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Sparsification of Matrices and Compressed Sensing

FINTAN HEGARTY, PADRAIG Ó CATHÁIN AND YUNBIN ZHAO

Abstract. Compressed sensing is a signal processing technique
whereby the limits imposed by the Shannon–Nyquist theorem
can be exceeded provided certain conditions are imposed on the
signal. Such conditions occur in many real-world scenarios, and
compressed sensing has emerging applications in medical imag-
ing, big data, and statistics. Finding practical matrix construc-
tions and computationally efficient recovery algorithms for com-
pressed sensing is an area of intense research interest. Many
probabilistic matrix constructions have been proposed, and it is
now well known that matrices with entries drawn from a suitable
probability distribution are essentially optimal for compressed
sensing.

Potential applications have motivated the search for construc-
tions of sparse compressed sensing matrices (i.e., matrices con-
taining few non-zero entries). Various constructions have been
proposed, and simulations suggest that their performance is com-
parable to that of dense matrices. In this paper, extensive sim-
ulations are presented which suggest that sparsification leads to
a marked improvement in compressed sensing performance for a
large class of matrix constructions and for many different recov-
ery algorithms.

1. Introduction

Compressed sensing is a new paradigm in signal processing, devel-
oped in a series of ground-breaking publications by Donoho, Candès,
Romberg, Tao and their collaborators over the past ten years or so
[14, 8, 9]. Many real-world signals have the special property of being
sparse — they can be stored much more concisely than a random
signal. Instead of sampling the whole signal and then applying data
compression algorithms, sampling and compression of sparse signals
can be achieved simultaneously. This process requires dramatically
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fewer measurements than the number dictated by the Shannon–
Nyquist Theorem, but requires complex measurements which are
incoherent with respect to the signal. The compressed sensing par-
adigm has generated an explosion of interest over the past few years
within both the mathematical and electrical engineering research
communities.

A particularly significant application has been to Magnetic Reso-
nance Imaging (MRI), for which compressed sensing can speed up
scans by a factor of five [23], either allowing increased resolution from
a given number of samples or allowing real-time imaging at clinically
useful resolutions. A major breakthrough achieved with compressed
sensing has been real-time imaging of the heart [35, 24]. The US
National Institute for Biomedical Imaging and Bioengineering pub-
lished a news report in September 2014 describing compressed sens-
ing as offering a “vast improvement” in paediatric MRI imaging [19].
Emerging applications of compressed sensing in data mining and
computer vision were described by Candès in a plenary lecture at
the 2014 International Congress of Mathematicians [7].

The central problems in compressed sensing can be framed in
terms of linear algebra. In this model, a signal is a vector v in
some high-dimensional vector space, RN . The sampling process can
be described as multiplication by a specially chosen n×N matrix Φ,
called the sensing matrix. Typically we will have n � N , so that
the problem of recovering v from Φv is massively under-determined.

A vector is k-sparse if it has at most k non-zero entries. The set
of k-sparse vectors in RN plays the role of the set of compressible
signals in a communication system. The problem now is to find
necessary and sufficient conditions so that the inverse problem of
finding v given Φ and Φv is efficiently solvable.

If u and v are distinct k-sparse vectors for which Φu = Φv, then
one of them is not recoverable. Clearly, therefore, we require that
the images of all k-sparse vectors under Φ are distinct, which is
equivalent to requiring that the null-space of Φ does not contain any
2k-sparse vectors. There is no known polynomial time algorithm
to certify this property. We refer to the problem of finding the
sparsest solution x̂ to the linear system Φx̂ = Φx as the sparse
recovery problem. Natarajan has shown that certain instances of
this problem are NP-hard [27].
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Compressed sensing (CS) can be regarded as the study of meth-
ods for solving the sparse recovery problem and its generalizations
(e.g., sparse approximations of non-sparse signals, solutions in the
presence of noise) in a computationally efficient way. Most results
in CS can be characterized either as certifications that the sparse re-
covery problem is solvable for a restricted class of matrices, or as the
development of efficient computational methods for sparse recovery
for some given class of matrices.

One of the most important early developments in CS was a series
of results of Candès, Romberg, Tao and their collaborators. They
established fundamental constraints for sparse recovery: one cannot
hope to recover k-sparse signals of length N in less than O(k logN)
measurements under any circumstances1. (For k = 1, standard re-
sults from complexity theory show that O(logN) measurements are
required.) The main tools used to prove this result are the restricted
isometry parameters (RIP), which measure how the sensing matrix
Φ distorts the `2-norm of sparse vectors. Specifically, Φ has the
RIP(k, ε) property if, for every k-sparse vector v, the following in-
equalities hold:

(1− ε)|v|22 ≤ |Φv|22 ≤ (1 + ε)|v|22.

Tools from Random Matrix Theory allow precise estimations of the
RIP parameters of certain random matrices. In particular, it can be
shown that the random Gaussian ensemble, which has entries drawn
from a standard normal distribution, is asymptotically optimal for
compressed sensing, i.e., the number of measurements required is
O(k logN). A slightly weaker result is known for the random Fourier
ensemble, a random selection of rows from the discrete Fourier trans-
form matrix [8, 9, 33].

As well as providing examples of asymptotically optimal com-
pressed sensing matrices, Candès et al. provided an efficient recovery
algorithm: they showed that, under modest additional assumptions
on the RIP parameters of a matrix, `1-minimization can be used

1Throughout this paper we use some standard notation for asymptotics: for
functions f, g : N → N, we write that f = O(g) if there exists a constant C, not
depending on n, such that f(n) < Cg(n) for all sufficiently large n. Intuitively,
the function g eventually dominates f , up to a constant factor. We say that
f = Θ(g) if there exist two constants c, C such that cg(n) < f(n) < Cg(n) for all
sufficiently large n. Hence, f and g grow at the same rate.
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for signal recovery. Thus efficient signal recovery is possible in large
systems, making applications to real-world problems feasible.

Generation and storage of random matrices are potential obsta-
cles to implementations of CS. It is also difficult to design efficient
signal recovery algorithms capable of exploiting the structure of a
random matrix. For implementation in real-world systems, it is de-
sirable that CS constructions produce matrices that are sparse (pos-
sess relatively few non-zero entries), structured, and deterministically
constructed. Systems with these properties can be stored implicitly,
and efficient recovery algorithms can be designed to take advantage
of their known structure. If Φ is n × N with d non-zero entries
per column, then computing Φv takes Θ(dN) operations, which is a
significant saving when d� n. In some applications, signals are fre-
quently subject to rank-one updates (i.e., v is replaced by v+αei), in
which case the image vector can be updated in time O(d), see [38].

Motivated by real-world applications, a number of papers have
explored CS constructions where the Gaussian ensemble is replaced
by a sparse random matrix (e.g., coming from an expander graph or
an LDPC code) [3, 2, 18], or by a matrix obtained from a determin-
istic construction [11, 15, 16]. But to date, constructions meeting all
three criteria have either been asymptotic in nature (i.e., the results
only produce matrices that are too large for practical implemen-
tations), or are known only to exist for a very restricted range of
parameters. This investigation was inspired by work of the second
author on constructions of sparse CS matrices from pairwise bal-
anced designs and complex Hadamard matrices [6, 5]. Some related
work on constructing CS matrices from finite geometry is contained
in [20, 37].

In this paper we take a new approach. Rather than constructing
a sparse matrix and examining its CS properties, we begin with a
matrix which is known to possess good CS properties (with high
probability) and explore the effect of sparsification on this matrix.
That is, we set many of the entries in the original matrix to zero, and
compare the performance of the sparse matrix with the original. Re-
sults of Guo, Baron and Shamai suggest that sparse matrices should
behave similarly to dense matrices in our regime [17]. Surprisingly,
we actually observe an improvement in signal recovery as the spar-
sity increases.
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First we survey some previous work on sparse compressed sensing
matrices. Then in Section 3, we give a formal definition of sparsi-
fication, and describe algorithms used to generate random matrices
and random vectors, as well as the recovery algorithms. In Section 4
we describe the results of extensive simulations. These provide sub-
stantial computational evidence which suggests that sparsification
is a robust phenomenon, providing benefits in both recovery time
and proportion of successful recoveries for a wide range of random
and structured matrices occurring in the CS literature. In particu-
lar, Table 2 shows the benefits of sparsification for a range of matrix
constructions, while Figure 2 illustrates how sparsification improves
performance for a range of CS recovery algorithms. Finally, in Sec-
tion 5 we conclude with some observations and open questions mo-
tivated by our numerical experiments.

2. Tradeoffs between sparsity and compressed sensing

A number of authors have investigated ways of replacing random
ensembles with more computationally tractable sensing matrices. As
previously mentioned, foundational results of Candès et al. establish
asymptotically sharp results: to recover signals of length N with k
non-zero entries, n = Θ(k logN) measurements are necessary. Work
of Chandar established that when n = Θ(k logN), then the columns
of Φ must contain at least Θ(min{k,N/n}) non-zero entries [10].
In [29], Nelson and Nguyen establish an essentially optimal result
when n = Θ(k logN) and k < N/ log3N . They show that each
column of Φ necessarily contains Θ(k logN) non-zero entries; i.e.,
the proportion of non-zero entries in Φ cannot tend to zero as N
tends to ∞.

Observe that some restriction on k as a function of N is necessary:
in the limiting case k = N , the identity matrix clearly suffices as a
sparse sensing matrix. Furthermore, combinatorial constructions of
sparse matrices are known which have near optimal recovery guar-
antees with a mutual incoherence property2 [6]. In such matrices
n = O(k2), and for certain infinite families of matrices (e.g., those

2Informally, the k-RIP property requires that k-sets of columns of Φ approx-
imate an orthonormal basis. The incoherence of a matrix is the maximal inner
product of a pair of columns, which is essentially the 2-RIP of Φ. In contrast to k-
RIP, efficient constructions of matrices with near-optimal incoherence are known
[6], but they have sub-optimal compressed sensing performance. Using 2-RIP
alone, asymptotically one requires at least k2 measurements to recover k-sparse
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coming from projective planes) the number of non-zero entries in
each column is Θ(k). Results bounding errors in the `1 norm (so-
called RIP-1 guarantees) have been obtained using expander graphs.
In particular, Bah and Tanner have shown that essentially optimal
RIP-1 recovery can be achieved when limn→∞N/n = α for some
fixed α, with a constant number of non-zero entries per column [1].
(See also the discussion of dense versus sparse matrices in Section 3
of this paper.) These bounds are strictly weaker than RIP-2 bounds,
though fast specialised algorithms have been developed for signal re-
covery with such matrices [32].

Since the k-RIP property is difficult to establish in practice, some
authors have relaxed this in various directions. Berinde, Gilbert, In-
dyk, Karloff and Strauss [3] considered random binary matrices with
constant column sum and related these to the incidence matrices of
expander graphs. We reinterpret these matrices as sparsifications of
the all-ones matrix below. Sarvotham, Baron and Baraniuk [2] and
Dimakis, Smarandache and Vontobel [12] have considered the use
of LDPC matrices. In particular, they have provided a strong cor-
respondence between error-correcting performance of LDPC codes
(when considered over F2) and CS performance of the same binary
matrices (when considered over R). While both groups obtained
essentially optimal CS performance guarantees, their constructions
are limited by the lack of known explicit constructions for expander
graphs and LDPC codes respectively. Moghadam and Radha have
previously considered a two step construction of sparse random ma-
trices, involving construction of a random (0, 1)-matrix followed by
replacing each entry 1 with a sample from some probability distri-
bution, [25, 26].

If one is content with recovery of each sparse vector with high
probability, then much sparser matrices become useful. A strong
result in this direction is due to Gilbert, Li, Porat and Strauss,
who show that there exist matrices with n = O(k logN) rows and
Θ(log2 k logN) non-zero entries per column which recover sparse
vectors with probability 0.75 [16] (see also [34]). Their matrices
also come with efficient encoding, updating and recovery algorithms.
While essentially optimal results are known for sparsity bounds on

signals. No practical deterministic construction is known which uses asymptoti-
cally fewer measurements; this obstruction is known as the square-root bottleneck,
and finding more efficient deterministic constructions is a major open problem in
compressed sensing.
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CS matrices with an optimal number of rows, much less is known
when either some redundant rows are allowed in the construction,
or when RIP is replaced with a slightly weaker condition.

Several authors have compared the performance of sparse and
dense CS matrices [17, 36, 13, 21]. Guo, Baron and Shamai have
essentially shown that in certain limiting cases of the sparse recovery
problem, dense and sparse sensing matrices behave in a surprisingly
similar manner. In particular, they consider a variant of the recov-
ery problem: given Φ and Φx, what can one say about any single
component of x? They show that, as the size of the system be-
comes large (in a suitably controlled way), the problem of estimat-
ing xi becomes independent of estimating xj. In fact, the problem
is equivalent to recovering a single measurement of xi contaminated
by additive Gaussian noise. They also apply their philosophy to
sparse matrices, where as the size of the matrix becomes large, es-
timation of all signal components becomes independent, and each
can be recovered independently. We refer the reader to the original
paper for technical details [17]. As a result, under their assumptions,
there should be no essential difference between CS performance in
the sparse and dense cases.

For any compressed sensing matrix Φ, denote by δ(Φ) the propor-
tion of non-zero entries in Φ. Suppose that the number of columns
of Φ is a linear function of the number of rows, i.e., that N = αn
for some fixed α ∈ R. Suppose further that limn→∞ δ(Φ)n1−ε = 0
for any ε > 0, but that limn→∞ δ(Φ)n diverges. (Consider δ(Φ) =
log n/n for example.) Under these hypotheses, Guo, Baron and
Shamai claim that sparse and dense matrices exhibit identical CS
performance. In particular, there exist matrices with k log k rows
and Θ(log k) non-zero entries per row which recover vectors of spar-
sity O(k).

This appears to be in conflict with Nelson and Nguyen’s result,
which requires at least Θ(n log log n/ log n) non-zero entries in such a
matrix. The difference is that Nelson and Nguyen’s result holds only
when n = O(k log3N), whereas Guo, Baron and Shamai consider
the case n = Θ(N).

Wang, Wainwright and Ramchandran’s analysis of the number of
measurements required for signal recovery depends on the quantity
(1− δ(Φ))k, which can be considered a measure of how much infor-
mation about x is captured in each co-ordinate of Φx. They show
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that if (1−δ(Φ))k →∞ as N →∞ (which corresponds to relatively
dense matrices, where, in the limit, each component of the signal is
sampled infinitely often), then sparsification has no effect on recov-
ery, while if (1−δ(Φ))k remains bounded (so each component of the
signal is sampled only finitely many times in expectation), then what
the authors term “dramatically more measurements” are required.
We refer the reader to the original paper for more details [36].

Our simulations are close in spirit to those considered by Guo,
Baron and Shamai. Our computations are rather surprising as they
suggest a modest improvement in signal recovery as we apply a
sparsifying process to certain families of CS matrices. This improve-
ment seems to persist across different recovery algorithms and differ-
ent matrix constructions, and does not appear to have been noted in
any of the work discussed in this section. (Though Lu, Li, Kpalma
and Ronsin have observed some improvement in CS performance
for sparse binary matrices [22].) We also observed a substantial im-
provement in the running times of the recovery algorithms, which
may be of interest in practical applications.

3. Sparsification

We begin with a formal definition of sparsification.

Definition 3.1. The matrix Φ′ is a sparsification of Φ if Φ′i,j = Φi,j

for every non-zero entry of Φ′. The density of Φ, denoted δ(Φ), is
the proportion of non-zero entries that it contains, and the relative
density of Φ′ is the ratio δ(Φ′)/δ(Φ). We write Sp(Φ, s) for the set
of all sparsifications of Φ of relative density s.

In general, we have that Sp(Φ, 1) = Φ, and that Sp(Φ, 0) is the zero
matrix. We also have a transitive property: if Φ′ ∈ Sp(Φ, s1) and
Φ′′ ∈ Sp(Φ′, s2) then Φ′′ ∈ Sp(Φ, s1s2). Two independent sparsifica-
tions will not in general be comparable: there is a partial ordering
on the set of sparsifications of a matrix, but not a total order.

We illustrate our notation. Consider a Bernoulli random variable
which takes value 1 with probability p and value 0 with probability
1 − p and let Φ be an n × N matrix with entries drawn from this
distribution; in short, a Bernoulli ensemble with expected value
p. Then the expected density of Φ is p. Writing J for the all-ones
matrix, a randomly chosen Φ′ ∈ Sp(J, p) will also have density p, and
can be considered a good approximation of a Bernoulli matrix. If Φ′′
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is an independent random sparsification (i.e., all non-zero entries of
the matrix have an equal probability of being set to zero) of Φ′ with
relative density p′, then Φ′′ approximates the Bernoulli ensemble
with expected value pp′. So we have both Φ′ ∈ Sp(Φ′, p′) and Φ′ ∈
Sp(J, pp′). Later, we will consider successive sparsifications where
we begin with a dense matrix whose entries are drawn from, e.g., a
normal distribution.

Bernoulli ensembles have previously been considered in the com-
pressed sensing literature, see [31] for example, though note that the
matrices here take values in {0, 1}, not {±1}. Such {±1}-matrices
are an affine transformation of ours: M ′ = 2M − J ; as a result, the
compressed sensing performance of either matrix is essentially the
same.

In this paper, we will mostly be interested in pseudo-random spar-
sifications of an n×N compressed sensing matrix Φ. Specifically, for
s = t/n, we obtain a matrix Φ′ ∈ Sp(Φ, s) by generating a pseudo-
random {0, 1}-matrix S with sn randomly located ones per column,
and returning the entry-wise product Φ′ = Φ ∗ S. We will generally
re-normalize Φ′ so that every column has unit `2-norm.

Given a matrix Φ, we test its CS performance by running simu-
lations. Since many different methodologies occur in the literature,
we specify ours here.

Our k-sparse vectors always contain exactly k non-zero entries, in
positions chosen uniformly at random from the

(
N
k

)
possible sup-

ports of this size. The entries, unless otherwise specified, are drawn
from a uniform distribution on the open interval (0, 1). The vector
is then scaled to have unit `2-norm. Simulations where the non-zero
entries were drawn from the absolute value of a Gaussian distribu-
tion produced similar results. Note that many authors use (0, 1)-
or (0,±1)-vectors for their simulations. Appropriate combinations
of matrices and algorithms often exhibit dramatic improvements of
performance on this restricted set of signals.

We recover signals using `1-minimization. In this paper we will
use the matlab LP-solver and the implementations of Orthogonal
Matching Pursuit (OMP) and Compressive Sampling Matching Pur-
suit (CoSaMP) algorithms which were developed by Needell and
Tropp [28]. Specifically, given a matrix Φ and signal vector x, we
compute y = Φx, and solve the `1-minimization problem Φx̂ = y
for x̂. The objective function is the `1-norm of x̂ and it is assumed
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Figure 1. Effect of sparsification on signal recovery.

that all variables are non-negative. We consider the recovery suc-
cessful if |x − x̂|1 ≤ c for some constant c. We take c = 10−6 in all
the simulations presented in this paper.

We conclude this section with an example illustrating the poten-
tial benefits of sparsification. In Figure 1, we explore the effect of
sparsification on a 200× 2000 matrix Φ with entries uniformly dis-
tributed on (0, 1). The results for this case were compared with
matrices drawn from Sp(Φ, 0.1) and Sp(Φ, 0.05). For each signal
sparsity between 1 and 60, we generated 500 random vectors as de-
scribed above and recorded the number of successful recoveries using
the matlab LP-solver. To avoid bias we generated a new random
matrix for each trial.

We observe that for signal vector sparsities between 45 and 55,
matrices in Sp(Φ, 0.05) achieve substantially better recovery than
those from Sp(Φ, 1). The code used to generate this simulation
as well as others in this paper is available in full, along with data
from multiple simulations at a webpage dedicated to this project:
http://fintanhegarty.com/compressed sensing.html .

4. Results

Our simulations produce large volumes of data. To highlight the
interesting features of these data-sets, we propose the following mea-
sure for acceptable signal recovery in practice.

Definition 4.1. For a matrix Φ and for 0 ≤ t ≤ 1, we define the t-
recovery threshold, denoted Rt, to be the largest value of k for which
Φ recovers k-sparse signal vectors with probability exceeding t.



Sparsification of Matrices and Compressed Sensing 15

We construct an estimate R̂t for Rt by running simulations. As the
number of simulations that we run increases, R̂t converges to Rt. In
practice this convergence is rapid. The definition of Rt generalizes
naturally to a space of matrices (say n × N Gaussian ensembles):
it is simply the expected value of Rt for a matrix chosen uniformly
at random from the space. To estimate Rt with reasonably high
confidence, we proceed as follows: beginning with signals of sparsity
k = 1, we attempt 50 recoveries. We increment the value k by 1 and
repeat until we reach the first sparsity k0 where less than 50t signals
are recovered. Beginning at k0−3, we attempt 200 recoveries at each
signal sparsity. When we reach a signal sparsity k1 where less than
200t signals are recovered, we attempt 1000 signal recoveries at each
signal sparsity starting at k1 − 3. When we reach a signal sparsity
k2 where less than 1000t signals are recovered, we set R̂t = k2 − 1.

We typically find that k1 = k2, which gives us confidence that
R̂t = Rt. Unless otherwise specified, we use the assumptions out-
lined in Section 3.

4.1. Recovery algorithms with sparsification. As suggested al-
ready in Figure 1, taking Φ′ ∈ Sp(Φ, s) for some value of s ∼ 0.05
seems to offer considerable improvements when using linear pro-
gramming for signal recovery. Similar results hold for OMP and
CoSaMP, though note that in each case we supply these algorithms
with the sparsity of the signal vector. (While there is an option to
withhold this data, the recovery performance of CoSaMP seems to
suffer substantially without it — and we wish to be able to perform
comparisons with linear programming.) In Figure 2, we graph R0.98

of Sp(Φ, s) as a function of s, where Φ is a 200× 2000 matrix with
entries drawn from the absolute values of samples from a standard
normal distribution.

For each algorithm, R0.98 appears to obtain a maximum for ma-
trices of density between 0.15 and 0.05. It is perhaps interesting to
note that the percentage improvement obtained by CoSaMP is far
greater than that for either of the other algorithms.

Table 1 shows the average time taken for one hundred vector re-
covery attempts using 200×2000 measurement matrices with entries
drawn from the absolute values of samples from a normal distribu-
tion, over a range of vector sparsities. We note an improvement in
running time of an order of magnitude for linear programming when
using sparsified matrices, and an improvement when using CoSaMP.
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Figure 2. Signal recovery as a function of matrix
density for LP, OMP and CoSaMP.

4.2. Matrix constructions under sparsification. In this sec-
tion we explore the effect of sparsification on a number of different
constructions proposed for CS matrices. We have already encoun-
tered the Gaussian, Uniform and Bernoulli ensembles. We will also
consider some structured random matrices, which still have entries
drawn from a probability distribution, but the matrix entries are
no longer independent. The partial circulant ensemble [30] consists
of rows sampled randomly from a circulant matrix, the first row of
which contains entries drawn uniformly at random from some suit-
able probability distribution. Table 2 compares R0.98 for Sp(Φ, 1)
and Sp(Φ, 0.05) for 200 × 2000 matrices from each of the classes
listed. Note that in the case of the Bernoulli ensemble, we actually
compare Sp(J200,2000, 0.5) with Sp(J200,2000, 0.05), where J200,2000 is
an all-ones matrix. The entries of the partial circulant matrix were
drawn from a normal distribution.

Time for 100 recovery attempts % vectors successfully recovered
k CoSaMP LP CoSaMP LP

δ = 0.1 δ = 1 δ = 0.1 δ = 1 δ = 0.1 δ = 1 δ = 0.1 δ = 1
1 0.94 0.44 18.1 106.61 100 100 100 100
10 0.78 1.25 39.78 157.53 100 100 100 100
20 0.56 1.98 27.50 177.17 100 100 100 100
30 1.56 4.48 27.39 171.84 100 99 100 100
40 3.68 33.98 27.02 207.22 100 55 99 94
50 11.09 66.77 33.59 375.17 99 7 78 38
60 48.38 81.54 43.82 364.25 75 0 1 1
70 89.87 93.62 41.03 329.22 0 0 0 0

Table 1. Effect of sparsification on recovery time.
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We denote by k̂ the signal sparsity k for which the greatest differ-
ence in recovery between Φ and Φ′ ∈ Sp(Φ, 0.05) occurs.

Construction R0.98 Maximal performance difference

δ = 1 δ = 0.05 k̂ δ = 1 δ = 0.05
Normal 39 46 51 25 81
Uniform 39 45 51 24 73
Bernoulli 39 42 49 38 67
Partial Circulant 39 46 52 22 76

Table 2. Benefit of sparsification for different matrix
constructions.

4.3. Varying the matrix parameters. Finally, we investigate the
effect of sparsification on matrices of varying parameters. In partic-
ular, we explore the effect of sparsification on a family of matrices
with entries drawn from the absolute value of the Gaussian distri-
bution. First we explore the effect of sparsification as the ratio of
columns to rows in the sensing matrix increases. For Figure 3, we
use signal vectors whose entries were drawn from the absolute value
of the normal distribution. We observe a modest improvement in
performance which appears to persist.
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Figure 3. Recovery capability of matrices with 100 rows
and varying number of columns under sparsification.

Now for Figure 4, we fix the ratio of columns to rows of Φ to
be 10, and vary the number of rows. We know from the results of
Candès et al. that R0.98 = Θ(n/ log n) in all cases. Nevertheless,
the clear difference in slopes for recovery at different sparsities offers
compelling evidence that the benefits of sparsification persist for
large matrices.
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Figure 4. Recovery with CoSaMP for matrices with
fixed row to column ratio under sparsification.

5. Conclusion

Some of the most important open problems in compressed sens-
ing relate to the development of efficient matrix constructions and
effective algorithms for sparse recovery. Deterministic constructions
are essentially limited by the Welch bound: using known meth-
ods it is not possible to guarantee recovery of vectors of sparsity
exceeding Θ(

√
n), where n is the number of rows in the recovery

matrix (see, e.g., [6]). Probabilistic constructions are much better:
Candès and Tao’s theory of restricted isometry parameters allows
the provable recovery of vectors of sparsity k in dimension N with
Θ(k log(N)) measurements. Such guarantees hold with overwhelm-
ing probability for Gaussian ensembles and many other classes of
random matrices. But the random nature of these matrices can
make the design of efficient recovery algorithms difficult. In this
paper we have demonstrated that sparsification offers potential im-
provements for computational compressed sensing. In particular,
Figures 1 and 4 show that sparsification results in the recovery of
vectors of higher sparsity. Table 1 shows a substantial improve-
ment in runtimes for linear programming arising from sparsification.
These appear to be robust phenomena, which persist under a vari-
ety of recovery algorithms and matrix constructions. At the problem
sizes that we explored, matrices with densities between 0.05 and 0.1
seemed to provide optimal performance.
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We conclude with a small number of observations and conjectures
which we believe to be suitable for further investigation. Since a
Bernoulli ensemble in our terminology can be regarded as a spar-
sification of the all-ones matrix, it is clear that sparsification can
improve CS performance. The necessary decay in CS performance
as the density approaches zero shows that the effect of sparsification
cannot be monotone. Extensive simulations suggest that when re-
covery is achieved with a general purpose linear programming solver,
matrices with approximately 10% non-zero entries have substan-
tially better CS properties than dense matrices. A catastrophic
decay of compressed sensing performance occurs in many of the ex-
amples we investigated between densities of 0.05 and 0.01. We pose
two questions which we think suitable for further research.

Question 5.1. As the number of rows of Φ increases, the optimal
matrix density appears to decrease. This effect does not appear to de-
pend strongly on the matrix construction chosen. Does there exist a
function Γ(n,N, k) which describes the optimal level of sparsification
for an n × N matrix recovering k-sparse vectors? Our simulations
suggest that when N < nα, the optimal density of a CS matrix will
be approximately αn−1/2 when k = o(n1−ε).

Question 5.2. We have considered pseudo-random sparsifications
in this paper. In general, this should not be necessary. Are there
deterministic constructions for (0, 1)-matrices with the property that
their entry-wise product with a CS matrix improves CS performance?
A natural class of candidates would be the incidence matrices of
t-(v, k, λ) designs (see [4] for example). Some related work is con-
tained in [5, 6].
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20 HEGARTY, Ó CATHÁIN, ZHAO

References

[1] B. Bah and J. Tanner. Vanishingly sparse matrices and expander graphs,
with application to compressed sensing. IEEE Trans. Inform. Theory,
59(11):7491–7508, Nov 2013.

[2] D. Baron, S. Sarvotham, and R. Baraniuk. Bayesian compressive sensing via
belief propagation. IEEE Trans. Signal Process., 58(1):269–280, Jan 2010.

[3] R. Berinde, A. Gilbert, P. Indyk, H. Karloff, and M. Strauss. Combining
geometry and combinatorics: A unified approach to sparse signal recovery.
In Proc. 46th Ann. Allerton Conference on Communication, Control, and
Computing, pages 798–805, Sept 2008.

[4] T. Beth, D. Jungnickel, and H. Lenz. Design theory. Vol. I, volume 69 of
Encyclopedia Math. Appl.. Cambridge University Press, second edition, 1999.

[5] D. Bryant, C. Colbourn, D. Horsley, and P. Ó Catháin. Compressed sens-
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