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NEWS

The sudden death of Dr. J.J. McMahon in September shocked the
Irish mathematical community. Dr. McMahon was formerly Professor of
Mathematics at Maynooth, and also spent some years teaching in Africa.

His most recent position was at Thomond College Limerick, and he was
currently on the committee of the Irish Mathematical Society.

Dr. Richard Aron is at present on leave of absence from T.C.D.

He is spending the 1981-82 academic year at Kent State University.

Dr. J. Dudziak (Indiana) is replacing Richard Aron at T.C.D. for
1981-82. His field of interest is Spectral Theory and Functional
Analysis.

Dr. M. Klimek has taken up a Dept. of Education Post-Doctoral position
at® T.C.D. ‘Dr. Klimek is froa Krakov (Foland) and works in Potential
Theory.

Professor Sean Tobin (U.C.G.) is spending the academic year 1981-82
at the University of Freiburg (Germany).

Dr. Gareth Thomas (Bristol) has joined the Mathematical Physics Dept.
at U.C.C. Dr. Thomas works in Fluid Mechanics.

Dr. Gordon Lessells has taken up a position at N.I.H.E.(Limerick).
His field of interest is Analysis. Last year, Dr. Lessells was at u.c.cC.

Dr. Michael Clancy has joined the Mathematics Department at N.I.H.E.
(Dublin).

Mr. Paul Barry has joined the staff of the Regional Technical College,

Waterford.



Dr. Ralph Saxton has left U.C.D. Mathematical Physics Dept. to take
up a position at Brunel University, London.

Dr. David Reynolds has joined the Mathematical Physics Dept. at U.C.D.
His field of research is Continuum Mechanics.

Dr. Brian Smyth (Notre Dame) and Dr. Benedict Seifert (I.H.E.S.,
Paris) have joined the Mathematics Department at U.C.D. Dr. Smyth works
in Differential Geometry and Dr. Seifert works in Group Representations.

Dr. Kasia Woloszynska (Warsaw) is spending the year at U.C.D.
Mathematical Physics Dept. Dr. Woloszynska works in Continuum Mechanics, and
is on an N.B.S.T. Fellowship. Dr. Lmmanuel Buffet .(Paris) and Dr. Grainne
O'Brien have taken up Department of Education Post-Doctoral Fellowships.
Dr. Buffet works in Statistical Mechanics and Dr. O'Brien in General
Relativity.

Dr. Norman Fenton (Sheffield) has taken up a Department of Education
Post-Doctoral Fellowship at U.C.D. Mathematics Department. His field of
research is Matroids and Commutative Algebra.

Professors T.J. Laffey (U.C.D.) and A.G. O'Farrell (Maynooth) were

elected to membership of the Royal Irish Academy in March.

7 .
Sean Dineen



RULE 1

Current

Proposed

RULE 4

Current

Proposed

RULE 5

Current

Proposed

MOTION FOR CHANGE IN RULES OF IRISH MATHEMATICAL SOCIETY
(Proposed by Committee)

Every ordinary member shall pay, on election to
membership and on the first day of October in each
succeeding session an annual subscription to be determined
by the Committee.

Every ordinary member shall pay, on application for
membership and during the month of January in each succeeding
session an annual subscription to be determined by the
Committee. A change in the annual subscription shall be

ratified by a meeting of the Society.

The term of office shall be two years in the case of the

President and Vice-President.

B e

~“The President and Vice-President may not continue in
ward (Koon ///)
office forNtwo consecutive terms. e

The term of office of the office-bearers and of the

Committee shall be two years.

Y

The additional members of the Committee shall be elected
annually as shall the Treasurer and Secretary at the first
ordinary meeting of each session.

On alternate years, elections for the following positions
will take place

(a) President, Vice—Pfesident and one half the
additional members of the Committee;

(b) Secretary, Treasurer and one half the additional
members of the Committee.



GALWAY GROUP THEORY CONFERENCE

The annual I.M.S. Mini-conference on Group Theory was held in U.C.G.
in May. The speakers were Dr. John Lennox (Cardiff), Professor Sean Tobin,
Dr. Michael Barry and Dr. Johannes Siemons. Each year, this is a most
enjoyable and informative get-together of the algebraists in the country
and Professor Martin Newell and his colleagues warmly deserve our gratitude

for organising it (and performing ''e annual miracle with the weather).



DUBLIN INSTITUTE FOR ADVANCED STUDIES

CHRISTMAS SYMPOSIUM

Monday and Tuesday, 21st and 22nd December 1981

MAIN TALKS

MONDAY

Dr. A.I. Solomon (Open University) "Applications of Lie

Algebras to Many-Body Problems'".

TUESDAY
Dr. D. McCrea (U.C.D.) '"The Structure of Singularities in
Space-Time'.

Prof. A.G. O'Farrell (Maynooth) 'The Approximation of Functions

of Two Variables by Sums of Functions of One Variable'.

Dr. R.S. Ward (T.C.D.) " PDEs and Geometry: Weierstrass,

Whittaker and Yang-Mills Monopoles'.
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IRISH NATIONAL MATHEMATICS CONTEST

The contest was held in March and was very successful, the number
entering having again increased, and returns were received on behalf of
over 1,600 students. This year's winner, Seamus Moran, of O'Connell
School, Dublin, achieved the highest mark attained in the contest here
so far. The contest was supported by the Educational Company of Ireland,
the Irish Mathematics Teachers As<nciation and the Irish Mathematical

Society.
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NATIONAL MATHEMATICS CONTEST 1981

Individual Roll of Honour

SCORE STUDENT SCHOOL COUNTY
114 Seamus Moran 0'Connell School Dublin
100 Gerard Lawless Blackrock College Dublin

99 Terri Raftery St. Joseph's, Glenamaddy Galway
94 Stephen Doyle Belvedere College Dublin
94 Mary Garvey St. Joseph's, Glenamuddy Galway
91 Donal Hayes Col. an Spioraid Naoimh Cork
90 Deirdre Grady St. Joseph's, Glenamaddy Galway
89 Balfour Lambert Newpark Comprehensive, Blackrock Dublin
89 Michael Lynch Col. an Spioraid Naoimh Cork
88 Stephen Ming Tsang Col. an Spioraid Naoimh Cork
88 Michael Moriarty Christian Bros. College Cork
88 Derek O'Leary Col. an Spioraid Naoimh Cork
86 David Butler Belvedere College Dublin
86 James Cunnane Christian Bros. College Cork
86 Jonathan O'Connor Blackrock College Dublin
85 John Geoghegan 0'Connell School Dublin
85 Naveen Goswami Sandymount High School Dublin
85 Aidan Kerins 0'Connell School Dublin
85 Fintan Lucy Presentation Bros. College Cork
84 John Hegarty St. Colman's College, Claremorris Mayo
84 Rory Murray Oatlands College, Stillorgan Dublin
84 Brendan 0O'Connor 0'Connell School Dublin
84 Padraig Quill St. Munchin's College Limerick
83 Joe Collins St. Kieran's College Kilkenny
83 Colin Hassett Presentation Bros. College Cork
82 Fergus Coakley Presentation Bros. College Cork
82 Declan Keegan Presentation Bros. College Cork
82 Patrick O'Brien Presentation Bros. College Cork
82 Brendan Walsh Presentation Bros. College Cork
82 Ronan Boland Col. an Spioraid Naoimh Cork
82 Cormac Conroy Col. an Spioraid Naoimh Cork
82 Sharon Reid

Sligo Grammar School

Sligo
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SCORE STUDENT SCHOOL SOUN T
81 Francis Cagney St. Munchin's College Limerick
81 Sean Coffey Oatlands College, Stillorgan Dublin
81 Martin Cosgrove Christian Bros. School Dundalk Louth
81 Gerard Garvey O0'Connell School Dublin
81 Tomas Jones Christian Bros. School Enniscorthy Wexford
80 Paraic Begley Christian Bros. School Dundalk Louth
80 Sheung Ming Chu St. Mary's College, Dundalk Louth
80 Eugene Cosgrave Col. Iognaid Ris, Deerpark Cork
80 Peter Finnegan Beneavin College, Finglas Dublin
80 Mervyn Lang Bandon Grammar School Cork
80 Brian Martin Bencavi.. College, Finglas Dublin
80 Jim Quigley Marian College, Ballsbridge Dublin
80 Finbar Sheehy

St. Kieran's College

Kilkenny
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SCHOOL ROLL OF HONOUR

SCORE SCHOOL Team (Top 3)

284 O'Connell School, Dublin 1 Seamus Moran

John Geoghegan
Aidan Kerins

283 St. Joseph's, Glenamaddy, Co. Galway Terri Raftery
Mary Garvey
Deirdre Grady

268 Colaiste an Spioraid Naoimh, Cork Donal Hayes
Michael Lynch

Stephen Ming Tsang/
Derek O'Leary

263 Blackrock College, Blackrock, Co. Dublin Gerard Lawless
Jonathan O'Connor
John Rafter

256 Belvedere College, Dublin 1 Stephen Doyle

David Butler

David Boushel/
Michael Higgins/
Paul Timmons
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INTERNATIONAL MATHEMATICAL OLYMPIAD

The 1981 International Mathematical Olympiad was held in the U.S.
in July. This is the first time the event has been held in the Western
Hemisphere. Twenty-seven nations competed. The U.S.A. won, four of their
team (of eight) actually achieved perfect scores. Ireland has yet to
compete in the olympiad. Many countries use their National Mathematics
Contest as a qualification for their olympiad team. This could easily be
done here also, the difficulty being to obtain sponsorship to then pay for
the team's transportation to the olympiad venue, etc. Hopefully, when the

recession ends such sponsorship will be forthcoming.

1981 Olympiad Questions

1. P is a point inside a given triangle ABC. D,E,F are the feet of the
perpendiculars from P to the lines BC,CA,AB, respectively. Find all

P for which
BC, CA, AB

is least.
PD PE PF

2. Let 1sr<n and consider all subsets of r elements of the set
{1,2,...,n}. Also consider the least number in each of these subsets.
F(n,r) denotes the arithmetic mean of these least numbers; prove that

n+l
r+1

F(n,r) =

. . 2 2 .
3. Determine the maximum value of m +n , where m and n are integers

satisfying m,n€ {1,2,...,1981} and (nz--mn-—mz)2 = 1.
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(a) For which values of n>2 is there a set of n consecutive
positive integers such that the largest number in the set is a

divisor of the least common multiple of the remaining n-1 numbers?

(b) For which values of n>2 is there exactly one set having the

stated property?

Three congruent circles have a common point 0 and lie inside a given
triangle. LEach circle touches a pair of sides of the triangle.
Prove thut the incentre and the circumcentre of the triangle, and the

point O are collinear.

The function f(x,y) satisfies

(1) £(0,y) = y+1,
(2) f(x+1,0) = f(x,1),

(3) flx+l,y+1) = £(x,f(x+l,y)),

for all non-negative integers X,y. Determine £(4,1981).
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LEAVING CERTIFICATE COURSES

The statistics on the next page concerning the number of students who

attempted the Honours Leaving Certificate Course in Mathematics, Applied

Mathematics, Physics and Chemistry have been compiled by Professor M.A. Hayes.

They should form an interesting basis for analysis, conjecture, etc. In this

connection we include here the pertinent part of the recommendation of the
conferences held in April 1980 and January 1981 (organised by The Royal
Irish Academy, The Manpower Consultative Committee, The National Board for
Science and Technology and the Institute of Engineers of Ireland) on

"Engineering Manpower for Economic Development'.

SUPPLY OF STUDENTS - Implications for Second Level Education

The availability of students willing and able to undertake the necessary courses of study is an essential
prerequisite to achieving the increased output of engineering manpower. As far as professional engineers
are concerned it is widely accepted that the minimum necessary entrance qualification is a standard in
mathematics equivalent to achieving a grade C in an honours Leaving Certificate mathematics paper of the
present standard. The number achieving this qualification in 1980 was 2,504 while the number attempting
the paper was 3,332, Corresponding figures for 1979 were 1,558 and 3,801. Of these 655 entered engineer-
ing courses in 1980 and 418 entered in 1979. It is clear, therefore, that to achieve an output of about
1,000, as envisaged, a considerable increase in the number of qualified applicants will be essential.

To achieve this end the Conference recommended that a programme should be initiated to double the
number of boys and quadruple the number of girls taking higher mathematics and physics in the Leaving
Certificate over the next ten years. This will involve definite plans to make the subjects available to a
wider range of pupils particularly to girls and the removal of institutional and administrative barriers to
achievement of these goals. It will also be necessary to take steps to revise and update the curricula to
-make the subjects more attractive while maintaining the necessary depth and rigour of treatment. In order

to increase the level of understanding of technology among second level students the Conference proposed
the introduction of a new Technology subject on a pilot basis.

If these goals for increased supply of suitably qualified school leavers are to be attained then the shortage
of mathematics and physics teachers must be urgently examined, and resolved. It is clear that without
an adequate supply of properly qualified teachers in these areas, the increased numbers will not be achieved.

It is important in the introduction of new material to the Leaving Certificate course that teachers be
provided with the opportunity to undertake in-career updating courses. This is not only important in
relation to providing the increased numbers required with the higher level mathematics and physics quali-
fication, but is equally important*in educating and motivating those students who will be required to
undertake technician courses to meet the increased demand in that area.

Proper career guidance in schools is an important requirement if able students are to be in a position to
evaluate their prospects in engineering courses. It is necessary that third level institutions and both em-
ployers and the professional bodies should ensure that career guidance teachers are in full possession of
up to date information and close liaison must be maintained.

As it is inevitable that time will be required to produce increased numbers of school leavers with the
necessary qualifications for engineering degree courses through developments in the second level school
system, the Conference recommended that the feasibility of mounting one-year post Leaving Certificate
courses to qualify for entry be investigated. Such courses already exist to a limited extent but the question
to be examined is whether a course with an agreed syllabus and examination could be mounted, from
which successful students could generally be admitted to third level institutions. This wculd obviously
require agreement on content and standards in advance. Such courses would mainly be intended for stud-
ents having the necessary ability in mathematics who have not had the opportunity to study the subject
at higher level in the Leaving Certificate. :
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AN INTRODUCT ION TO THE COMPUTAT IONAL COMPLEXITY OF MATRIX OPERAT |ONS

by Derek 0'Connor, U.C.D.

1. INTRODUCT ION

Computational complexity is the study of algorithms to determine the amount
of'efforf'or'work'They require In solving problems. We assoclate with
every problem an Integer (or set of parameters) called the slze of the
problem. The time needed by an algorithm for solving a problem, expressed
as a function of the size of the probiem, Is called the lime complexity of
the algorithm. The Iimiting behavior of this complexlty, as the size in-
Creases, Is called the asymptotic time complexity of the algorithm. There
are simllar definition for SRace complexity, the storage space needed by
the algorithm. In this paper we will be concerned only with time complexity
and for the remalnder of the paper the word 'time' Is omltted.

We need to distingulsh between the Inherent complexity of a problem and the
complexity of an algorithm used to solve the problem. The Inherent comple-
xIty of a problem of size n Is the amount of time that Is both necessary
and sufficient to solve the problem. This time, T*(n), Is usually difficult
to determine and we have to be content with T'(n), a lower bound on T*(n).
The complexity of an algorithm, T™n), Is sufficlent to solve the probiem
and Is an upper bound on T*(n). The algorithm Is optimal 1f T"(n) = T (n).

In this paper we concentrate on the asymptotic complexity of algorithms for
matrix operations. [f an algorithm solves a problem of sized nin a time
T(n) = cn?+p for some constant ¢, we say the complexity Is 0(n?),
hence we are interested only In the functional form of T(n) for large
values of n. In general a function g(n) is sald to be O(f(n)) if there
exists a constant ¢ such that g(n) < cf(n) for all but some finlte
set of non-negative values for n,

We consider only square matrices, but many of the results hold for non-
square matrices. The size of an n x n matrix Is n and we wish to deter-
mine the amounts of time needed to perform the familiar operations of
addition, multiplication, Inversion, equation solving and determinant eva-
luation, with +time for each operation expressed as a function of n.

We assume that our computer has the usual repertoire of operators (+, -, %,
/) for reals and integers and that each operator Is performed in a flxed
amount of time. Hence we can view the time complexity of an algorithm as
the number of basic arlithmetic operations It performs,
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2. LOWER BOUNDS ON MATRIX OPERAT IONS
A general n x n matrix has n? elements. Hence, any operation that
involves all elements requires at least 0(n?) time. The usual algorithm
for matrix addit!on/subtraction requires nl additlons/subtractions and Is
therefore optimal. The ordinary algorithm for matrix multiplication re-

quires n3 mueltiplicatlions and nz(n-I) addltlions. Surprisingly, the
best-known lower bound Is 0(n?).

3. ORDINARY K:iRIX MULTIPLICATION, INVERSION AND EQUATION SOLVING ARE
O(N>) OPERAT IONS

Muitiplication: C = AB where Cij = ;alk*akj

Each 1 requires n multiplications and n-| additions, The total number
of operations is n3 multiplications n3—n2 additions. Hence the
complexity of multiplication Is 0(n2).

Equation solving: Ax = b

Triangularize A using Gaussian elimination. This gives Ux = b which can be

solved by Back-Substitution because U is upper-triangular. Gaussian
Elimination Is 0(n3) and Back-Substitution Is 0(n?). Hence the complexity
of Equation Solving is 0(n3).

lnversion: AA~! = |

This Is equivalent to solving the n sets of equations Ax., = ej,
J=1,2,...n  where X and e; are the j*h columns of A™" and 1
respectively. This, in turn, iIs equivalent to solving the n sets of
equations ij = éj' U is computed once using Gaussian Elimination in
O(n3) time, each éj can be computed in 0(n?) time, and each set of
equations Is solved by backsubstitution In  0(n) time. The total time is

O(n% 4—2n0(n2). Hence, Inversion is O(n3).
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4. IMPROVED UPPER BOUNDS FOR MATRIX MULTIPLICATION

Lemma 1: (Mn, the ens On, ln) Is a ring, where Mn Is the set of all
nxn matrices whose elements are chosen from arbitrary ring R.

Lemma 2: Let f bea partition of an nxn matrix into four n/2xn/2
matrices, assuming n Is even,

A A2
l.e. f(a) =

A1 Ao

Then, for any matrices A and B in Mn'

FI04B) = f(A, . ...., and f(AB) = f(A)f(B)
The above lemma allows us to transform an n x n matrix with elements from

source ring R Intoa 2 x 2 matrix wi+th elements from the ring of
n/2 x n/2 matrices.

sirassens Algorlthm for Matrix Multiplication

The product C=AB of two n x n matrices can be transformed into the
product of two 2 x 2 matrices whose elements are n/2 x n/2 matrices.
Thus we have

Ci1 Cy2 A1 M2 | [Byy B2

C1 Cp2 A1 A2 | |B21 Boo

where elements of C are defined as follows

Ci1 = AiByy + AypBy
Ci2 = AyByg + AjBy,
C21 = ApByy + ApBy

Co2 = AyyByp + AyBy,
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If we have an algorithm that computes the elements of C using m
multiplications and a additions then we apply the algorithm recursively
to smaller and smaller partitions until we are reduced to multiplying the
elements of the underlying ring R. If the algorithm multiplies two n x n
matrices In time T (n) and n Is a power of 2 (=2P) then we have

T(M) & mT (n/2) +an?/4, n > 2.
This inequality can be used to show that Tpin) < kn4, q-= logom, i.e.,

the complexity of the algorithm Is 0(n!®9™) and is Independent of a. If

m =8 +then the algorithm is O(n3), which Is the same as ordinary matrix
multiplication,

Sirassen's Lemma: The product of two 2x2 matrices with elements from an
arbitrary ring can be computed with 7 multiplications and 18
additions/subtraciions.

Proof: Compute the elements of C = AB as fol lows:

Compute the products

m1 = (312 - 322)(b2| + b22)
m2 = (a” + 322)“)11 + b22)
m3 = (311 + 322)(b11 + blz)
mg = (ajy + ayp = byy)
ms = agq{byy - byy)
mg = azp(byy = byy)
my = (apy *+ aylbyy

With these seven products compute
C11 = m1+m2“m4+m6
€12 = My * M5
C21 = Mgt my
C2 = Mp = my+m5 = my

There are obviously 7 multiplications and 18 additions/subtractions. Simple
algebraic manipulation, using only the ring axioms, shows that the c[j's
are those required by the definition of multiplication.

This lemma leads to the following theorem.
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Iheoreml: Two n x n matrices with elements from an arbitrary ring can be
multiplied in 0(n'097) arithmetic operations,

Proof: Assume n = 2P , for some integer p. If T(n) is the number of
arithmetlc operations needed to multiply two n x n matrices, then
using Strassen's Lemma on the matrices partitioned into four
n/2 x n/2 blocks we get the recurrence

T(n) = 7T(n/2) + 18(n/2)%2  for n » 2 .

The first term on the right is the time required to multiply a 2 x 2
matrix whose elements are n/2 x n/2 matrices, while the second term
Is the time required for the addition/subtraction of these matrices,
By induction we get

Ttn) = oc7loans - g¢nlog7,

If n Is not apower of 2, l.e., 2P < n < 2P*! | then augment the
matrices with enough rows and columns of zeroes to make n = 2P,
This will Increase the size of the matrix by a factor of 2, at most.
This In turn will Increase T(n) by a factor of 7, and so T(n) is
still 0(n!097),

It can be shown (see [AHU74]) that equation - solving, inversion,
determinant evaluation, etc., are computationally equivalent. This Implies
that each of these operations can be performed In 0(n!®97) time.

5.  PRACTICAL CONS IDERAT IONS

Although Strassen's improvement is theoretically significant it Is not
better than classical 0(n3) multiplication, unless n 1is large ( > 150).
This Is because of the many hidden, non-arithmetic operations that must be
performed during the multiplication operation. Additional storage, for
Intermediate results, is also needed because the algorithm is recursive,

Nonetheless, Strassen's Algorithm has opened up a large new area of
research (see below) whose results will have great practical significance
as computers increase In size and speed.
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6. RECENT IMPROVEMENTS

Strassen's work [Str69] stimulated a great deal of research Into matrix
multiplication and related operations. We give here a chronology of the
Improvements since 1969, taken from a recent paper [Pan81].

Exponent

2.8074
2.7950
2.7804
2.7801
2.7799
2.6088
2.6054
2.5480
2.5220

7.A SHORT REFERENCE

1. [AHU74]
2. [Pan81]
3. [str69]

Author Rate of Publication
Strassen 1969
Pan 1978
Pan 1979
Pan 1979
Bini, et al. 1979
Schonhage 1979
Pan 1979
Schonhage To appear
Pan & Winograd To appear
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Roots of Real Polynomial.

W.T. ttirk
il

A.G. O'Parrell

The simplest sure-fire way to approximate the
real zeros of a real polynomial is to use sturm's theorem.
Horner's methnd misses double -eros, and Newton's method
does not always work. The method based on Vincent's theo-

rem [1] is very elaborate.

Sturm's theorem is not usually covered in basic
algebra courses, even though it is in van der Waerden
[?, P 28{] . Consequently, it is not as well~known as it
should be. It provides a straight-forward, computationally
effective method for approximating the real zeros (without

multiplicities) of a real polynomial. It goes as follows.

Let f(x) be a polynomial with real coefficients.

Let F° =f, and F = f (the derivai.ve of f£). Carry

out the following variant of the Euclidean algorithm:

]
3
1
N

#

1
3
!
1

!

!

=

7
1
s
0



Jote that the customary plus sign has been replaced by a mi-
aus sign. Equivalently, carry out the usual Euclidean al-

jorithm, and change the sign of the 3j ~th remainder whenev-
2r j is congruent to 2 or 3 mndulo 4 . For any real num-

ser x, let nix) denote the number of sigyn changes in the

sequence

1ﬂ9(x) CF XDy F}x(x)
(where terms e.... to zero arc omitted, t* = is +,0,+ |is
aot a sign change, and +,0,- is). This sequence is called

the Sturm chain. Sturm's theorem states that if a < b, then
the number of zeros of f in the closed interval [a,b] is

n(a) - n(b).

This algorithm is easily programmed. Polynomials
zan be treated as vectors (with the coefficients as compo-
asents), and one can write simple routines to carry out polyno-
nial arithmetic (additon, multiplication, division, and
Buclidean algorithm). Once the Euclidean algorithm is pro-
jrammed, it is easy tc write a routine to calculate n(x),
for any given x (since there is an algorithm for differentia-
ting polynomials). A routine to find all the roots in the
interval [a,b] proceeds by checking n(a) -n(b), then bisec-
ting the interval, checking n at the endpoints, and continuing.
At the n-th step, the positions of the roots are known to

sithin |a-b}/2n.

To find all the roots on the line, use the (obvious)

fact that all the roots of
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1§}
f(x) = a_ % +...+ a
F (1]

lie in the interval [-s,8] . wlere

max

na.; i,/ {n-3)
]
0<j < n=-1

oo = 1 + 3 o
n

L
To decect multiple roots, examin< the zeros of £ .

We v o a BASIC pvoriam to per 1 the Sturm al-
gorithm. Apart from solwvii., ~ations, 1. i3 useful for
demonstrating the Euclidean algorithm for polynomials. It
uses about 8k words of core on the DEC PDP 11/34. If nec-
egsary, it can be pruned considerably to fit in smaller work-
spaces. Copies of the listing may be had by writing to the

authors.

On our time-sharing system, the program finds the
total number of roots in a few seconds. The time taken to
locate r roots with error less than h 1is roughly propor-
tional to r log, h. The constant of proportionality 1is

less than 6 seconds.
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CODING THEORY

Thomas J. Laffey

Coding Theory deals with the accurate transmission of information
tthrough an imperfect (or "noisy') communication channel. The idea is to
encode the message (thus enabling one to introduce several redundant (or
"'check" symbols), transmit the coded message and decode the received
message. If the code is con.i.u. . . sufficient!v cleverly, then one is
able to deduce from the received wessage, even if a "small' number of

errors have occurred in transmission, what the transmitted message was.

An ALPHABET F is a set of symbols in which our messages are written.
Usually F is taken to be a finite field and more particularly, the field
Zz of two elements 0,1 (binary case) or Z7 of three elements 0,1,2,
(ternary case). [We recall that if F is a finite field, then F has
q elements for some prime-power q and conversely for such q, there

k

is essentially one field with ¢ elements.] We denote by F- the set

of all k-tuples Up -ee 4y where Ups ey belong to F.

An  (n,k) code is a (one,one) function ’42 from a subset/h4— of
Fk to F'. The image of"(? (that is {4é(m)|m E?W}) is called the
set of code-words and is also denoted by‘{; , and also referred to as
the code. {h& is the set of messages; given a message m = Uy ey

—(; (m) = Xy oeee X is the code-word corresponding to m.] Here n is

called the length of the code.

This is the text of a lecture delivered at the Workshop on '"Current
Developments in Operations Research' in the College of Commerce,
Dublin Institute of Technology, June 1981.



Example 1
F = 22,%= Fz and
l 00 01 10 11
000 011 101 110

/69(u1u2) = U; U, ug where u; € F 1is such that
Uy fu tug = 0 (in F). introduces a parity-check.

L .. tne 12

Given two n-tuples €13C95 the (Hamming) distance d(cl,cz) is

the number of places where €y5C, differ.. For example, if ¢, = 10101,

1
cy = 11011, d(cl,cz) = 3. The weight w(c) of an n-tuple c is the
number of non-zero entries in c. Above w(cl) = 3, w(cz) = 4. We

call an (n,k) code ‘{; an (n,k,d) code if d is the least distance

between distinct elements of'*% .

The most studied types of codes are linear codes. A (n,k}) code

is linear if F is a field and the set of code-words is a vector
space over F (i.e. if cy:C, are code-words, so is ci*c, and ac,
for a€F where code-words a;e added by adding corresponding entries
and ac 1is obtained from c¢ by multiplying all the entries of c by
a). The dimension of this vector-space is called the dimension of the

k

code. Usually in considering linear codes, we assume/\UL= F* in which

case k 1is the dimension of /@ .

Suppose /eo is a linear (n,k) code (of dimension k). Then “é;
can be described by matrices in two ways. There exists a kxn matrix

G such that

/62 (W) = wg
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.

for all w = up e Uy € Fk. The dimension condition means that G has
rank k. G 1is called the generating matrix for 4@ . We can élso
describe‘%& » the set of code-words, as {x = Xy ..o Xp € FMHx! = 0}
(where T denotes transpose) and H is an (n-k) x n matrix of rank
n-k. H is called the parity-check matrix of the code. The code f@ is

called systematic if 4@ (u1 e uk) SU e gy, .U (ui € F),

n’
that is the first k entries in the code-word corresponding to the
message m = Uy ... Uy from m itself. If 4% is linear and systematic,

then H is of the form

where X is an (n-k) x k matrix. In this case,

2]
]

T
(Ikl - X).

Example 1 is an example of a linear systematic (3,2) code, H = (11 1),
G = (é ? i (since we are working over Z2 in this example -1 = 1).
Let u be a message, 4% a code, x éﬁg(u) the code word corresponding
to x. Suppose that x is transmitted and that y is received. Note
that d(x,y) counts the number of errors. Let o = X-y. Then e is
called the error-vector. Given y we use the code to recover X. Choose
X, €'€§ such that d(y,xo) is least possible. We decode y as X .
If w(e) = t (say), we necessarily get xo = X provided that d(y,x') > t
for all «x! 612,  x' # x. A sufficient condition for this to happen is
that d(cl,cz) > 2t+1 for all €1sCy E*@; (c1 # cz)l So 42; can

""correct" t errors if its minimum distance is at least 2t+1.
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Suppose that L is a linear code of length n and dimension k
and that F has q elements. .uppose that-i% can correct t errors.
For each ¢ E@, the "sphere' S(c,t) = {x e d(c,x) £ t} contains

(p)*+ (1) @D +...+(}) @D

elements and these spheres must be disjoint. Hence

k t
) a > Qlg)+ (7)) @D +..s (D) (@1
[This i known as the Hamming or sphere-backing bound).

If equality holds, the code is called perfect. We now give some examples

of perfect codes.

Example 2 Let F be the field of q elements and let H(n,q) be
n_ n_
the linear code of length 9—3% » dimension k = 9—;} - n whose parity
q- q=1
n_l ’
check matrix is the n x ( 9———-) matrix whose columns are the distinct
q-1

non-zero n-tuples whose first non-zero entry is 1. It is easy to check
that H(n,q) has minimum distance 3 and that (*) holds with t=1.
So H(n,q) is a perfect single error-correcting code. H(n,q) 1is called

a Hamming code.

Example 3 Let F be a finite field and let F[x] be the set of all
polynomials ajta;x + ...+ an_lxn-l. Let g(x) be a divisor of x-1

and let V(n,g) be the set of all polyncmials g(x)f(x) (£f(x) € F[x])

n n+l

where we set x =1, x =X, etc. We think of the elements

n-1
v +v1x + ...+ V X Then

o € V(n,g) as m-tuples Vv

n-1 1+ Vo1

the set V(n,g) becomes a linear code of length n over F. This code

is called a cyciic code. By judiciously choosing F,n,g, we get many
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interesting codes.

For example, if F=23, n=11,xu—1= (x-l)gl(x)gz(x) where gltx),
gz(x) are irreducible of degree 5 over F, and taking g(x) = gl(x),
we get a linear code {9/11 of length 11, dimension 6 and minimum
distance 5. A. casy calculation shows -that 5911 is a perfect 2-error
correcting codc.

If FeZ,, n=23, x°>-1= (-1 (QF,(x) whe £ (x),£,(x) are
irreducible of degree 11, and taking g(x) = fl(x) we get a linear
code lj/ZS of length 23, dimension 12 and wminimum distance 7. Again,
it is easy to check that .€}33 is algngggg 3-error correcting code.

The codes {;il’igéS by introducing a parity check are the famous Golay
codes. These are the most remarkable of all codes. They arise in

many combinatorial investiagations, and ha§e intimate connections with the
Conway simple groups and the recent construction of the Fischer-Griess
Monster, etc. Efficient coding and de-ccding procedures have been -

constructed for them and they are used in many communication networks.

Despite the ad-hoc nature of the construction of the perfect codes

above (done initially in the 1940's) the following amazing result holds:

Theorem (van Lint, Tietavainen) Let-%i be a perfect t-error correcting
code over an alphabet F of a prime-power q number of elements. Then

~4& has the same parameters as H(n,q),'ffll or‘f?zs.

[Note: Thus t=1,2, or 3. If t=2 or 3, then € is in fact a linear
code isomorphic to -%11 or ja§3' However, if t=1, ‘6 need not be linear,

though it must have length 9-1
q-1

Ed



minimum distance 3 and have the same number of elements as H(n,q).]

Let /é;’be a linear code of length n and dimension k over a
field F with q elements. The dual code,(gl' is the set of all n-tuples
Y=Yy oeee Yp such that Xy = Xyp ...t xy = 0 for all

1 n

X = Xy «o0 X 644. Then /é;' is a linear code of length n and

dimension n-k.

Example 4 If'%@ is the Hamming code H(n,q) of Example 2, then {;L
is a linear code of length (qn-l)/(q-l) and length n. It is called

a first order Reed-Muller code. In particular, the case q=2, n=5, gives
the (31,5) code which was used in transmitting information back to

Earth from the Mariner space-craft to Mars.

Letvvé; be a code of~1én§th n and for each i =0,1,...,n, let
w, = number of elements c€ éof weight i. The polynomial

- Zn C.in-i

W(X,}’) i=0 i

is called the weight-enumerator of the code. MacWilliams discovered a
beautiful connection between the weight-enumerators of~/(9 and its dual
4% L for a linear code'{g. We state the result for the case of a binary

code.

MacWilliams' Theorem If ’{; is a binary linear code, then

1
W@l(x,y) = T@é(x+y,x-y)

(where P@I denotes the number of elements in™g).
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An elementary proof of this can be obtained using the finite Fourier

transform.

./@7 is called self-dual if b = 6L

Example 5 %12,‘9/24 are self-dual.

MacWilliams' theorem enables one to get information on the weight
distribution of a self-dual code. Namely, for-’@?a self-dual binary

code, we have
X+y X-y
Woplx,y) = WyH(—, =—%).
R L vz vz
By considering the group G which leaves W(x,y) invariant and the
classical theory of invariants of finite groups, Gleason (and others)
have found very detailed information on the structure of self-dual codes,

and in particular, were able to prove the non-existence of certain codes.

Example 6 The weight enumerator of ’24 is

x®4 4 759x16)8 4 2576x1%y12 | 750x8,16 | 24

There are many methods by which interesting codes are constructed and

we describe here a couple of these.

A nxn matrix H, all of whose entries are %1 is called a Hadamard
matrix if HHT = nl. It is easy o show that if H exists for n>2, then
n must be a multiple of 4 and it is conjectured that a Hadamard matrix

exists for all such n. The smallest n still in doubt is n=268. If

Hn is a Hadamard matrix of ,ize nxn, multiplying it on left and right
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by suitable diagonal matrices with entries 1 we get a Hadamard matrix with
first row and first column all ones. Such a Hadamard matrix is called

normalized.

Suppose H_ is a normalized Hadamard matrix. Deleting the first
column of Hy and replacing all its 1's by O's and its -1's by 1's
we get a code An of length n-1, minimum distance n/2 and containing

n codewords. Several other codes can be constructed from Hn'
A well-known result on codes is

Plotkin Bound Let m,d be given with 2d>m and let ’€;7be a code

of length m and minimum distance d. Then 42’ has at most

27 d ] code-words.

Note that the code An achieves this bound for m=n, d=n/2 and a
result of Levensthein shows more strongly that the Plotkin bcund is attain-
able in general if Hadamard matrices Hn exist for all n which are

multiples of 4.

We now consider briefly the construction of Hadamard matrices. If
H is an nxn Hadamard matrix, then [ : _g ] is a 2nx2n Hadamard
matrix. Starting with (1) we can thus construct Hadamard matrices of

slze kazk (kx1).

Suppose n is a multiple of 4 and that n = q+1 where q is a
prime power. Denote the non-zero elements of the finite field F with

q elements by 1,2,...,q9-1.
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Let Q be the qxq matrix (indexed by the elements 0,1,...,q9-1

of F) whose (i,j) entry

qij 0 if i=j

1 if i#j and i-j is a square in F

-1 if i#j and i-j 1is not a square in F.

Let H be the nxn matrix

11 . 1
1
-1
. Q q
1
s -t

Then H is a Hadamard nxn matrix. This is called the Paley construction,
If we take n=12, the matrix obtained in this way is related to the generating

- £
matrix of the Golay code ‘f24.

Recently, work of Goethals-Seidel has led to a method related to
the quaternions and Turyn sequences for constructing Hadamard matrices.
It is conjectured that this method will work in all cases. For details
(though beware the typographical errors), see M. Hall's paper in the

Proceedings of the Santa Cruz Group Theory Conference (AMS 1981).

Given a Hadamard matrix H, we can replace the entries 1, -1, by
0, 1 respectively and then consider the binary code spanned by the rows.
These codes have also been studied, the ones corresponding to the Paley-

type Hadamard matrices are examples of quadratic residuz codes.
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We conclude by giving an application of coding theory to combinatorics.
Suppose T‘) is a finite projective plane of order 10. [The problem of
whether %3 exists is a famous, (still) open question.] Then ao consists
of 111 points, 111 1lines, each point lies on exactly 11 lines, each
line has exactly 11 points. Each pair of points lies on a unique line
and two distinct lines meet in exactly one point. Let A = (aij) be
the incidence matrix ofr}3 . Thus A is an 111 x111 matrix and if

Pi’Li are the points, lines, resp. ofp,

a.. =1 if P. 1lies on L.,
ij 1 J

=0 if Pi does uut lie on L..
Let jAr be the binary code with A as its generating matrix. It
has been shown that }4’ has minimum distance 11. Let 2¥.be the code
obtained by adding a parity check to }Af. Then ;g. has minimum distance 12,
length 112 and it is easy to show that Q\_C_A‘,'L. Thompson has shown .‘
that in fact f&' haé dimension 56 and thus ﬁL is a self-dual code. It
has been shown that the weight distribution of j& would be known if

and Wi were known. MacWilliams, Sloane, Thompsen, have shown

¥12° Y15
that Wig = 0. By considering ﬁ% more closely, recently, Anstee, Hall,
Thompson, have shown that rs) has no automorphism of order 5. This,with
work of Whitesides shows that the automorphism group offp has order a
power of 3 and is now conjectured to be trivial. So ?{D, if it exists,

does not appear to have any of the symmetry we usually associate with a

geometry.
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RECENT ADVANCES IN MATHEMATICS

It seems a good idea to have a section of the Newsletter devoted to
informing readers of recent major break-throughs in Mathematics, which
should be of interest to mathematicians in general. In this issue, we

list two results of this type.

(1) The Classification of the Finite Simple Groups

A paper by G. Mason, now in the course of completion, will bring to
an end the classification of the finite simple groups. This is arguably
the greatest mathematical achievement of all time, the proqf that the list
of known simple groups is complete adding up to many thousands of pages.
The classification has involved the work of many of the greatest
mathematicians of our time and has involved major contributions by so many
people that it is difficult to single out any aspects for special mention.
However, the development of techniques by Chevalley to actually construct
the simple groups of Lie typevin the 1950's, the proof of the solvability of
. groups of odd order by Feit and Thompson (1963), the determination of the
minimal simple groups by Thompson (1968) and the work of Aschbacher and
Thompson on the B-conjecture in the 1970's are universally recognised as

milestones along the way.

of course, quite a lot of work has still to be done to try and shorten
and simplify the work to make it comprehensible to ordinary mortals.
Referring to the view among some mathematicians that finite group theory
was finished now that the simple groups are known, Gorenstein (in Pittsburgh

in August) reminded his audience that though the real numbers have been
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classified for a long time, there are still many real analysts.

(2) The van der Waerden conjecture

Let A = (aij) be an nxn matrix. The permanent, per A, of A

is defined by

per A = a

ao(l)l ()2 - - ao(n)n

aeS
n
(where Sn denotes the symmetric group of degree n)
[per A is thus the same as det A except that sign (o) is replaced by

+1  throughout. ]

A is called doubly stochastic if its entries are (real) non-negative

and the sum of the entries in each row is 1 and the sum of the entries in

each column is 1. Thus, in symbols

n

g a.. = 1 = E

i=1

. alji (i =1,...,n).
i
Examples of doubly stochastic matrices are In and Jn where J, 1is the

nxn matrix all of whose entries are 1/n.

The famous van der Waerden conjecture (1925) states that the minimum
of per A as A ranges through the set of all doubly stochastic nxn

matrices is achieved precisely for A = Jn

Many authors worked on this problem and many special cases were
resolved. Of particular elegance is the solution by Marcus and Minc for the
case of symmetric A. See Minc's book on Permanents or the article by Marcus

and Minc in the American Mathematical Monthly Vol.75 (1965) for the history
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and results on the problem.

Recently the conjecture has been proved in full generality by Egoryshev
in Krasnoyarsk in the U.S.S.R. A very nice account of the solution
(incorporating some simplifications due to himself and Seidel) can be found

in the article by van Lint in Linear Algebra and its Applications, Vol.

1981.

T.J. Laffey
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PROBLEM SECTION

(4.1) (D. McHale) Let R be a finite commutative ring with identity
and let a,b € R with aR= bR. Show that a=bu for some unit

u of R. Generalise!

(4.2) (M. Hall and M. Newman) Let Q(xl,...,xn) be a positive definite
real quadratic form and suppose that Q can be expressed as
2
L1 + ... +Lr where Ll"

coefficients. Show that Q has such a representation with r g f(n)

..,Lr are linear forms with non-negative
2oarnegative

for some function f(n) of n2 and find the best such function Ff.

I 2 o 2
(4.3) Calculate explicitly J e ™ | e 2
n=0 n=0
(4.4) (P. Halmos) Let A,B be positive semi-definite matrices. Let
d;(A,B) = ||A-B|| and d,(A,B) = l|s|1izp || AX]| -||Bx| |. Prove that
X|[[=1

there exists a function c(n) such that d2 P d1 < c(n)d2 and find

the best function c.

(4.5) For which natural numbers n does there exist an nxn magic square
whose entries are 1,2,...,n. [According to the Evening Press, one

has been constructed recently with n=243.]

(4.6) (G. Myerson) Given two co-prime integer polynomials f(x), g(x),
find a formula for the least positive integer d for which there exist
integral polynomials h(x), k(x) with d = f(x)h(x)+g(x)k(x).

[Myerson points out that the standard Sylvester resultant formula does

not necessarily give the smallest d.]
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SOLUTIONS TO PROBLEMS

We give here outline solutions to some of tLhe problems in Newsletter

Number 3.

(3.1)

(3.2)

Find all numbers of the form in(n+1) (triangular numbers)
which are perfect squares.

Suppose first that n is even. The fact that in(n+1) is a
perfect équare implies that n=2a2, n+l =h2 where a,b are
integers. But then bZ-Za2 =1. Conversely for such a,b,’ setting
ns= 2a2 gives a solution to our problem. The solutions to the
equation b2—2a2 =*1 are given by the rational and irrational parts
of the binomial expansion of i(lt/ﬁ)k (k=0,1,...) (Hardy and

Wright: Introduction to the Theory of Numbers). A similar analysis

works in the case n odd.
(J. Kennedy)

Let n>1 be a given natural number. Find a square matrix A
whose en!ries are zeros and ones such that A" is a matrix with all
its entries equal to one. Show that 20 is the least possible size
for such a matrix A.

Let A be the 2"x2" matrix of the form ( g) where row i
of B has ones in the (Zi—l)St and (Zi)th positions and zeros
elsewhere. Then A" = J(2™) where J(m) 1is the mxm matrix all
of whose entries are one. On the other hand, if. An==J(t), the

eigenvalues of A" are t,0,...,0, so the eigenvalues of A are

n/%,0,...,0. So trace (A) = ™t. Since trace (A) is an integer,
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t must be a perfect nth power. So t 327,

(W. Sullivan)

(3.3) (non-trivial part) Give an example of periodic functions f,g
with periods u>0, v>0, respectively, such that (i) u/v is
not rational, and (ii) f+g is periodic.

Define a function fa:[O,a] +~ R as follows: Let x € [0,a].
For each integer m, Ilet X, = x+mm-ka where k is the unique
integer so that X0 € [0,a). For example, when a-1, X0 is the
decimal part of x+mr.) Let V(x) = {xm|n1€Z}. Note that
V(x) M V(y) non-empty impites V(x) = V(y). So {V(x)} form a
partition of [0,a]. Choose a distinguished element y=y(x) in
each distinct V(x). Then V(x) = {ymlm €Z}. Define fa:[O,a]-+R
by fa(ym) = m. Extend fa to be a map of R to R by the rule
fa(x+a) = fa(x). Then fa is periodic of period <ca and fa
satisfies the equation fa(x+n) = fa(x)+l for all xE€R.

Let f = fl’ g = 'f/Z' Then f 1is periodic of period 1 and
g 1is periodic of period V2 (using the fact that = is not
algebraic). Also f(x+m) = f(x)+1 and g(x+r) = g(x)-1 for all
real x. So f+g 1is periodic of period a (non-zero) rational

multiple of .

(3.4) Let A be a square matrix with entries in a field F. Prove

that A = D+N where N is nilpotent and D is diagonalizable over

the field F.
We reduce easily to the case where A is a companion matrix,

say



(3.5)
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A = [ o010 ..... 0
0 01 0 ...0

1f a # 0, take N to be A with the last row replaced by zero
and D to have its last row equal to the last row of A and zeros

elsewhere. If = 0, 1let k be the least integer with

an—l

4 k-1 # 0. Replace N as above except that the 1 in its (n-k)th

row is replaced by 1-an_k_1 and let D = A-N. In characteristic

# 2, D is diagonalizable with non-zero eigenvalues tan_ -1 In
characteristic 2, the required result may fail - try (? é) over
Zz.

This question is answered in the paper by Choi, Laurie and

Radjavi in Linear § Multilinear Algebra 8, (1980).

T.J. Laffey
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