-
sﬁanding questions, He showed (13977) that Nevanlinna's

defect inequality £é(a) < 2 told the full story when f is un-

restricted. Given a sequence (a,), of distinct elements of

T and positive numbers dn satisfying Iidy, £ 2, it is possible
to find £(z) meromorphic with 8f(an) = dy and 8(a) =0 for a

not one of the ap's.

One might ask
After all,

gut can such a wonderful theory die?
whether Euclidean geometry died centuries ago.
it is hard to find a major unsolved problem in Euclidean

geometry. Of course the story changes considerably if we

look at differential geometry,
manifolds, etc., which are the subjects one might imagine

Riemannian geometry, Kahler

Fuclid considering if he were around in this century.

So it seems to me to be unreasonable to point to the

scarcity of really central open problems in value distribution

.thEDry f
of functi
on 7 :
flels ie g t S of one Variable and con luc
S dead, Rat Clucde that
Nevanlinma! ‘ather, we should ask whers ac the
4 na i 3 : S owWhRere ye o
S inspiration today The an use
¢ answyer iS o
* Ot yet conm
p-

future i
& mathematiciansg may

letely
iy clear an LY
, d it could be that

. : , P t 1 = A
lndeed Say that Neva 11 a's t eo i1lved o C g
: Y 4 1 5 t
¥ < o]

'romising ¢ 1
Uy UBvelopments in the field
; fiel
S id of
Sidsrable progress has been

ions fo 1 1¢ i
T hc‘omorphlc maps

complex manifolde M

PFacyc enlrolids i, e egqul T S‘ a
‘\ rement l
_\l. as a faraceolic €xXhaustiz unct a =3 =
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has = £
4= @z before, the

TR
I'he results obtai

not . ev :
¢ completely SatiSfactcry N veral variables, though
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+ resul+ts P 9Y yieldsd ne "
theo ] 200Ut complex manifolds 5 new non-
gory is not d FEeUs. 0. Nevan!
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8LTN 1s yncert
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THE MEAN VALUE THEOREM FOR VECTOR VALUED FUNCTIONS:

A SIMPLE PROOF
—_—_— TR

Wittiam §, Hatll and Martin L, Neweltt

It is wel) known that the
ension extends Teadily to real-
variables,

mean value theorem in one dim-

valyed functions of several
but fails for the vect

let F(t) = (cost, sint
(0,27) such that fleg) = g

. Then -sin¢ - cos & = 0, an imp-
o0ssible situation,

A useful ang torrect generalijzat
the inequality

ion is

fy) - f(x)] < sup ilf'(X+t(y-X))fllY~XI
D<t<g

where f:DCFn-*]Rmis a differenti

able vector-valyed function
0N & convex apen set D, f!

is the matrix 3fi/3xi, i=1,2

em,
j=1,2 ..n, I ] is the appropriate norm (in<mn, or inRp),
Il !{ is the usual norm in the set.of linear maps from Ry to
.
R,» and X,y are arbitrary points in the domain 0,

analysis texts prove the
mean value theorem in the real tase but omit the result above.
Those that do Present this more general form usually give

using Components, or 3 "slick"
rem,

either a "sloppy" proof,

proof
with the Hahn-Banach Theo

roach, requiring only the chain ruie and the mean value thegrem
in &, It is worth noting that ! at each point is 2 linear
map (given by the Jacobian matrix)

a linear map (matrix) is given by

sup lax|,
lx’=l

!
2
However, other norms such as (Zaij)j where 4

i

(aij) are
frequently used in advanced

calculus Courses,
use is that lax| ¢ Ial]

All we really
Ixt.
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The result is certainly true if fFly) = f(x). If not,
form the function ¢(t) by - 69 -

o(t) = <F(¥)-F(x),Fx+tly=-x))>/1F{y)-F(x)] A SINPLE PR
O0F_OF TAYLOR'S THr
HEOREM

where <,> denotes the inner product in Ry. Then
Raymond A4, Ryan
| 6(1) = <F{y)-f(x),f(y)>/1F(y)-FC
i - & This T
% . o(0) = <F(y)—F(x),r(x)>/|f(y)-f(x)|, . Proof uses anly the Fundamental
i n the form: al Theorem of Calcuy]
| o' (t) = CF(y)=F(x), F1 (xst(y=x)) (y=x)>/1f{y)-F (. b us
; In the last line we used the chain rule twice, once because %;'[g(t) gt = - g(x)
' f is differentiable, and once because the inmer product is x

also differentiable. Of course, ¢ itself is well-defined

Jaylor's Theorem:

i If f i .
because D is convex. : . is n+l t
iable in an open in imes contlnuously different

P N
tezual contai ing the polnts g and b
’

| 8y the usual mean value theorem, F(b) = thean
) _f(a)+F'(a)(b-a)+"*ﬁl'f(n)(a)(b N
| T -
o(1)-4(a) = &' (t) = <F(y)-F(x) by d=F (x)>/1F(y)-F Cl=l £ (y)-F Ol " . a)" 4
. . A | (n+l)
and by the Schwarz inequality, ~ [f () (b-t)”dt
Proof: a
ot (1) < 1F(y)=F O HIF (rtly=x)) (y=x) [/ 1F(y)-F(x) ] —=-
Let F -
< 1e et (y=x) ] ly=x] g sup  LIFT Geetly=x) ] fy-x1{. () = F0x) + £ (x) (box) 4+ ..+ L c(n)
<<l et AT (x)(b-x)" 4
*b
This proves the theorem. 1 / (nel)
,, ar|f (t)(b-t)"
i . - dt
; 1t is clear that if R, is replaced by any Banach space Then F jis differentiable 5 X
! an
'g and Ry is replaced by any real Hilbert space, then the method F ) '
i x) =

PHOO=F ()4 £7(x) (bex)-

+ ﬁ? f(n+l)(x)(b-x)”

" of the proof remains valid.

- 1
. ﬁn—l ,F(n)(X)(bﬂ()n—l

- F,%FF(MU(X)(D-X)”

Depantment of Mathematics, Depantmenit of Mathematics,
: Univensity of Pittsbungh, Univensity College, =0
! P p 2
Pittsbung, PA 15260, Galway. Hence F(x) is constant .
U, 5,4, ’ urthermore, fF(b) = f(b), ang
y no so

i
|
f{b) = F -
l Editonial Note: This article first appeared in Mathemalics (6) = Fla) =

= f(a) ‘et H (”)

Magazine, (1879) 52, 157-158.  We are grate- arf(a)(b-a)" ,

ful to the Editor for permission to reprint it : b

here. 1 (n%‘)

4
; At (£} (b-t)" gt
a
i Depantment of Mathematicy Uni 4.£.0.
3 nive 1
| 8¢ty College, §atway,

|
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LINEAR INDEPENDENCE FOR CORK

o
i

R.E. Hante

. COMPUTER SCIENCE AND THE MATHEMAT,CS CURR | CLL U
SRR SEIENCE AND THE MATWERATICS cure) oy
' |
tion 4 of the Second Arts Matrix |
Ques |

begins as follows:

14

Anthony Karet Seda
In Summer 1978,

Theoty paper at u.c.c.

7

it means for a finite subset
"Explain what 1

soo 8s an Ana]
1 vec sp o be 1

d yticdl E”glne .
14

Ily -

{ 19 X2y 3} s line

it wilg necessarily guide the f
science,

i ndependent. -
X dependent and t is real, show
indep

i rl
{x1-txz,xz-txs,x3-tx1} linearly
A > £ £ 1M,

uture course of the
is sought by its

the Question wil} then arise - By what caurse
of calculation can these results be

Whenever any result
aid,

arrived =t
independent

by the machine in the shortest timeon
t the solution is wrong, but
i t is tha P
e empareasaing 1of In fact provided the three vec
n

Charles Babbtage, 1864,
t (A)
the statemen

. her subtle way. ther
in a rat d are distinct from one ano ,
and x3

f d b Secaond ear Ar
e Y ts
" yas verirtl Y

and
is correct, as €an be
Suppose however

§1, Introduction
21ET0duction

utr

In any discussiogn of comp
ship with mathematics,

€T science ang its relation-
students.

from an-edueational viewpoint,

certain
obvious Questions Come to the

fore:
8 x1 # x2 # xa
= {xi,x2)} is linearly

) (1) what is the role of mathem
t {x1sx2,%3

. that the se

still assuming

. t, then:
independent,

ndent (2) What is the role of com
. . .
tx3,x3-txy} linearly indep

{x1-txz,x2=

c

== t—D'

(3) what is, or has been,

Tesponse of mat
.
¥ 0 he e s eme (A) Q

lation to the mathematics Currj

= X3

Finally if x1 = x2

valid.

defined -
r independence should be "here are tug viewpoints, at least,
. inea .
MORAL : %;Tesequences, not sets

from which these
can be contemplated,

Questions One is that gr the Computer
scientist engaged in teaching/res
i,
i cs Depantmen
Mathzmdth

The cther, which is QUTS, is that gf the mathen
Univensity College. N o -

arly engaged in teaching/r
Conk.,

computer scientiscs.

Barch in a thirg level jinst-

rtution Peering over the Famparts at thne mathematicians.

atician simil-
€search ang similarly RPeering at tne
Having thys declareqd g

Y vantage point,
space, 1 wish ta

toncentrate here on Qu
tion 1, ang only to tauch on Uuestions
il

and fgr reasonsg pnf

g3~
and 3, Specifically,

I wist g bring to the attention gf Teaders g

T the Hewsletiten

e
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I | T -
the discusslof contai ed 1 the art [u)
1 icles 4 and 5 o P f

i is,
ton's conclusion
Ralston. Rals

essor Anthony

-

"It is time to consider (i.e., try)
an alternative to the standard

e ma u
u \dergraduat the atics CUIrlCUl 1

hich would gilve discrete analysis an
. le to that now played

n the first two years

equivalent ro

by calculus i . 2
of the undergraduate curriculum®.

ses in order
1isted the topics which Ralston propo
In §3 I have

Actually, [4] is a detailed version (83
c ’

. i im. 3 ad
to achieve MS 27 will suffice to support the main thre

pages) of [5], and (s]

of the argument here.

i se talking
i bbage is of cour )
tion above, Ba .
e e, Jgorithms in the words of Knuth [3],a
e bject (computer science),
the diff-

about algorithms, -
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between computer scientists angd mathematicians, and that there

is not more sympathy shown by each for the other's subject,

After all, computer science grew out of mathematics and in

its early days, some twenty five~thirty years ago,

necessarily closely bound to mathematics,

it was
However, today,
digital computers vastly predominate over analogue computers
and digital computers are essentially discrete,

What, though,
is being

taught in most mathematics departments?
that it is largely either continuou
analysis,

I suspect
s mathematics, such as

Oor relatively abstract mathematics,
exclusion of discrete mathematics.
in u,cC.cC.,

Indeed,

to the great

Certainly this is true
but may be less so in non-university departments,
Ralston [4] argues that in American universities the
present-day structure of the mathematics curriculum (

mainly
calculus/linear algebra -

at least in the first tuwo years)
has come about for reasons more to do with history and inertia

(human) tham with a judicious czhoice of topics to meet the

educational requirements of those students other than majors
in physicalscience ang engineecing,

As far as Question 3 is concerned, there are at least

three discernible respoanses: .
L3

(a) Ignore the problem - maybe it will go away,

(b)

Continue teaching traditional material but illuminate it
with examples/projects worked on the computer,

(c) meet the problem head-on and design/update courses to

more nearly meet the needs of those students studying

computer science,

Respanse (a) needs no comment: (b) is outside the scope and
limits of this note but surely has a lot of merit, see [2]

and its references for some exoeriments,

in this Vewsfetten; (¢}

see §3,

and also elsewhere

is the main topiec of this discussion,

Before leaving thris section, there is another aspect

worth noting, Mathematics Courses are widely held to be

O 6 e e e,



irrespective of their content, for purposes aof

educational,
said of computer science?

training the mind. Can the same be
This touches on Question 2, becausea the solution Ralston has

in mind for (c) is best framed in terms of a mathematical

sciences degree programme and, naturally, the educational
content, has to

[3], "The most

value of such a programme, over and above its

be considered. To quote G.E. Forsythe, see
valuabnle acquisitions in a scientific or technical education
ral-purpose mental tools which remain serviceable
I rate natural language and mathematics as
and computer science as a

are tHe gene
for a lifetime.

the most important of these tools,

third". Some of Knuth's own views on this can also be found

in [3].

Ralston's Proposals for the Mathematics Curriculum

3.

I want, now, to list the topics which Ralston believes

could form a suitable basis for the discrete component in a
better balanced curriculum faro nathematics students, computer

science students and others. The headings below are taken

from [A] and [5) and the topics from [4].
i) Algorithms and their Analysis. Topics: the notion of
an algorithm; notation for expressing algorithms; basic

analysis of algorithms.

Introductory Mathematical Logic. Topics: the notion of

mathematical proof: the propositional calculus; Boolean

algebra; the notation of the predicate calculus; intro-

ii)

duction to the verification of algorithms.
Limits and Summation. Topics: the notion of infinite

iii)
jdeas of convergence and limits; limits of

processes;
discrete functions; summation.

Mmathematical Induction. Topics: the principles of ind-

iv)
uction; examples of induction proofs.

v) The Discrete Number System. Topics: real numbers and

definition and

finite number systems;
number system; number bases other than 10.

laws of the discrete

vi)

vii

viii} Dise
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added for, say, honours students ).

(0) These proposals are at least worthy of consideration,
for Professor Ralston has wide experience in both computer

science and mathematics and backs up his suggestions uwith an

exhaustive study.

More questions are asked here than are answered. Far
example, gonsideration needs to be given to the feasibility
of such topics for various types of student, ranging from
students of management through to honours mathematics stud-
ents. But space permits no more comment, and for answers
to such questions the reader must either consult [4] and [5]

or, if Ralston [S] page 484 1is correct, undertake experiment

for himself or herself.

Educational problems are not usually very well defined;
they are likely to be controversial and to raise temperatures.
Indeed it may be that Ralston*s ctriticism does not apply here

and that all is well. If not, and this article creates some

discussion or starts peaple thinking about the problems raised

here;, then it will have achieved its purpose. We hardly need
reminding in 1983 that computer science is a major undergrad-

uate subject. But what has perhaps not been widely recog-
nised yet is the fact that the next generation of students

will be taught computer science in secondary schools by thaose

currently studying it at third-level. Future incoming stud-

ents may therefore elect to study computer science "because

it is familiar" just as many do nou, I suspect, in the case

of mathematics.
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projects that have been attempted in the past. There are

however uses that can be made of a single microcomputer in
w ‘ )
front of a class, especially if reasonably good guality grap

s is available « All our uses of l1€croco pute s in teach-
T e
11C .

ing Pure athematics at Q.U.B., since we started three years
1ing " h
ago, have been of this nature, although other departments

’

i ical work
make microcomputers available to students for numeri

i ch was easy
in statistics, numerical analysis etc. Qur approa

to introduce as it fitted easily into our existing, fairly

. e
traditional, teaching methods. This meant that the tec

igue could be tried by one individual without needing any
nig

departmental policy decision.

Typically I have used a microcomputer to introduce a

i has
topic before teaching it in the normal way. The idea

S t
been to augment the normal exhibiting of a few examples to

.
illustrate a definition, suc as that of unifor convergence
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Topics that we have approached in this way include

i i inui differ-
niform convergence, Riemann integration, continuity,
u

i i Binomial
entiation, Turing machines, approximations of the

. . . . . -
distribution a d a nalve approac to gurier Series. We ope
1
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to add to this list in the next few months, The bias towards
Analysis in this list of topics reflects the teaching commit-
ments of myself and others interested in using the computer
rather than any inherent limitation in the technique. We
have had most success with students who might have difficulty
even understanding the definition of a concept {more than
might be supposed). These can progress further and more
quickly than might otherwise be the case, The good students
gain little (this reflects the results of a survey done with
schoolchildren recently) but it does mean that we are helping
those who need it most., Opportunities for using microcomp-

uters seem to lessen as the level of courses increases, alt-
hough there are exceptions,

All our teaching has been on an ITT2020 (virtually iden-
tical te an APPLE II except for improved graphics), This
works at a reasonable speed and can provide tolerably good
black and white graphics {(but not such good colour). We have
found it desirable to improve its speed by adding an Arithmetic
Processor Card, and (at the time of writing) have just:taken
delivery of improved graphics for’it. We have not found
much use for colour, but some progtams certainly benefit from
it. For example, one of our programs compares the graph of
a8 continuous function with fhat of a polynomial approximation
to it, Once the approximation is reasonably good, colour is
essential to distingqish the two graphs. It is not realistic
to load a sizeable program from cassette tape in front of a
class, so disk storage (or something similar) is vital. We
have also found it useful to have a printer available, This
has greatly aided rrogram development and is also useful for
Providing a printed record for the class of some of the comp-
uter's output. In some cases, such as simulation of the
action of a Turing machine, it would not be possible for
students to make a copy as they wétched.

From our experience, not only in teaching at University
level using 2 microcomputer but also from training teachers

to use them, we have isolated several critical features of




praograms that are to be useful, First and foremost, the
program should teach rather than do. There are many programs
that multiply two matrices together, but very few that try to
teach how it is donesr A good program is as flexible as
possible. This allows the maximum interaction with a class
and also allows more people to fit it into their own teaching
style. Often it is little more work to write a program that
will handle many examples rather than just one, although that
is notraluays the case, If many people are to use a program
it should be as easy to use as possible. No-one is going to
read a twenty-page manual before using a program for half an
hour, yet that is what some programmers expect! Choices that
need to be made should be clearly stated and a relatively
small number presented at once. Far more could be done to
guide people through a program than is being done, For
instance, there is little point in offering the choice of
saving a graph onto a disk file to a person who has not yet
drawn a graph! By such restrictions it is possible to lead
a person gently inte a program. The final feature of a pro
gram that we have found desirable is frequent opportunities
to save its output onto disk files. If this has been done
iﬁ advance of a class they can be printed for distribution t
a class or many of them can be displayed to a class in far
less time than it took to produce them. Before we obtained
our Arithmetic Processar Card we frequently found it necessar
to do this in order to present the number of examples that

we wanted in the time available.

There is, unfortunately, no source of programs for
teaching mathematics at the University level. About eighteen
months ago I contacted about twenty Universities, Polytechnics
and Teacher Training Colleges in the U.K., that I knew to have
an interest in the field, with a view to setting up a program
exchange. The response was negligible. What has been done
elseuhere tends to be on larger machines or on exotic hybrid
systems. Anyone setting up such a system should be recon-
ciled to "going it alone" on program development as any spec-

ific combination will be rare. Even though little is avail-
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"DEVELOP ING MATHEMATICAL THINKING"
By Ann Floyd
Published by Addison-Wesley Pullishers Lid,, 1982., Stg. £6.95

-

ISBN 201 10237 4

This book comprises a selegtion of articles, same of
which have been published elsewhere, and some for the first
time if this publication, The major objective is to make
explicit strategies for developing mathematical thinking in
primary and post-primary schools. It attempts to achieve
this in the first place by examining the nature of mathemat-
ical thinking itself which is seen largely as the type of
thinking that is needed to solve unfamiliar mathematical prob-
lems, While recognition is given to the importance of comp-
utational skills as mathematical tools, the essential emphasis
is on the acguisition of generalised methods of attacking

mathematical problems not previously met.

This concern with problem solving is not a present-day
phenomenon; educators over the past hundred years have expr-
e;sed a similar concern and official statements over this
period in the United Kingdom display a nagging unease about a
perceived imbalance between pupils' ability to deal with comp-
utation on the one hand and problem-solving on the other,
Recent investigations by the Orumcondra Research Centre and
the Department of Education Inspectorate suggest that the

problem is equally grave in this country.

The durability of this concern is well substantiated in
the first section of this book which sets the problem in its
historical setting guoting from H.M. Inspectorate's reports
dating back to 187S, the Hadow Report (1931), the Plowden
Report (1966), Biggs (1967), Primary Education in England
(1978) et al, Readers will no doubt marvel at the self-
assurance of the H.M.I. in 1876 who considered that mathemat-
ics "is a subject which seems to be beyond the comprehension
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of the rural mind". Insights of this nature are not the
exclusive prerogative of the Victorian mind. Readers will
not be less impressed by the confident assertion of a cont-
emporary author that "the reasons for teaching the standard
written algorithms are out of date and that it is time we took
note of this", However this book is "designed to evake the
critical understanding of students" and to this extent at
least it should be successful. The first section on the book
provides the student with a carefully selected compendium of
extracts from the major reports on mathematics teaching and
learning in the United Kingdom over the past fifty years.

Most teachers and student teachers will find these articles
absorbing reading, and some will be tempted to delve back into
the original reports and a few may be tempted to engage in

similar research in this country,

The second section introduces the reader to tuwo ma jor
reports by H.M. Inspectors of Schools - Primary Education in
England and Aspects of Secondary Education in England. These
reports describe contemporary mathematics programmes and "
classroom procedures in English schools and provide interest-
ing comments ranging from the efficaéx of group teaching in
the primary school to the dilemma of postprimary mathematics
teachers attempting to meet the contradictory demands of a
wide range of mathematics in newer schemes as against demands
from local communities for concentration on a narrow range of
traditional arithmetical skills. The dilemma will not be un-
known to Irish teachers of mathematics. The final survey in
this section (Mathematical Development, Foxman et al.) prov-

ides a national picture of pupils' mathematical capabilities.

Section three is concerned with the nature of mathematical
thinking and strategies for developing it. Skemp's article
on concept formation is of enduring interest. He holds that
primary concepts are not acquired through analysing definit-
ions but rather as a result of abstracting a general truth

or law from a variety of experiences and observations, The




school curriculum must therefors provicde adequate opportunity
for active exploration so that the pupil will construct the
mathematical rule before applying it, Such an approach is
very much in the Piagétian tradition and is indeed the found-
ation stone on which the Irish Primary School Curriculum 1371
is built. This is not te say that Piaget is given unguest-
joning fe2alty in this reader. An article by E.R. Hughes
describes a study of the order of acguisition of the concepts
of ueigﬁt, area and volumz which casts serious doubts on some

of the findings of Piaget.

Section four describes a wide range of activities desig-
ned to develop mathematical thinking. The merits of informal
mathematical procedures are extolled and on the whole this
emphasis is to be welcomed, But the reader may feel that the
evidence suggests that we may build on the informal in order
to construct the more economic formal algorithms rather than
discard them altogether. The broad thrust of this section
would appear to be a general denigration of the value of the
traditional algorithms, Such an approach can be justified in
the. interest of evoking the "critical understanding of stud-
ents", It is to be hoped, however, that the students will
value the baby rather more than the bathuater.

Fielker's article on primary schaol geometry will be of
considerable interest to primary and postprimary teachers
wishing to think in a unified structural way about geaometry
rather than presenting pupils with an assertment of enjoyable

but unrelated experiences of shapes.

] The final section is concerned with the views of pract-
ising teachers who have tried to develop mathematical thinking
in their classrooms using "do, talk and record" approaches.
Practical considerations such as grouping within classes,
pupil discussions, the creation of classroom atmosphere, the
development of a consistent school policy etc. are discussed
in the light of teachers' experience at primary and postprim-

ary level.

~ ———
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This volume must surely be regarded as essential reading
for students in education departments in Universities andg
Colleges of Education. It immerses the student in the major
contemporary problems facing teachers of mathematics at prim-
ary and junior cycle postprimary levels. It will also be
invaluable for many mathematics teachers' study groups inter-
ested in identifying, investigating and researching problems
in mathematics teaching and contributing towards the develop-
ment of better mathematics curricula, Finally it should help
to minimize the feeling of isolation experienced by many math-
ematics teachers striving to enthuse their students with an

awareness of the order, unity and beauty of mathematics.

Kevin MeDonagh,
Depantment of Education,
Our Lady of flany College,
Canystort Pank,
Blackrock,

Co. Dubéin,




PROBLEMS

First, the solutions to the December problems.
i
dt

l+tan/zt
u]

'3

The trick with this is to substitute x = 47 - ¢t. Then

1
m
2 Sz

dx - _Eéﬂ__i_dx,

7 z
l+cot/—t tan/—x+l
so that

Z
l+tan/~t
—_— dt =

H

IVE

21
l+tan/Tt

For a set A in R", aSb means that the line segment

Does the condition

5
joining a to b lies in A,
(¥) M™If a,b,ce A then at least ane of the following
nolds  asb, bSe, csa .

imply that A is the union of two convex sets?

The answer is no as the following set shows.

To see that A cannot be written as the union of tuwo convex

sets, consider where the five outer vertices would end up.
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Now, some more problems,

1. Llet T be g ! closed curve in R, Must there exist a
Pair of points in T at which the tangent vectors to T are
parallel but of opposite sense?

2. An electrician is faced with a bundle of n (>2) unmarked
identical wires running from the ground floor to the top floor
of a block of flats,

With the aid of a hell and a battery, and making only one
visit to the top floor, houw should he proceed to match up and
label the top and bottom ends of the wires?

3. Prove, or disprove, that

]
o

inf{|n sin nJ:n=1,2,3,... }
(submitted by 7. Lafley)

4, The following problem arises in Control Theory (Simultan-

eous Stabilization): .

Given rational functions di, dz, n; and N2 which have no
poles in the closed unit disk D and whose zero sets are pair-
wise disjoint in 5, when is it possible to find a rational
function m without poles in D such that neither of the funct-

ions di+mn,, dz+mn,; has any zeros in D?

I7 each of the functions g,, dz2, N1 and n, is self-conjug-
ate (a function f jis self-conjugate if fF(Z) = f(z)), when is

it passible to fing a self conjugate functian m as above?

This problem is equivalent to the following (at least when
the zeros of di1, dz, n; and N2 are simple): When can one fingd

@ rational funmction without poles or zeros in D such that

nalz)
e

if and only if (nid; - nzd1)(z) = g,
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Remaak: 1If we only need ni+md; to be non-vanishing, there is
no restriction on soclving the problem without the self conjug-
ation condition: with this condition, the problem can be
solved if and dnly if the values of d; at all real zeros of

np in D have the same sign.

(submitted by Z.J2. AMurray)

P. Rippon,
Mathematics Faculiy,
Open University,

Milton Keynes,

WORD CONSERVATION

To counter the recent British changeover from the English
billion, which is worth one million million, to the American
billion, of ane thousand million, we advocate the introduction
of the Irish thousand, worth one hundred hundred, as a subst-
itute for the English and American thousand, which is ten
hundred. This would give an Irish billion of ten to the
power of sixteen, which the Americans would have to call ten
guadrillion. By the time we in Ireland have used up one new
word therefore the Americans will have used up three, and be

well on the way to their fourth.

AUTONOMOUS NOTATION

xponential . . X _ .
e log rithm i /e = flu,) s CAT,

SrROPHE

—_———————
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ALGEBRA CONFERENCE

MaRY IMMACULATE CoLLEGE OF EDucaTioN, LIMERICK

12-13 NovemBER, 1982

The principal invited speaker was Professar John Thompson
(Cambridge) who is well knoun to algebraists for his many
fundamental contributions to the theory of finite groups and
in particular to the classification of finite simple groups.,
His first lecture took the form of an anecdotal tour through
the background to the 0dd Order Paper highlighting the decis-
ive influence of Frobenius, Burnside, Brauer and Suzuki.
Without the individual achievements of these great mathemat-

icians the project could not have been undertaken.

In his second, more technical, lecture Professor Thompson
sought to demgnstrate the fundamental and intimate connexions
that exist between the theory of modular functions and finite
group theory. The precise nature of the relationship is
still not clearly understood and new facts are constantly
emerging, In particular Proféﬁgor Thompson announced his
recently proved result that the group known as Monster fits
remarkably well into this scheme as a Galois group over the
rationals. He discussed the possibility that there may lie
the foundation of an overall theory which would put the twenty
six sporadic simple groups into a gnified context, thereby
satisfying those who, like himself, dislike regarding these

exceptions as mere 'bumps in the universe'.

There were three other invited lectures given, appropr-

iately, by speakers from Cork, Dublin and Galway.

Des McHale (University College Cork) described the lives
of Boole and Hamilton seeking to explain why there was so
little contact between them, despite the fact that they lived
in Ireland at the same time for a period of fourteen years.

In a detailed analysis drawn from his own work on Boole and a




recently published biography ot namilton by Hankins, he showed

that this was due essentially to a conflict of personalities

and to differences in social class,
N

Tom Laffey (University College Dublin) gave a survey of

results on similarity and congruence of matrices. In this

most informative talk Professor tLaffey referred particularly

to the similarity {(well known) and congruence (recently proved

by tow among others) of a matrix with its transpose. He

mentioned various refinements of these and concluded with a

discussion of orthogonal similarity,.

The third invited lecturer was Martin Newell (University
College Galway) who has been investigating metabelian groups
of exponent p” in general and of exponent 8 in particular,

He showed that for m > 4 the free group of exponent 9 on m

generators has class at most 3m + 1, This combined with a
result of Liebeck gives the class as exactly 3m + 1. In doing

so he géve us some insight into the trials and tribulatiaons of

the commutator calculus!

Eight shorter talks were given at the conference on subj-

ects variously algebraic, The speakers were: M,J, Curran

(0tago, N.Z. and Oxford),
(Edinburgh), B. Goldsmith (Dublin Institute of Technology),
F. Holland (U.C.C.), R. Gow (U.C.D.) and

D.A. Towers (Lancaster), A.R. Prince

J. Hannah {(U.C.G.),
D.W. Lewis (U.C.D.)

P, Filzpatrnick,
Mathematics Department,
Univensily College
Conk.
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SEMINAR ON MATHEMATICS EDUCATION

This seminar, which was held in St. Patrick's College,
Drumcondra, on November 13th, 1882, was organised by the Irish
Mathematics Teachers Association and was aimed at teachers of
mathematics at all levels., It focused on important aspects
of mathematics teaching including pupil characteristics, mot-
ivation, talented pupils, and gquality of textbooks, Approx-
imately 150 teachers from primary, post-primary and third-level

schools and colleges attended the seminar.

For the first lecture, Dr., Vincent Greaney and Miss Mary
Hegarty of the Educational Research Centre, St. Patrick's
College, presented their findings of a research study of
factors relating to achievement in mathematics in a sample of
fifth grade pupils of above average ability, Their analysis
suggested that pupil variables, such as verbal ability and
reading attainment, together with background variables, swch as
pressure for achievement and mother's educational level,
account for (predict) more than two-thirds of the variation in
mathematics attainment at this grade-level. It also suggested
that home background variables are ;ore relatéd to success in
computation and problem-solving, whereas personal variables are
The find-

ings highlight the apparent importance of non-school factors

more related to success with mathematical concepts.

in determining the performance of fifth grade pupils in math-

ematics.

The second session consisted of a talk by Mr, Peter
MeGrattan of St, Mary's College of Education, Belfast, on
techniques for motivating students to learn mathematics. He
demonstrated to the audience how he makes abstract topics in
mathematics more meaningful and interesting to nis students by
guiding them to comprehend the significance of the topics in
such everyday recreational activities as golf, snooker, darts,

etc.
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Mr. McGrattan was follwed by Mr. Francis Douglas of tne
U,C.C. Education Department who talked about teaching mathem-
atics creatively to ordinary and mathematically talen?ed stud-
ents. He emphasised‘the importance of encouraging ?lvergént
thinking and generalisation on the part of st?dent? in th81r
approach to problem-solving and illustrated his points with .
examples from the teaching of conic section? and the volume :
regular shapes. He also outlined a viewpoint on the roie o
the teacher in catering for the mathematically talented stud-

ents,

For the final sessiaon Miss Catherine Mulryan of the
Education Department in St. Patrick's College, Dub%in, pres-
ented the findings of an analysis of four mathematics textbook
series currently in use in Irish primary school?. The study
examined the textbooks under the following headings: content

overage and continuity, presentation and consolidation, read-
c

ability and technical characteristics such as use of colour,
type size efc The results indicated substantial differences
y .

] i f these groups of
among the four series nf textbooks on all o

characteristics.

The large attendance and the number of positive comments
i uch
in the follow-up gquestionnaire suggested that there is m ct'
- ; .
interest among mathematics teachers in the area of mathematic

education.

R) Close (Hon., Sec., lrish Mathematics Teachers Association)
ean . ,

Depaniment of Education,
St, Patrnick's College,
ADaumcondma,

Dublin 9.
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CONFERENCE ANNOUNCEMENTS

Finite Element Proqramming with Special Emphasis on
Semiconductor Device and Process Modelling, Galway, Ireland,
June 13-14, 1983

In association with the NASECODE III Conference, an
International Short Course an Finite Element Drogramming with
special emphasis on Semiconductor Device angd Process Model] -
ing will be held in the Great Southern Hotel, Galuway, Ireland
on June 13th and l4th, 1983, The conference itself will take
place on the three subsequent days.

The 16 invited lecturers are:

. Arnborg Royal Institute of Technolaogy, Stockholm
K. Board University College, Swanses

A.R Boothroyd Carleton University, Ottauwa

W.T. Cochran Bell Laboratories, Allentouwn

W.T, Coffey Trinity College, Dublin

R.W. Duttaon Stanford University, 3§ tanford

W, Fichtner Bell Laboratories, Murray Hill

A.F. Kravchenko Institute of Semiconductor Physics, Novo-

sibirsk

P. Mole General Electric, Wembley

E. Palm Catholic Unversity of Louvain, Louvain 1la
" Neuve

Rockwell Internatioﬁgl Corporation, Anaheim

Bell Laboratories, Murray Hill

Institute of Electronics, Bologna

Academy of Science, Novosibirsk

Rutherford Laboratories, Didcot

Institute for Theoretical and Applied Mech-
anics, Novosibirsk

«N. Pattanayak
.J. Rose

V. Rzanov
-W. Trowbridge
N. Yanenko

Each lecturer will present a tutorial or review lecture
on a topic in which he has a special interest or knowledge.
The course will be suitable therefore both to those people
wishing to enter this area for the first time, and to those
who feel the need for a review of Lecent results in areas
other than their own,

An exhibition of relevant books, journals and mathemat-
ical software will be held in conjunction with the short

-.Course.
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For a complete programme of the Short Course and the

Conference please contact:

NASECODE III Secesetariat,
c/o Boole Press Ltd.,
P.0. Box 5,

51 Sandycove Road,

Dun Laoghaire.

Cos Dublin,

Telephone 808025.

Summer School an Combinational Optimization

This Summer School will be held at the Natiomal Institute
for Higher Education, Oublin, from July 4th to July 15th,1983.

Each of the invited speakers will deliver an introductory
lecture on his chosen area and a lecture devoted to recent
research in this area. A limited number of contributed

papers will complemént the invited papers.

The following list of topics to be covered is liable to
some modification: Vehicle Routeing, Distribution Problems,
Polyhedral Combinatorics, Probabilistic Analysis of Determin-
istic and Probabilistic Algorithms, Networks and (Poly)Matr-
oids, Parallel Algorithms for Combinatorial Problems, Integer
Programming (Decomposition Methods), Integer Pragramming (L.P.
Based Methods), Polytopes and Complexity, Scheduling and Comp-
lexity, Blocking and Antiblocking.

The invited speakers include: N. Christofides (London),
M.L. Fisher (Philadelphia), M. Grotschel (Bonn), R.M. Karp
(Berkeley), E.L. Lawler (Berkeley), J.K. Lenstra (Amsterdam),

G.L. Nemhauser (Ithaca), M.W. Padberg (New York), C.H. Papad-

imitriou (Athens), A.H.G. Rinnooy Kan (Rotterdam), L.E. Trotter

(Ithaca).

85 -
For further information contact Secretariat, Summer

School on Combinatorial Optimization, N.I,.H.E,, Glasnevin,
Dublin 8,

Galway Group Theory Conference

The next Group Theory conference at University College,
Galway, will be held on May 13th, l4th, 1983, The list of

speakers includes:

Peter Cameron (Oxford)
Gerard Enright (Limerick)
John Hannah (Galway)
Colin Walter (Dublin)
Richard Watson (Maynooth)

For information contact Dr. T. Hurley, Mathematics Department,

University College, Galuway.




