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A New Characterization of Boolean Rings
with Identity

PETER DANCHEV

Abstract. We define the class of nil-regular rings and show that
it coincides precisely with the class of boolean rings. We thus give
a complete description of these rings.

1. Introduction

Throughout this note, let all rings considered be associative, not
necessarily commutative a priory, containing an identity element 1.
Since the present paper deals with boolean rings and their general-
izations, the condition of having 1 is essential, because finite boolean
rings always possess an identity, but this is not in all cases true for
infinite boolean rings – e.g., just consider all finite subsets of a given
infinite set under the operations of symmetric set difference and
intersection.

Furthermore, almost all our notions and notations are standard
and follow those from [5]. The other non-classical concepts and
terminology will be explained below in detail. For example, a unit
u is called unipotent if it is of the form 1 +n, where n is a nilpotent.
Also, a ring R is called abelian if all its idempotents are central, that
is, they commute with all elements of the ring.

For completeness, we first recall some classical definitions of ring
theory. So, a ring R is said to be regular if, for each a ∈ R, there
is x ∈ R such that a = axa, and strongly regular if, for every a ∈
R, there is x ∈ R such that a = a2x. It is well known that the
strongly regular rings are exactly the regular rings without nilpotent
elements, and also that they are exactly the abelian regular rings
(see, e.g., [4] and [7]). It is also a well-known fact that a ring R
is strongly regular if and only if each element of R is a product of
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a unit and a central idempotent. Likewise, a ring R is said to be
unit-regular if, for each a ∈ R, there exists a unit u ∈ R such that
a = aua. Moreover, it is known that a ring is unit-regular if and only
if each of its elements is the product of a unit and an idempotent.
Thus strongly regular rings are unit-regular; actually, the element x
in the presentation a = a2x can be chosen to be a unit with ax = xa
(see, e.g., [3, Theorem 3]).

So, we are ready to state our main tool.

Definition. We shall say that an arbitrary ring R is nil-regular if,
for every r ∈ R, there exists a nilpotent n with the property that
r = r(1 + n)r = r2 + rnr. Such an element r is also said to be
nil-regular.

If the element r can be written as r = r2(1 + n) = r2 + r2n, it is
called strongly nil-regular and if this holds for each such r, the ring
R is called strongly nil-regular as well.

The objective of the present paper is to characterize completely
(strongly) nil-regular rings. Surprisingly, we shall show below that
these rings do not possess non-trivial nilpotents; thus we ambigu-
ously obtain that they coincide with the classical boolean rings in
which each element is an idempotent. In fact, it is obviously seen
that every boolean ring is (strongly) nil-regular by taking n = 0,
but the eventual validity of the converse containment is definitely
non-trivial. Before showing that it really holds, we will establish an
equivalent property of nil-regular rings.

2. The main result

Proposition 2.1. A ring R is nil-regular if and only if, for any
a ∈ R, there exist an idempotent e and a nilpotent n such that
a = e(1 + n).

Proof. Necessity. Since by definition a = a(1 + n)a, then we
define e = a(1 + n) and therefore a = ea = ea(1 + n)(1 + n)−1 =
e(1 +n)−1, where (1 +n)−1 is of the form 1 + t for some nilpotent t.
Moreover, e2 = e · e = a(1 + n)a(1 + n) = a(1 + n) = e, as required.

Sufficiency. If a = e(1 + n), then a(1 + n)−1 = e, so a(1 +
n)−1a(1 + n)−1 = a(1 + n)−1, and hence a(1 + n)−1a = a, where
(1 + n)−1 is equal to 1 + t for some nilpotent t.
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It is worthwhile noticing that since our basic definition is left-
right symmetric, one plainly checks that the last statement may be
written as a = (1+m)f for any element a ∈ R and for some existing
nilpotent m and an idempotent f .

The next two technical lemmas are referred to in [1] and [2].

Lemma 2.2. If R is a ring with unipotent units, then so is the
corner ring eRe for any idempotent e.

Proof. Letting u ∈ eRe be a unit with inverse v ∈ eRe, it is
routinely checked that u+ 1− e is a unit in R with inverse v+ 1− e.
Consequently, u + 1 − e = 1 + t for some nilpotent t, so that t =
u− e ∈ eRe is a nilpotent. We therefore have that u = e+ t, which
is obviously a unipotent, as desired.

Lemma 2.3. For any n ≥ 2 and any non-zero ring R, the matrix
ring Mn(R) cannot have unipotent units only.

Proof. Since M2(R) is isomorphic to a corner ring of Mn(R), in
accordance with Lemma 2.2, it is enough to show that M2(R) has
units other than unipotent ones. To this aim, consider the matrix

unit M =
(

0 1
1 1

)
, with inverse

(−1 1
1 0

)
. Since

(
1 0
0 1

)
−

(
0 1
1 1

)
=(

1 −1
−1 0

)
is clearly not a nilpotent, because it is again a unit with

inverse
(

0 −1
−1 −1

)
, we deduce that M is not a unipotent, as desired.

We now have all the ingredients needed to prove the promised
above new characterization of boolean rings.

Theorem 2.4. Any nil-regular ring is boolean, and conversely. Even
more, the following three conditions are equivalent:
(a) R is nil-regular;
(b) R is unit-regular with unipotent units;
(c) R is boolean.

Proof. It is clear that the implications (c) implies (b) implies (a)
hold. We will now show that (a) yields (c). To that goal, let (a) be
satisfied and we will prove three things about the nil-regular ring R:

(1) Each unit of R is unipotent.
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In fact, given an arbitrary unit u, we have u = u(1 + n)u = u for
some nilpotent n, whence u(1 + n) = (1 + n)u = 1, implying that u
is equal to (1 + n)−1 = 1 + t, where t is some nilpotent.

(2) R has characteristic 2.

In fact, as R is regular, its Jacobson radical J(R) must be zero.
But since 2 lies in J(R), because −1 = 1 + n for some nilpotent n
and hence 2 = n, we deduce that 2 = 0, as claimed.

(3) R has no non-zero nilpotents.

In fact, it is easily checked that nil-regular rings R being regular
are semi-potent rings (i.e., each left ideal not contained in J(R)
contains a nonzero idempotent) with J(R) = 0, and knowing this
let n > 1. Furthermore, a well-known result of [6] assures us that
if n ∈ N is such that for any nonzero a ∈ R with an = 0, we have
an−1 6= 0, then RaR contains a system of n2-matrix units; so RaR
will contain a corner ring isomorphic to an n by n matrix ring. But,
in view of Lemma 2.2, the property (1) goes down to corner rings,
while, if T 6= 0 is any ring, then appealing to Lemma 2.3, the matrix
Mn(T ) cannot have the property of having only unipotent units, so
that by (1) it is never nil-regular. This contradiction establishes our
assertion.

Using the argumentation above about strongly regular rings, and
especially that they do not possess nontrivial nilpotent elements,
one may deduce the following:

Proposition 2.5. The following three conditions are equivalent:
(i) R is strongly nil-regular;
(ii) R is strongly regular with trivial units;
(iii) R is boolean.

In particular, nil-regular rings are strongly nil-regular, and vice
versa.

In conjunction with Theorem 2.4, concerning the element-wise de-
scription, we will illustrate now that there is a nil-regular element
which is not an idempotent. In fact, in the matrix ring M2(Z) one
we have E12 = E12(1 + E21)E12, where one obviously verifies that
E21 is a nilpotent of index 2 and E12 is also a nilpotent of index 2
but not an idempotent, as expected. So, a question which immedi-
ately arises is whether or not any strongly nil-regular element is an
idempotent. We conjecture that the answer is no, too.
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The ideas presented above can be extended in the following way:
In conjunction with [2] one may ask whether or not the rings R for
which, for each r ∈ R, there exist an idempotent e and a nilpotent
n such that r(e+ n)r = r are precisely the nil-clean rings.

We also call a ring R π-nil-regular if, for each r ∈ R, there exist an
integer i and a nilpotent n such that ri = ri(1 + n)ri = r2i + rinri;
such an element r is also called π-nil-regular. Clearly, all π-nil-
regular rings form a subclass of the class of π-regular rings. Also,
one sees that a power of any unit in such a ring is a unipotent.

In this way, if for each r ∈ R there are an integer i and a nilpotent
n such that ri = r2i(1 +n) = r2i + r2in, the ring R is called strongly
π-nil-regular; such an element r is also called strongly π-nil-regular.
Evidently, these rings are strongly π-regular and thus unit-regular.

Recall also that a ring R is said to be π-boolean if, for every r ∈ R,
there exits an integer i such that r2i = ri; such an element r is also
called π-boolean. Apparently, π-boolean rings are (strongly) π-nil-
regular.

So, in accordance with Theorem 2.4, we close with the following
question:

Problem 1. Does it follow that (strongly) π-nil-regular rings do
not contain non-trivial nilpotent elements, that is, are (strongly)
π-nil-regular rings exactly the π-boolean rings?

If the existing nilpotent element in the definition of (strongly) π-
nil-regular rings is unique, we then call such rings uniquely (strongly)
π-nil-regular. So, the next query arises quite naturally:

Problem 2. Characterize uniquely (strongly) π-nil-regular rings.
Are they just the abelian (strongly) π-nil-regular ones?

Problem 3. Describe the element-wise relationships between π-nil-
regular, strongly π-nil-regular and π-boolean elements. Is it true
that for any element r of a ring R it is strongly π-nil-regular if and
only if there exists an integer i > 0 such that ri is strongly nil-
regular? Likewise, is the record of a strongly nil-regular element
left-right symmetric?
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