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The result is certainly true if fFly) = f(x). If not,
form the function ¢(t) by - 69 -

o(t) = <F(¥)-F(x),Fx+tly=-x))>/1F{y)-F(x)] A SINPLE PR
O0F_OF TAYLOR'S THr
HEOREM

where <,> denotes the inner product in Ry. Then
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also differentiable. Of course, ¢ itself is well-defined
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" of the proof remains valid.
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