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FEIGENBAUM'S NUMBER

Z. Kennedy

In 1875 Mitchell J. Feigenbaum [}] of the Los Alamos
National Laboratory, whose work concerns the transition from
periodic to aperiodic bahaviour, discovered a new universal
constant which has since been called Feigenbaum's number,

He had been using a programmable calculator to examine the

iteration of One~parameter families of maps af a finite inter-
val into itself, One map he looked at was x + fg(x)=Bx(1l-x);
another was x + 8 sin mx, both on the interval [D,l]. Feigen~
baum observed same commor features of the Parameter dependence

of these maps which he suspects would not have been noticed

Tather than a smal] calculatorLN__Tbe theory of these maps has
been extended by Pierre follet of Paris, Jean-Pierre Eckmann

of Geneva angd H, Koch of Harvard, The topic is reviewed in

For the most part, Collet and Eckmann consider mappings
X > f{x) which are Cl-unimodal. A mapping f of the interval
[-1,1] into itself is Cl-unimodal }f f 1s continuous; fF(0)=1;
fis strictly decreasing on (D,l] and stricfly increasing on
[-1,0); and f ;s once continuously differentiable with f'{x)AD
when x £ 0,

Denoting by £° the identity, flsf, f2=for, fn_popn-1 the
sets of iterates of points x g [-l,l]

Or(x) = {x, f(x), F2(x), £3(x) ...}

are called the orbits of f. A point x ¢ [-l,l] is called a
periodic point for f if Op(x) is a finite set, The cardin-

ality of this set is called the period of x ang O0f(x) is called
the periodic orbit of X,

It is then also the periodic orbit of



means d
dx*
neighbourhood of
periodic orbit of period p fo
periodic orbit when, for x € P, [DFP(x) | < 1.
rule,
points of P are then fixed points of P,
a stable periodic orbit, many starting points give rise to

definition of a Cl-unimodal function th
orbit is superstable iff DfFP(x) = 0 for x € P.

used the concept of ne

to discuss the existence of stable periodic orbits.
at 5SFf(x) < 0 for all x € [-1,1] is a more precise
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f0(x) for all n > 0.

It is well known that if X is a fixed point of x + g(x)

it will be a stable fixed peint provided [0g(X) | <1 where Og

£a Then iterations of the map which start in the

% will eventually converge to X. If P is a
r f the orbit is called a stable
By the chain

DFP(x) takes the same value for all x € P, and all the
Thus in the case of

similar behaviour as the number of iterations becomes large.

A periodic orbit P is called superstable if Q0 ¢ P.

From the
is means that a periodic
Singer [4] has

gative Schuwartzian derivative defined by

p(x) 3| En(x)
£1(x) 2{F ' (x)

Hl

5 f(x)

The

requirement th
t of the shape of functions considered than Cl-unimod-

statemen
Singer concludes

ality.
that a function f which is c!
for all x e’[-l,l] has at most one stable periodic orbit plus

interval [-1, f(1)).
then f has

Ignoring some technical details,
-unimodal and for which §f(x) <0

possibly a stable fixed point in the
If 0 is not attracted to a stable periodic orbit,
no stable periodic orbit in [f(l), l]. Further, there exist
ying Singer's conditions which do not have a

functions satisf
periodic orbit and maps of swuch functions have ergodic

stable
properties.

Collet and Eckmann use numerical results for the mapping

x + fg{x}) = 1 - Bx?2,
where B is a parameter in the range [0,2] to illustrate these
.75 iteration of the mapping

ideas. For a value of B £ Ba=

Periog 2n-
Bm = 1_401

orbi .
Thits which have y
@ppear, &

. F
0T .75 = g« B<B, -

1
1] are eventuajly

By is

et . F w
Or most values of Bn hich Converge tq

uired, n Mult]
COllet and Eck Dle-preclslo” a
mann gjiye the "fo1 Tithmetic is re
Ollowin Q-
9 table
n
8
n B - Br.y
1 Bn+1 Bn
2
: et I
1.3660389 4.233
5 394 .« 738275
: I e
7 1. i0ngai2389 4 a5807493
g 14008287424 4 oo3938185
9 10401} eg2)t3 i 5ogy03872
10 104017 e02h4698 il 5agy 08942
11 1.4 51982029 4' 9147452
o 01154502237 .559190003

8h - B

N=]
—— -1
8n+1 <78,

1.401155041999 4+ 589196223
Not onj
y d
G the B Converge tg 4 1i
imit g
o

but the ratips



also seem to converge to a limit § .

It has been established ([2], [5]) that, for sufficiently

smooth families of mamss, the number 6 does not in general

depend on the family and families similar to the one discussed

here produce asymptotically

N

|B, - Bl ~ canst. s,

where 7

§ = 4,6692016 ...

the universality of
d on the

is Feigenbaum's number. More precisely,

what relative in that its value does depen

§ is some
re assumed to

function space in which the mapping functions a
lie.

Feigenbaum discovered the universality of § experimentally

and then proposed an explanaticn suggested by the renormaliz-
Collet, Eckmann

ation group. approach to critic3l phenomena.

and Laﬁford [5] have proved rigorously, at least in a certain

limiting regime, tbe existence of the scheme outlined by

Feigenbaum.

There is another type of scaling which can again be ill-

ustrated by the mapping.
x » 1 - Bx2,

For large n it is found that as each bifurcation point is

passed the pattern of the orbits exhibits a certain reqularity.

nsidering the parameter range

This may be exemplified by co
It is

(8, B where stable orbits of period 20 gccur.
n n+l
s one value of B in this range which

found that there is alway
= 0.

a superstable orbit containing the point x

gives rise to
d that on such a superstable orbit the

foun

It is further
the point at zero to its nearest neighbour is,

distance from

for large n, A" where A is another universal constant

A = -0,3895 ...

e

nonlinear,

route
to chaos with univers
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1 :
nNdeed if o jg defined by

(=)
Q
]
b

e x(B-8,) and a

hori
1zontal scale log B~
for lar
ge n,

Bml then,

diagram
appear .
S 8 periodic

Finally the value, B
@’

itio . of th
N to ergodic behaviour o € Parameter at yhic

ccurs is, h trans-

in general,
ass consi

) ) Nsidere
Swever the function >

differeht
435 are the funct-

F(x) = Lim 2
£ n
Lin f30%)

is i
8 universal function

to f(0) - P to 2 change of scale

Xxpansion If scaleg

1 it has the e

f -
(x) =1 - 1.52753x2

- 0.267057 , 3

+ 0-10481§x“ :
L] s X +

e

8
Y construction f satisfi
es

Fof(Ax) = ar(x)
which evaluated at x=0 gi
= ves
Py =

(1) 1

al
SO show that f may pe
used

eigenvaluye gof the linear

h(.) > i,
AT s et nea. |

1 I e,
lll v ¢ d a sSimpl ‘
Receut Y Ro ns and Hur t 6 ‘ave mo ielle

m which exhibits the
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PATHS IN A GRAPH

dohannes Siemons

In a connected graph any two vertices can be joined by a
sequence of edges, This is the definition of connectedness
for graphs. However, how do you find a path joining a given
pair of vertices, and houw do you decide effectively if & graph
is connected ? These are the questions I shall discuss in
this note. The graphs we consider are finite, undirected and
have no loops or multiple edges, A path is a sequence
{v',ui} = e, {vi,va} = e,, srees {vpog,um} = er of edges
without repetition (of edges: vertices may occur Tepeatedly),
The vertices y!? and v" are the end vertices of the path.

A popular version of this problem is to find the exit in
a maze, We have to distinguish tws cases, In the first
instance, imagine that we are actually inside a maze without
knowing its overall design, Here the only solution seems to
be trial and error., A successfuyl Toyte to the exit is very
unlikely to be a path according to our‘definition. In fact,
the pProbability to reach the exit on a path is less than 2-c,
where ¢ is the number of intermediate Jjunctions on a path to
the exit (provided that there is only one such path in the
maze), In other words, it is almost impossible to avoid
walking into a cul-de-sac! However, most commonly, maze
Puzzles are done with Paper and pencil, and the design of the
maze is right in front of your eyes, In this situation, can
You avoid a cul-de-sac? The ansuer is yes, there is a

construction for a path to the exit!

From a set P of edges let V(P) be the set of end vertices
of edges in P, For a vertex v in the graph, let do(v) be the
number of edges in P that end at v, A cycle is a Fath that
ends in its imitial vertex, Our construction is based upon

the following simple cbservation:




