CODING THEORY

Thomas J. Laffey

Coding Theory deals with the accurate transmission of information
tthrough an imperfect (or "noisy'") communication channel. The idea is to
encode the message (thus enabling one to introduce several redundant (or
""check" symbols), transmit the coded message and decode the received
message. If the code is con.i. .. . sufficient!v cleverly, then one is
able to deduce from the received wessage, even if a "small" number of

errors have occurred in transmission, what the transmitted message was.

An ALPHABET F is a set of symbols in which our messages are written.
Usually F is taken to be a finite field and more particularly, the field
Zz of two elements 0,1 (binary case) or Zg of three elements 0,1,2,
(ternary case). [We recall that if F is a finite field, then F has
q elements for some prime-power q and conversely for such q, there

k

is essentially one field with ¢ elements.] We denote by F° the set

of all k-tuples Up vee Uy where Upsenesly belong to F.

An  (n,k) code is a (one,one)} function ,(Z from a subset/r4- of
Fk to F". The image of"(? (that is {4é(m)|m e?W}) is called the
set of code-words and is also denoted by‘{; , and also referred to as
the code. {h& is the set of messages; given a message m = up e gy

—(; (m) = Xy oeee X is the code-word corresponding to m.] Here n is

called the length of the code.

This is the text of a lecture delivered at the Workshop on "Current
Developments in Operations Research'" in the College of Commerce,
Dublin Institute of Technology, June 1981.



Example 1
F = zz,’YH.= Fz and
l 00 01 10 11
000 011 101 110

/69(u1u2) =Uu; Uy ug where u, € F 1is such that

Uy tu tug = 0 (in F). introduces a parity-check.

- . tne ’13

Given two n-tuples C15Cys the (Hamming) distance d(cl,cz) is

the number of places where differ.. For example, if ¢, = 10101,

€1°¢2 1
c, = 11011, d(cl,cz) = 3. The weight w(c) of an n-tuple c 1is the
number of non-zero entries in c. Above w(cl) = 3, w(cz) = 4, We

call an (n,k) code ‘{; an (n,k,d) code if d is the least distance

between distinct elements of'*% .

The most studied types of codes are linear codes. A (n,k) code
is linear if F is a field and the set of code-words is a vector

space over F (i.e. if ¢ are code-words, so 1is cite, and ac,

1

for a€F where code-words are added by adding corresponding entries

rfz

and ac 1is obtained from c¢ by multiplying all the entries of c by

a). The dimension of this vector-space is called the dimension of the
. . . . _ ok .

code. Usually in considering linear codes, we assume/\UL— F* in which

case k 1is the dimension of ’g .

Suppose /eo is a linear (n,k) code (of dimension k). Then “é;
can be described by matrices in two ways. There exists a kxn matrix

G such that

/62 (W) = 1w
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for all w = up .- uy € Fk. The dimension condition means that G has
rank k. G is called the generating matrix for 4% . We can also

describe‘%@ » the set of code-words, as {x = x 3 € FnIHxT = 0}

10
(where T denotes transpose) and H is an (n-k) x n matrix of rank
n-k. H is called the parity-check matrix of the code. The code f@ is

called systematic if 4@ (u1 “en uk) SU e gy e (ui € F),

n’
that is the first k entries in the code-word corresponding to the
message m = Uy ... Uy from m itself. If 4% is linear and systematic,

then H is of the form

where X is an (n-k) x k matrix. In this case,

]
[

T
(Ikl - X).

Example 1 is an example of a linear systematic (3,2) code, H = (11 1),
G = (é ? i (since we are working over Z2 in this example -1 = 1).
Let u be a message,-J% a code, x =1g(u) the code word corresponding
to x. Suppose that x is transmitted and that y 1is received. Note
that d(x,y) counts the number of errors. Let ¢ = Xx~-y. Then e is
called the error-vector. Given y we use the code to recover x. Choose
X, €'€§ such that d(y,xo) is least possible. We decode y as X
If w(e) = t (say), we necessarily get xo = X provided that d(y,x') > t
for all «x! 612,  x' # x. A sufficient condition for this to happen is
that d(cl,cz) > 2t+1 for all €1sCy E*@; (c1 # cz)l So 42; can

"correct" t errors if its minimum distance is at least 2t+1.
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Suppose that 4 is a linear code of length n and dimension k
and that F has q elements. ouppose that'J% can correct t errors.
For each ¢ Ef& the "sphere S(c,t) = {x:EFnId(c,x) £ t}  contains

(p)+ (1) @D +...+(}) @D

elements and these spheres must be disjoint. Hence

k t
) a" oy @llg)+ () @D+ . (D) (@1
[This iz known as the Hamming or sphere-backing bound).

If equality holds, the code is called perfect. We now give some examples

of perfect codes.

Example 2 Let F be the field of q elements and let H(n,q) be
n_ n_
the linear code of length 9—3% » dimension k = 3—?% - n whose parity
q- q=1
n_l ’
check matrix is the n x ( 9———-) matrix whose columns are the distinct
q-1

non-zero n-tuples whose first non-zero entry is 1. It is easy to check
that H(n,q) has minimum distance 3 and that {(*) holds with t=1.
So H(n,q) is a perfect single error-correcting code. H(n,q) is called

a Hamming code.

Example 3 Let F be a finite field and let F[x] be the set of all
polynomials ajta;x + ... o+ an_lxn-l. Let g(x) be a divisor of x-1

and let V(n,g) be the set of all polynomials g(x)f(x) (£f(x) € F[x])

n+l

n 1, x =X, etc. We think of the elements

where we set 'x

VotViX 4 ..+ v -1

o n-1 € V(n,g) as m-tuples VoVy --- V,.1- Then

the set V(n,g) becomes a linear code of length n over F. This code

is called a cyciic code. By judiciously choosing F,n,g, we get many
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interesting codes.

For example, if F=ZS’ n=11,xu-1= (x-l)gl(x)gz(x) where gltx),
gz(x) are irreducible of degree 5 over F, and taking g(x) = gl(x),
we get a linear code {9/11 of Yength 11, dimension 6 and minimum
distance 5. A. casy calculation shows -that %911 is a perfect 2-error
correcting codc.

If FeZ,, n=23, x°°-1= (x-1£ (0£,(x) whe £ (x),£,(x) are
irreducible of degree 11, and taking g(x) = fl(x) we get a linear
code lj/ZS of length 23, dimension 12 and minimum distance 7. Again,
it is easy to check that .€}33 is a'EggggEE_S-error correcting code.

The codes {;il’f%éS by introducing a parity check are the famous Golay
codes. These are the most remarkable of all codes. They arise in

many combinatorial investiagations, and haQe intimate connections with the
Conway simple groups and the recent construction of the Fischer-Griess
Monster, etc. Efficient coding and de-cocding procedures have been -

constructed for them and they are used in many communication networks.

Despite the ad-hoc nature of the construction of the perfect codes

above (done initially in the 1940's) the following amazing result holds:

Theorem (van Lint, Tietavainen) Let-%ﬁ be a perfect t-error correcting
code over an alphabet F of a prime-power q number of elements. Then

~4& has the same parameters as H(n,q),'frll or‘f?zs.

[Note: Thus t=1,2, or 3. If t=2 or 3, then £ is in fact a linear
code isomorphic to -%11 or ja§3' However, if t=1, ‘6 need not be linear,

though it must have length 9-1
q-1

’



minimum distance 3 and have the same number of elements as H(n,q).]

Let /é;’be a linear code of length n and dimension k over a
field F with q elements. The dual code,(;l' is the set of all n-tuples
Y=Yy oeee Y such that Xy = XY bo... v Xy o= 0 for all

1 n

X = Xy «o0 X 644. Then /é;' is a linear code of length n and

dimension n-k.

Example 4 If'%@ is the Hamming code H(n,q) of Example 2, then {;L
is a linear code of length (qn—l)/(q-l) and length n. It is called

a first order Reed-Muller code. In particular, the case q=2, n=5, gives
the (31,5) code which was used in transmitting information back to

Earth from the Mariner space-craft to Mars.

Letvvé; be a code of~1én§th n and for each i =0,1,...,n, let
w, = number of elements cEéof weight i. The polynomial

- Zn C.in-i

W(X,}’) i=0 "i

is called the weight-enumerator of the code. MacWilliams discovered a
beautiful connection between the weight-enumerators of-/(? and its dual
Jg L for a linear code‘{g. We state the result for the case of a binary

code.

MacWilliams' Theorem If ’{; is a binary linear code, then

1
W@l(x,y) = T@é(x+y,x-y)

(where P@I denotes the number of elements in™9).
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An elementary proof of this can be obtained using the finite Fourier

transform.

./@7 is called self-dual if B =G L.

Example 5 %12,‘9/24 are self-dual.

MacWilliams' theorem enables one to get information on the weight
distribution of a self-dual code. Namely, for"€9a self-dual binary

code, we have
X+y X~y
Wyplx,y) = W —, ==).
4 L vz vz
By considering the group G which leaves W(x,y) invariant and the
classical theory of invariants of finite groups, Gleason (and others)
have found very detailed information on the structure of self-dual codes,

and in particular, were able to prove the non-existence of certain codes.

Example 6 The weight enumerator of '24 is

x®4 4 750x16)8 4 2576x1%y12 | 7505816 | 24

There are many methods by which interesting codes are constructed and

we describe here a couple of these.

A nxn matrix H, all of whose entries are =1 is called a Hadamard
matrix if HHT = nl. It is easy to show that if H exists for n>2, then
n must be a multiple of 4 and it is conjectured that a Hadamard matrix

exists for all such n. The smallest n still in doubt is n=268. If

Hn is a Hadamard matrix of ,ize wnxn, multiplying it on left and right
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by suitable diagonal matrices with entries 1 we get a Hadamard matrix with
first row and first column all ones. Such a Hadamard matrix is called

normalized.

Suppose H_ is a normalized Hadamard matrix. Deleting the first
column of Hy and replacing all its 1's by O's and its -1's by 1's
we get a code An of length n-1, minimum distance n/2 and containing

n codewords. Several other codes can be constructed from Hn'
A well-known result on codes is

Plotkin Bound Let m,d be given with 2d>m and let ’(QDbe a code

of length m and minimum distance d. Then 42’ has at most

21 d ] code-words.

Note that the code An achieves this bound for m=n, d=n/2 and a
result of Levensthein shows more strongly that the Plotkin bocund is attain-
able in general if Hadamard matrices Hn exist for all n which are

multiples of 4.

We now consider briefly the construction of Hadamard matrices. If
H is an nxn Hadamard matrix, then [ : _g ] is a 2nx2n Hadamard
matrix. Starting with (1) we can thus construct Hadamard matrices of

slze kazk (kx1).

Suppose n is a multiple of 4 and that n = q+1 where q is a
prime power. Denote the non-zero elements of the finite field F with

q elements by 1,2,...,q9-1.
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Let Q be the qxq matrix (indexed by the elements o0,1,...,q9-1

of F) whose (i,j) entry

qij 0 if i=j

1 if i#j and i-j is a square in F

-1 if i#j and i-j 4is not a square in F,

Let H be the nxn matrix

11 . 1
1
-1
. Q q
1
= -

Then H is a Hadamard nxn matrix. This is called the Paley construction.
If we take n=i2, the matrix obtained in this way is related to the generating

; £
matrix of the Golay code ‘f24.

Recently, work of Goethals-Seidel has led to a method related to
the quaternions and Turyn sequences for constructing Hadamard matrices.
It is conjectured that this method will work in all cases. For details
(though beware the typographical errors), see M. Hall's paper in the

Proceedings of the Santa Cruz Group Theory Conference (AMS 1981).

Given a Hadamard matrix H, we can replace the entries 1, -1, by
0, 1 respectively and then consider the binary code spanned by the rows.
These codes have also been studied, the ones corresponding to the Paley-

type Hadamard matrices are examples of quadratic residuz codes.
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We conclude by giving an application of coding theory to combinatorics.
Suppose ’}D is a finite projective plane of order 10. [The problem of
whether %3 exists is a famous, (still) open question.] Then ﬂj consists
of 111 points, 111 1lines, each point lies on exactly 11 lines, each
line has exactly 11 points. Each pair of points lies on a unique line
and two distinct lines meet in exactly one point. Let A = (aij) be
the incidence matrix ofr}3 . Thus A is an 111 x111 matrix and if

Pi’Li are the points, lines, resp. of‘}g),

a.. =1 if P. 1lies on L.,
ij 1 J

=0 if Pi does nut lie on Lj'
Let )Ar be the binary code with A as its generating matrix. It

has been shown that }4’ has minimum distance 11. Let i&, be the code

obtained by adding a parity check to 7%2 Then ;; has minimum distance 12,

length 112 and it is easy to show that ;a_g)é;l. Thompson has shown J

that in fact f&' haé dimension 56 and thus ﬁ% is a self-dual code. It

has been shown that the weight distribution of ;Q would be known if

and Wi were known. MacWilliams, Sloane, Thompson, have shown

¥12° Y15
that Wig = 0. By considering AQ more closely, recently, Anstee, Hall,
Thompson, have shown that f§) has no automorphism of order 5. This,with
work of Whitesides shows that the automorphism group ofrﬁ3 has order a
power of 3 and is now conjectured to be trivial. So 1{>, if it exists,

does not appear to have any of the symmetry we usually associate with a

geometry.
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