PROBLEM SECTION

- (4.1) (D. McHale) Let R be a finite commutative ring with identity and let $a,b \in R$ with aR = bR. Show that a = bu for some unit u of R. Generalise!
- (4.2) (M. Hall and M. Newman) Let $Q(x_1, \ldots, x_n)$ be a positive definite real quadratic form and suppose that Q can be expressed as $L_1^2 + \ldots + L_r^2$ where L_1, \ldots, L_r are linear forms with <u>non-negative</u> coefficients. Show that Q has such a representation with $r \leqslant f(n)$ for some function f(n) of n^2 and find the best such function f.
- (4.3) Calculate explicitly $\sum_{n=0}^{\infty} e^{-\pi n^2}$, $\sum_{n=0}^{\infty} e^{-2\pi n^2}$.
- (4.4) (P. Halmos) Let A,B be positive semi-definite matrices. Let $d_1(A,B) = ||A-B||$ and $d_2(A,B) = \sup_{\|x\|=1} ||Ax\| ||Bx||$. Prove that there exists a function c(n) such that $d_2 \le d_1 \le c(n)d_2$ and find the best function c.
- (4.5) For which natural numbers $\, n \,$ does there exist an $\, nxn \,$ magic square whose entries are 1,2,...,n. [According to the Evening Press, one has been constructed recently with $\, n = 243. \,$]
- (4.6) (G. Myerson) Given two co-prime integer polynomials f(x), g(x), find a formula for the <u>least</u> positive integer d for which there exist integral polynomials h(x), k(x) with d = f(x)h(x)+g(x)k(x). [Myerson points out that the standard Sylvester resultant formula does not necessarily give the smallest d.]