24.
ON THE DEFINITION OF MEASURABILITY FOR

VECTOR VALUED FUNCTIONS

J.J.M. Chadwick

Various conditions for measurability of a real-valued function
» are examined in the more general case of a vector valued function.

1. Introduction

In the book "Vector Measures" by Diestel and Uhl, a function £:Q+ X
(where X is a Banach Space and (2,Z,u) is a measure space) is called
measurable if f is a pointwise almost everywhere limit of measurable simple
functions. No mention at all is made of the standard definition in terms
of open sets i.e. £ is measurable provided f_l(G) is measurable for every
open set G.

It is well known that the two definitions are equivalent in the case
of real-valued functions. This is established in Section 2 below. Naturally,
one asks whether the two conditions are also equivalent in the more general
case of vector valued functions. An attempt is made in Section 3 to gener-
alise the standard arguments for the real-valued case to those functions
which take their values in a Banach Space.

The generalisation of well-known arguments is not merely a formal
exercise, In the process insight is gained into these arguments. For ex-—
ample, the separability of the reals is vital to many of the standard proofs.
The standard proof that a measurable real-valued function is a pointwise
limit of measurable simple functions depends on the fact that any bounded
set can be covered by finitely many translates of a given open interval.
This means that the proofdyill only generalise to Montel spaces (i.e.

locally convex spaceé in which bounded sets are totally bounded) .
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The question of why Diestel and Uhl use the definition in terms of

simple functions,rather than the topological definition in terms of open
sets,will occur to any&ne who reads the book. The answer is presumably
known and in the literature somewhere. I have not looked for it. Moreover,
I have not answered the question fully here. However, the partial results
obtained here may be of some interest and perhaps a member of the Irish
Mathematical Society will find the enthusiasm to establish the converse

of Theorem 3.10 or, alternatively, to find reasonable necessary and suffi-~
cient conditions for the existence of a nonmeasurable function which is
topologically measurable.

The notation (2,Z,u) stands for a finite measure space i.e. a non-
empty set Q , a og~algebra I of subsets of Q and a finite, positive, count-
ably additive measure y on % . . The reader is assumed to be familiar with
the terminology in the preceding sentence and should have some acquaint-

ance with elementary measure theory and functional analysis.
®

.

2, Real-valued measurable functions.

The various equivalent conditions for measurability of a real-
valued function on a measure space (Q,%,u) are presented here. The proofs
are well-known. I give them partly as motivation for section 3 and partly
in order to see how they might be generalised to vector-valued functions.
There is little point in going for full generality here. It is assumed
that the measure u is finite (i.e. u() < =) and that the functions are
real-valued. Since the notion of an extended-real-valued function does

not readily generalise, I do not consider it at all.
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2.1 Definition. A function £:0 + R is called measurable if

f—l((u,wﬁ) = {w € Q:f(w) > 2} is measurable for each real a.

It is hopeltss to consider generalising this definition as it stands.
If the set R of real numbers is replaced by an arbitrary topological space,
or even a Banach Space, the ordering is lost and the definition makes no
sense. One must lock for equivalent conditions which involve the topology

’
of ® in some way.

2.2 Lemma. If f£:0 + R is measurable then the set {w €Q:f (w) > al

is measurable for every real a.

[~

Proof. I can write {w€ Q:f(w) >al = N {w € Q:f(w)> u—l/n}. Since f is
n=1

measurable, each of the sets {w € Q:f(w) > a—l/n} is measurable. Since the
o-algebra is closed under countable intersections the set

{w € 2:£(w) > o} is measurable.

2.3 Corollary. 1If f£f:Q + R is measurable then f-l(I) is measurable for

every bounded open interval I.

Proof. Set I = (a,B) and note that f_l(I)={w€Q:f(m)> al N {w€Q:£(w) < B}
={w € Q:f(w) >a} N [Q ~{w € 9:£{w) > 8}]. Lemma 2.2 together with the

-1
properties of the o-algebra now quarantees that f ~(I) is measurable.
The first equivalent condition for measurability can now be established,

_1 .
2.4 Theorem. A function f:2 + R is measurable if and only if £ “(G) is

measurable for every open subset G of R.

Proof. Suppose that f is measurable. The bounded open intervals with
rational endpoints form a countable base for the topology on R. Therefore,

if G is open, I can find a sequence (In) of bounded open intervals such
--] [--]
that G = U In' Then f—l(G) = U f_l(In). Since each f-l(In) i1s measure-
n=1 n=1
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~1
able by the above Corollary, £ “(G) is also measurable. The converse is

clear since (g,« is open.

Notice how the proof depends on the fact that the topology has a
countable base. There would be ro way of proceeding if we had to write G

as an uncountable union of intervals.

2.5 Definition. A simple function S:Q > R is a function with finite

range. If S(R) = {ul, e an} then we can write § = ZT a where

1Xg,
i

Ei ={w € Q:5(w) = ui} and, for any subset A of @, XA(w)-= 1, w €A
0, w € A

It is easy to see that § = Z? aiXE 1s measurable if and only if each E,
. i
i

is measurable,

2.6 Theorem. If £:2 + R is measurable, then there exists a sequence
(Sn) of mesurable simple functions such that Sn(m) + f(w) (n + &) for
every w in Q.

Proof. For each n and for -n2™+1 < k < n2" write

_ -n -n
E =1{w€2:(k-1)2"" < £(u) < k2 7}. Then each Enk is measurable, since
LI

s

it is the inverse image of a half-open interval. The sets E_ are disjoint.
™

. -n R
Write Sn = I k2 Xg the sum being over all values of k from~n2"+1 to

T

n :
n2". Now Sn 1s a measurable simple function. For any w € 2, select N such
that{f(w)| < N. If n > N then l£(w)| < n and so -n < £(w) < n. There
. -n - -
exists k with -n2 41 <k <m % such that (k-1)27" < flw) < k277, Then
w € Enk and we get S (w) = k27", Since (k-1)27 < f(u) < k2 we have
lSn(w) - fw)l < 2™, 1t follows that Sn(m) + f{w) (n > w) |

I mention here that, of all the Proofs in this section, the one I

have just given is the most difficult to generalise. Indeed, it is because

of this that the various equivalent conditions for measurability in this




|
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section do not remain equivalent in the more general setting of section 3.

The above proof seems to depend ultimately on the fact that bounded sets
are totally bounded.‘ This is not true for the norm topology on an in-

finite~dimensional Banach Space. (It is true for the weak topology, and
one should be able to find a generalisation of the above result to that

case, with a bit of effort.)

2.7 'Theorem. If there exists a sequence (S )} of measurable simple funct-
q n D

ions such that Sn - f pointwise on Q , then f is measurable.

Proof. The fact that the Sn are simple functions is not needed at all.
© ;

Let o be real. I claim that f_l((a,w)) = u U n S_l((qf”)).
g>a N=1 n>nN "
gq rational
This is reasoned wut as follows. Suppose that w € f—l((a;”)) i.e.

f(w) € a. There exists a rational q > o such that f(w) >q. Since

Sn(w) =+ £(©) (n = =) there exists N such that Sn(w) > g for all n > N.

(-] <
But this all means that w € U 4] n st ({g,=))
: g >a N=1 n=N+1 D
g rational

The argument is essentially reversible: if ® is in the latter set there
o o0

exists @ > @ such that w € U n 5;1((qu*)). Then there exists N
N=1 n=N+1
such that w ¢ S-i((q,m)) for all n> N i.e. Sn(w) > g for all n> N. Since
-1
Sn(w) = £(®) (n =+ =) we then get f(w) > g>a. Consequently w € £ ~((a,0)),
Therefore the set equality holds. Since each Sn is measurable, the sets
S;l{(q,m)) are all measurable. Since the unions and intersection are count-
<« -]
able, theset U U n st tt@en
q >qa N=1 n=N+1
q rational
is measurable i.e. f-l((u,w)) is measurable, as reqguired.

Observe that the set of rationals plays a fundamental role in the

proof. Any generalisation of this type will involve separability.
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3 Vector-valued functions.

We can now lock at the case where the function f with domain Q
takes its values in a Banach Space X. In view of the results on real-
valued functions, there are two reasonable definitions of measurability
available in the more general case. The first is purely topological in

nature and does not mention the measure u at all.

3.1 Definition. Let X be a Banach Space and let f:Q -+ X. Say that f
is topologically measurable if f_l(G) is measurable for every open subset
G of X.

The secona definition is based on Theorems 2.6 and 2.7 but the
pointwise convergence requirement is relaxed somewhat. This definition
involves the measure § , because sets of measure zero are important here.
The theory of vector measures is based on this approach and depends com~
pletely on it. A simple function S:R > X is a function with finite range.

If S(Q) = {x1 .ee xn} we can write § = Z; xiin where E, = {w€ﬂ:s(m)=xi}.

Such a simple function is called measurable if each Ei is measurable.
.

3.2 Definition. Say that a function £:0 - X is mbasurable provided there
is a sequence (Sn) of measurable simple functions such that Sn - f a.e.
onﬂ,inumsmmeuutlwnm)—me[* O(n + )} for almost all w.

The objective is to investigate the equivalence of measurability
and topological measurability so let us first dispose of the case of

simple functions.

3.3 Proposition. A simple function $:Q -+ X is measurable if and only if

it is topologically measurable.
Proof. Let s ==I:_1xixE be measurable. Let G be an open subset of X.
: i

If S-l(G) = ¢ then S-l(G) is measurable. Otherwise S_l(G) = UE
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which is measurable, since {xi:xiEG} is finite. Conversely, if S l(G) is
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open for every open set G, I can show that each E, is measurable as hand side of (*} there exists a rational 4 < r such that for some N,
- - -1
follows. I have E =S l({xi]) =Q -5 l(x_{xi})_ Since X -{xi} is open, w € 5 (Bq)A N A for all n > N. Thus w € A and IISn(w) - xll < q for all
- - i -1
s l(x _ {xi}) is measurable and therefore so is E, =0 -5 1(x - {xi})' n > N. This gives |[f(w) - x|| fqgq<randsow€f (B) NA. The

equality (*) is established and tne fact that f_l(B) N A is measurable
3.4 Proposition. If £:Q = X is measurable then f is "essentially separa-

now follows from Proposition 3.3 and the properties of the ¢-algebra.
bly valued" in the sense that there is a subset A of Q such that

uth-a) = 0 and £(a) is separable. . 3.6 Theorem. If f is measurable then f is topologically measurable.
Proof. Write A = {y € 2:8 (w) =+ £{(w)} vhere (s) is a sequence of measure- Proof. let (S ) and A be as in the proof of Lemma 3.5. Let G be any
® : . -1 -1 -1
able simple functions with § - f a.e. Then B(R-A) = 0. Now U Sn @ ; open subset of X. Since £ ~(G) = {£ "l n (p-2}] v [£ 7(e) n Al it is
n
, n=1 j -1 -1
is countable since each 5 (A} is finite. Moreover, if S, () - f(w) then : enough to show that the sets £~ (G) N (0-A) and £ (G) N A are measureable.
— —_— . ; se s
» ; The first of these is measurable since it is a subset of the set Q-aA
flw) € U Sn(Q) . Consequently f(A) c U Sn(fl) which is separable. This
=1 n=1 i which has measure zero. Observe that £ L @ na=¢t@n fAa) na, sy

means that f(A) is separable.
Proposition 3.4 f(a) is separable. This means that the relative topology

3.5 Lemma. Let f be measurable and let B = B(x,r) = {y:lx-yll < r} be on £(A) has a countable base of open balls. Consequently I can find a
@«

any open bali. Then f_l(B) is measurable.

Sequence (Bn) of open balls in X with G 1 £(a) = U B_N £(a)
n
i n=1
]
Proof. There is a sequence (Sn) of measurable simple functions such that : Now we get
J «
ite A = . -A) = : -1 -1 -1 S
S ,*fae.onqQ. wWrited={u€ Q:S {w) -+ £(w)} so that u(g-a) = o. | f7@nNa = £ cns@a)na = ¢ (u B N«@na
] n=1
For any t > O put Bt = {y:Ilx-yl| < t}. First of all, ! ®

-1 ~1 -1 = U f_l(B N f@YNa = .
E7B) =[£7® 0 (@a)] U [£ (8 N Al so it suffices to show that the n=1 n i
sets f-l (B) N (Q-a) angd f-l (B} N A are both measurable. The set < 1 -1 @
= Uf (Bn) NEf (EWB) NA =U £ (Bn) na,
f_l (B) N (Q-A) is certainly measurable since it is a subset of -2 which n=1 X n=1
- -1
has measure zero. In order to show that £ Y(B) N A is measurable we show since £ "(£(A))N A = a, ‘
«© @
- -1 i
first that f—l (B) NA = U U n [s 1(;3 ynal (%) But now each of the sets f (B ) is measurable by Lemma 3.5. It follows
n q n i
q < r N=l n=N+l -1 -1 !
q rational that £ (Bn) N A is measurable for each n and therefore so is £ (G) N 4. i
Let w € £ 1(B) N a. Then [[f{w) - x|l < r. Select a rational q < r such This completes the proof. ;
that [{1f(w) - xI| < d. Since w € A, I have S (w) - f£(w) (n = ), There- j At this point the investigation is half over. It is established
J n )

fore there is an N such that IS (w) - x|| < q for all n > N, All of that measurability implies topological measurability. It would be nice if
n

this shows that w is in the right hand side of (*}. If w is in the right the converse could be established,but we run into problems. However, a

partial converse can be found, and it will be convenient to use the follow-
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ing known result from the theory of vector-valued measurable functions.

(see Diestel and Uhl).

3.7 Pettis Megsurability Theorem. Let £:Q + X where X is a Banach Space

Then f is measurable if and only if f is essentially separably valued and
weakly measurable (in the sense that the real-valued function gof is

measurable for every ¢ in the dual X* of X)

3.8 Theorem. If f is topologically measurable and essentially separably

valued then f is measurable.

Proof. By the Pettis Measurability Theorem, it is enough to show that
1f @ € X* then of is measurable (as a real-valued function on Q). By
section 2, it suffices to show that ¢of is topologically measurable. Let
G be an open subset of R. Then Gpof)-l(G) = f~1(¢rl(G)). Now ¢ —l(G)
is open since ¢ is continuous. Then f—l(w—l(G)) is measurable since f is
topolbgically measurable. It follows that ¢of is measurable.

The only remaining question is whether the condition that f is
essentially separably valued can be dropped from Theorem 3.8. In order
to obtain more insight, we can adopt the following device which simplifies

the problem conceptually.

3.9 Proposition. The following are equivalent
(a) There exists a measure space (Q,Z,y) and a topologically
measurable function £:Q - X which is not measurable,
(b) There exists aBorel measure A on X such that the identity on
X is not A-measurable.
(c}] There exists a Borel measure A on X which is not concentrated
on any separable subset of X i.e. such that there is no separable

subset P of X with A(X-P) = oO.
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Proof (a) = (b). Suppose that (a) holds. The collection

m=1{ec X:f-l(E) is measurable} is a o-algebra on X, as is easily veri-
fied. Since f is topologically measurable?ﬂ contains the open sets and
therefore also contains the Borcl sets of X. Define M(E)= u(f-l(E)) for
every Borel set E. Then A is a Borel measure on X. Suppose that the
identity is A-measurable. There exists a sequence sn:x -+ X of
A-measurable simple functions with Sn(x) *+ x a.e. on X. Let

E = {x:8 (x) » x} so that A(X-E ) = o. Define t :Q * X by t = § of.
o n 0 n n n

- -1, -1
Then tn has finite range. Moreover, if G € X is open then tnl(G)=f (Sn (G)).

But §_'(G) is A-measurable and so f‘l(s;l(c;)) is (u-)measurable. This
means that tn is topologically measurable and therefore measurable by
Proposition 3.3. If w € £ 1(E) then f(u) € E, and 50 §_(£(w)) * £(u)
(n > =), This gives t = fon f'l(Eo). But @ - f"l(Eo) =l - E)
and u(f_l(x—Eo)) = A(X—Eo) = 0. Hence tn =+ f a.e. on Q and f is measure-
able. This contradicts the assumption that (a) holds and therefore the
identity on X cannot be A-measurable.
(b) =(c). If (b) holds then the identity on X‘is topologically measurable
but not measurable. By Theorem 3.8 the identity cannot be essentially
separably valued. This establishes (c) at once.
(c) =» (a). Let Q2 = X, Let X be the Borel algebra on X and take f as the
identity on X. Then f is topologically measurable. However, for the given
measure A there is no sequence (Sn) of measurable simple functions converg-
ing almost everywhere to f. If there were such a sequence then f would be
essentially separately valued, which is impossible, since X is not concent-
rated on any separable subset of X.

The problem now reduces to finding an answer to the following quests-
ion: is it possible to have a Banach Space X and a finite Borel measure )

on X which is not concentrated on any separable subset of X?
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The question is related to Ulam'® Measure Problem: does there exist
a set D and measure v such that every subset of D is measurable,
0 < v(0) <= .and every countable subset of D has measure zero?

The answer to this question is somewhere in the foundations.

3.10 Theorem. If the answer to Ulam's Measure Problem is ‘Yes' then

there exists a topologically measurable function which is not measurable.

Proof. Let D be a set with measure v satisfying ylam's criteria. Let X
be the Hilbert space £Z(D) consisting of all functions ¢:D ~»R for‘which
{8€D : @(6) + O} is countable and 25 € le(5)|2 is finite. The inner
product on £2(D) is given by < @ y > = ZGEDw(GPw(G). The measure space is

(0,2°,v) and we define £:D - X by £(8) = &, where Le0y) = { o y #6
1 y =96

As 1s well-known, the set {26:6€ D} is an orthonormal basis for 22(D) and
so HL6 - %yll = 2 for § 4 Y- The set £(D) therefore has no limit points
and so every subset of f(D) is closed. This means that a subset of £(D) is
separable if and only if it is countable.

If f is measurable then it is essentially separably valued and so
there is a subset A of D with v(D-A) = O and f£(A) separable. But then
f(A) is countable and hence so is A which gives Vv(A) = O. Now we have
v(D}) = v(A} +v(D-A) = O, a contradiction. This means that £ is not measure-
able.

It would be nice to complete the work by proving the converse of
Theorem 3.10. However, I have not succeeded in establishing it. My numer-
ous attempts have left me with the impression that the converse holds. On
the other hand, the fact that those attempts failed leaves room for doubt.

It is left to the reader to pursue this question.
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