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INFINITELY MANY POSITIVE INTEGER
SOLUTIONS OF THE QUADRATIC DIOPHANTINE

EQUATIONS x2 − 8Bnxy − 2y2 = ±2r

OLCAY KARAATLI, REFİK KESKİN, AND HUILIN ZHU

Abstract. In this study, we consider the quadratic Diophantine
equations given in the title and determine when these equations
have positive integer solutions. Moreover, we find all positive inte-
ger solutions of them in terms of Balancing numbers Bn, Pell and
Pell-Lucas numbers, and the terms of the sequence {vn} , where
{vn} is defined by v0 = 2, v1 = 6, and vn+1 = 6vn − vn−1 for n ≥ 1.

1. Introduction

A Diophantine equation is an equation in which only integer so-
lutions are allowed. The name “Diophantine” comes from Diophan-
tos, an Alexandrian mathematician of the third century A. D., who
proposed many Diophantine problems; but such equations have a
very long history, extending back to ancient Egypt, Babylonia, and
Greece. In general, a quadratic Diophantine equation is an equation
in the form

ax2 + bxy + cy2 + dx+ ey + f = 0, (1)

where a, b, c, d, e, and f are fixed integers. There has been much
interest in determining all integer solutions to Diophantine equations
among mathematicians. In particular, several papers [30, 6, 29, 2, 3,
4, 17, 33, 7, 12, 10] deal with such equations. The principal question
when studying a given Diophantine equation is whether a solution
exists; and in the case they exist, how many solutions there are and
whether there is a general form for the solutions. For more details
on Diophantine equations, see [21, 31, 23, 8, 14, 32, 20].

In [11], Keskin and Yosma considered the Diophantine equations

x2 − Lnxy + (−1)ny2 = ±5r, (2)
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where n > 0, r > 1, and Ln denotes the nth Lucas number. The
authors determined when (2) have positive integer solutions. Later,
applying some properties of Fibonacci and Lucas numbers, they gave
all positive integer solutions of (2) in terms of Fibonacci and Lucas
numbers. In [13], Keskin, Karaatlı, and Şiar determined when the
equations

x2 − 5Fnxy − 5(−1)ny2 = ±5r, (3)

where Fn denotes the nth Fibonacci number, have positive integer
solutions under some assumptions that n ≥ 1, r ≥ 0, using some
basic properties of Fibonacci and Lucas sequences and also some
cases in which Fibonacci and Lucas sequences have square terms.
Then the authors found all positive integer solutions of (3). In this
study, we are interested in determining explicitly all positive integer
solutions (x, y) of the equations

x2 − 8Bnxy − 2y2 = ±2r, (4)

where Bn denotes the nth balancing number, in terms of balanc-
ing numbers, Pell and Pell-Lucas numbers, and the terms of the
sequence {vn}.

2. Close Relations Between Balancing Sequence, Pell
and Pell-Lucas Sequences, and the sequence {vn}

Before we can explain about the sequences mentioned in the ti-
tle above, we need to recall the generalized Fibonacci and Lucas
sequences.

Let P and Q be non-zero integers. We consider the generalized
Fibonacci sequence {Un}

U0 = 0, U1 = 1, Un+1 = PUn −QUn−1 for n ≥ 1 (5)

and the generalized Lucas sequence {Vn}

V0 = 2, V1 = P, Vn+1 = PVn −QVn−1 for n ≥ 1. (6)

The numbers Un and Vn are called the nth generalized Fibonacci and
Lucas numbers, respectively. Moreover, generalized Fibonacci and
Lucas numbers for negative subscripts are defined as

U−n =
−Un

Qn
and V−n =

Vn
Qn

(7)
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with n ≥ 1. If α = (P +
√
P 2 − 4Q)/2 and β = (P −

√
P 2 − 4Q)/2,

assuming P 2 − 4Q 6= 0, are zeros of x2 − Px+Q, then we have the
well known Binet formulas

Un = (αn − βn)/(α− β) and Vn = αn + βn (8)

for all n ∈ Z. When P = 1 and Q = −1, {Un} = {Fn} and
{Vn} = {Ln} are the familiar sequences of Fibonacci and Lucas
numbers, respectively. For P = 2 and Q = −1, {Un} and {Vn} are
the familiar Pell sequence {Pn} and Pell-Lucas sequence {Qn} , re-
spectively. Furthermore, when Q = 1, we represent {Un} and {Vn}
by {un} and {vn} . It clearly follows from (3) that

u−n = −un and v−n = vn (9)

for all n ≥ 1. For further details on generalized Fibonacci and Lucas
sequences, we refer the reader to [9, 22, 25, 26].

The terms of a sequence {Un} may be partitioned into disjoint
classes by means of the following equivalence relation:
Um ∼ Un if and only if there exist non-zero integers x and y

satisfying x2Um = y2Un, or equivalently UmUn is a square. If Um ∼
Un, then Um and Un are said to be in the same square-class. A
square-class containing more than one term of the sequence is called
non-trivial. Similarly, we can define the square-class of {Vn} .

Balancing numbers were introduced by Behera and Panda [1], by
considering natural numbers b and r satisfying the equation

1 + 2 + ...+ (b− 1) = (b+ 1) + (b+ 2) + ...+ (b+ r). (10)

Here, r is the balancer corresponding to the balancing number b.
The nth balancing number is denoted by Bn and the balancing num-
bers Bn for n ≥ 2 are obtained from the recurrence relation

B0 = 0, B1 = 1, Bn+1 = 6Bn −Bn−1 for n ≥ 1. (11)

Actually, substituting P = 6 and Q = 1 into (5) and (6) gives that
un = Bn and the sequence {vn} , which is mentioned in the title
of this section. This means that both balancing sequence and the
sequence {vn} are special cases of the generalized Fibonacci and
Lucas sequences for the case when P = 6 and Q = 1. Now we state
some well known definition, theorems, and identities regarding the
sequences {Pn} , {Qn} , {Bn} , and {vn} that will be needed later.
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Definition 2.1. Let a and b be integers, at least one of which is not
zero. The greatest common divisor of a and b, denoted by (a, b), is
the largest integer which divides both a and b.

Theorem 2.2. Let γ and δ be the roots of the equation x2−2x−1 =

0. Then we have Pn =
γn − δn

2
√

2
and Qn = γn + δn for all n ∈ Z.

Theorem 2.3. Let α and β be roots of the characteristic equation

x2−6x+1 = 0. Then un =
αn − βn

4
√

2
and vn = αn +βn for all n ∈ Z.

From the theorems above, it is easily seen that Bn = P2n/2 and
vn = Q2n for n ≥ 0. We assume from this point on that P = 6 for
the sequence {vn} .

Most of the properties below for {Pn} , {Qn} , {Bn} , and {vn} are
well known (see, for example [28]). Properties (17) to (22) can be
easily obtained by using Binet’s formulas. Properties (23) to (26)
can be found in [26, 27]. Properties (31) and (32) were proved in
[18]. The proofs of the others are easy and will be omitted.

Q2
n − 8P 2

n = 4(−1)n, (12)

v2n − 32u2n = 4, (13)

P2n = PnQn and B2n = Bnvn, (14)

vn = Bn+1 −Bn−1, (15)

Q2n = Q2
n − 2(−1)n, (16)

vmvn + 32BmBn = 2vm+n, (17)

vmvn − 32BmBn = 2vm−n, (18)

Bmvn +Bnvm = 2Bm+n, (19)

Bmvn −Bnvm = 2Bm−n, (20)

v2m+n − 32BmBnvn+m − 32B2
m = v2n, (21)

32B2
m+n − 32BnBm+nvm − v2m = −v2n, (22)

(Bn, vn) = 1 or 2, (23)

Bm|Bn ⇔ m|n, (24)

vm|vn ⇔ m|n and n/m is odd, (25)

vm|Bn ⇔ m|n and n/m is even, (26)

2|Bn ⇔ 2|n⇔ 2|Pn, (27)

2 - Bn ⇔ 2 - n⇔ 2 - Pn, (28)

2|Qn and 2|vn. (29)
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Moreover, from (12) and (13), it is clear that

4 - Qn and 4 - vn, (30)

respectively.
If d = (m,n), then{

(Pm, Qn) = Qd if m/d is even
(Pm, Qn) = 1 otherwise.

(31)

Let m = 2am
′
, n = 2bn′, m

′
, n

′
are odd, a, b ≥ 0, and d = (m,n).

Then

(Vm, Vn) =

{
Vd if a = b

1 or 2 if a 6= b.
(32)

3. Some Theorems and Lemmas

In this section, we shall need some new theorems, lemmas, and
corollaries. The following theorem gives us some information about
the sum of the squares of balancing numbers. Since it is readily
proved by using Binet’s formulas, we omit the details.

Theorem 3.1. Let Bk denotes the kth balancing number. Then
n∑

k=1

B2
k =

1

32
(B2n+1 − (2n+ 1)) (33)

Hence, we have the following immediate corollary.

Corollary 3.2. Let n be an odd positive integer. Then

Bn ≡ n(mod32). (34)

Since the proof of the following lemma is straightfoward induction,
we omit the details.

Lemma 3.3. Let n be an even positive integer. Then

Bn ≡ 3n(mod32). (35)

Now we can give the similar property for vn as a result of Corollary
3.2, Lemma 3.3, and the identity (15).

Corollary 3.4. Let n be a nonnegative integer. Then

vn ≡
{

2(mod 32) if n is even
6(mod 32) if n is odd

. (36)
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In the equations x2 − 8Bnxy − y2 = ±2r, replacing x by x2 and y
by y2, we come across the square terms of balancing sequence, Pell
and Pell-Lucas sequences, and the sequence {vn} . So, we must state
some theorems concerning the square terms of these sequences.

The following theorem is given by Ljunggren [15] and also by Cohn
[5].

Theorem 3.5. If n ≥ 1, then the equation Pn = x2 has positive
solutions (n, x) = (1, 1) or (7, 13).

We state the following theorem from [24].

Theorem 3.6. Let P > 0 and Q = −1. If Un = wx2 with w ∈
{1, 2, 3, 6} , then n ≤ 2 except when (P, n, w) = (2, 4, 3), (2, 7, 1),
(4, 4, 2), (1, 12, 1), (1, 3, 2), (1, 4, 3), (1, 6, 2), or (24, 4, 3).

The following theorem is given by [19].

Theorem 3.7. Let P > 2 and Q = 1. If un = cx2 with c ∈
{1, 2, 3, 6} and n > 3, then (P, n, c) = (338, 4, 1) or (3, 6, 1).

The proof of the following theorem can be obtained from Theorem
3.7, but we here give a different proof.

Theorem 3.8. Let n be a positive integer. There is no balancing
number except 1 satisfying the equation Bn = x2.

Proof. Assume that Bn = x2 for some x > 0. Suppose n is even.
Then n = 2k for some k > 0. By (14), it follows that

Bn = B2k = Bkvk = x2. (37)

Firstly, let k be odd. Then by Corollaries 3.2 and 3.4, it is seen that
Bk ≡ k(mod 32) and vk ≡ 6(mod 32). Substituting these into (37)
gives x2 ≡ 6k(mod 32), implying that x2 ≡ 6k(mod 8). Since k is
odd, k ≡ 1, 3, 5, 7(mod 8). Hence, we immediately have

x2 ≡ 6k ≡ 2, 6(mod 8), (38)

which is impossible since x2 ≡ 0, 1, 4(mod 8). Secondly, let k be
even. Then by (27), (29), and (23), it is clear that (Bk, vk) = 2.
Thus, x is even. Taking Bk = 2a and vk = 2b with (a, b) = 1,
we get x2 = Bkvk = 4ab, implying that ab = (x/2)2. Then a = u2

and b = v2 for some u, v > 0. Hence, we have Bk = 2a2. Using the
fact that Bk = P2k/2 gives P2k = (2u)2. By Theorem 3.5, we obtain
2k = 1 or 7. But both of them are impossible in integers. Now



INFINITELY MANY SOLUTIONS 35

suppose n is odd. Since Bn = P2n/2, we have P2n = 2x2. By (14),
it is clear that PnQn = 2x2. Furthermore, by the help of (12), (28),
and (29), it can be seen that (Pn, Qn) = 1. Then either

Pn = u2, Qn = 2v2 (39)

or
Pn = 2u2, Qn = v2 (40)

for some u, v > 0.
If (39) holds, then by Theorem 3.5, we obtain n = 1 or 7. When

n = 1, B1 = 1 = x2 and therefore x = 1 is a solution. When n = 7,
there is no integer x such that B7 = 40391 = x2. If (40) holds, then
from (29), we see that v is even. This implies that 4|Qn, which is
impossible by (30). This completes the proof. �

Theorem 3.9. There is no positive integer x such that vn = x2.

Proof. Assume that vn = x2 for some x > 0. By Corollary 3.4, it
follows that vn ≡ 2, 6(mod 8). Hence, x2 ≡ 2, 6(mod 8), which is
impossible. This completes the proof. �

Theorem 3.10. If n ≥ 0 and x > 0 are integers such that vn = 2x2,
then (n, x) = (0, 1).

Proof. Assume that vn = 2x2 for some x > 0. Clearly, n is not odd,
if it were then by Corollary 3.4, we get 2x2 ≡ 6(mod 8), which is
impossible. So, n is even. Also, by Theorems 2.2 and 2.3, we see
that vn = Q2n and by (16), Q2n = Q2

n−2. Hence, we get vn = Q2
n−2.

On the other hand, by (12), since Q2
n − 8P 2

n = 4, we immediately
have vn = 8P 2

n + 2 = 2x2, implying that 4P 2
n + 1 = x2. This shows

that x2−(2Pn)2 = 1. Solving this equation gives x = 1. Thus, n = 0.
This completes the proof. �

Theorem 3.11. There is no positive integer x such that Bn = vmx
2.

Proof. Assume that Bn = vmx
2 for some x > 0. Since vm|Bn, it

follows from (26) that m|n and n = 2km for some k > 0. This
implies by (14) that

Bn = B2km = Bkmvkm = vmx
2. (41)

Let k be odd. Then Bkm
vkm
vm

= x2. Clearly, from (23),

d =
(
Bkm,

vkm
vm

)
= 1 or 2. If d = 1, then Bkm = a2, vkm = vmb

2

for some a, b > 0. By Theorem 3.8, we have km = 1. This yields
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that k = 1, m = 1, and therefore n = 2. Hence, we conclude that
B2 = v1x

2, i.e., 6 = 2x2, which is impossible in integers. If d = 2,
then Bkm = 2a2, vkm = 2vmb

2 for some a, b > 0. From (29) and (30),
since vm is even and 4 - vm, it is seen that vkm = 2vmb

2 is impossible.
Now let k be even. Then from (41), we have Bkm

vm
vkm = x2. Using

the fact that
(
Bkm

vm
, vkm

)
= 1 or 2, we get

Bkm = vma
2, vkm = b2 (42)

or

Bkm = 2vma
2, vkm = 2b2 (43)

for some a, b > 0. Assume (42) is satisfied. Since k is even, it
follows from Corollary 3.4 that vkm = b2 ≡ 2(mod 8), which is
impossible. Assume (43) is satisfied. Then by Theorem 3.10, we get
km = 0, implying that n = 0, which is impossible. This completes
the proof. �

Theorem 3.12. There is no positive integer x such that Bn =
2vmx

2.

Proof. Assume that Bn = 2vmx
2 for some x > 0. Since vm|Bn, it

follows from (26) that m|n and n = 2km for some k > 0. This
implies from (14) that

Bn = B2km = Bkmvkm = 2vmx
2. (44)

Let k be even. Then Bkm

vm
vkm = 2x2. Clearly, from (25), d =(

Bkm

vm
, vkm

)
= 1 or 2. If d = 1, then either

Bkm = vma
2, vkm = 2b2 (45)

or

Bkm = 2vma
2, vkm = b2 (46)

for some a, b > 0. It is obvious by Theorems 3.11 and 3.9 that both
(45) and (46) are impossible. If d = 2, then either

Bkm = 2vma
2, vkm = (2b)2 (47)

or

Bkm = vm(2a)2, vkm = 2b2 (48)

for some a, b > 0. From (30), since 4 - vm, it is seen that (47) is
impossible. It is obvious by Theorem 3.11 that (48) is impossible.
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Now let k be odd. Then from (44), we have Bkm
vkm
vm

= 2x2. Clearly,

from (25), d =
(
Bkm,

vkm
vm

)
= 1 or 2. If d = 1, then

Bkm = a2, vkm = 2vmb
2 (49)

or

Bkm = 2a2, vkm = vmb
2 (50)

for some a, b > 0. If (49) holds, then by Theorem 3.8, it follows that
km = 1, i.e., k = 1 and m = 1. This implies that v1 = 2v1b

2, which
is impossible in integers. It is clear from Theorem 3.7 that (50) is
impossible.

If d = 2, then

Bkm = 2a2, vkm = vm(2b)2 (51)

or

Bkm = (2a)2, vkm = 2vmb
2 (52)

for some a, b > 0. (51) is impossible by Theorem 3.7. If (52) holds,
then by Theorem 3.8, it follows that km = 1, i.e., B1 = 1 = (2a)2,
which is impossible. This completes the proof. �

Theorem 3.13. (Theorem 2 of [16]) The generalized Lucas sequence
has at most one non-trivial square-class. Furthermore, if P ≡
2(mod 4), then we have not non-trivial square-class except (v1, v2) =
(338, 114242) when P = 338, Q = 1. If P ≡ 0(mod 4), then we have
not non-trivial square-classes when 2 - mn or 2|(m,n).

4. Positive Integer Solutions of the Equations
x2 − 8Bnxy − 2y2 = ±2r in Terms of Balancing Numbers,
Pell and Pell-Lucas Numbers, and the Terms of the

Sequence {vn}

In this section, we determine when the equations x2 − 8Bnxy −
2y2 = ±2r, x2− 8Bnxy

2− 2y4 = ±2r, and x4− 8Bnx
2y− 2y2 = ±2r

have positive integer solutions under the assumptions that n, r ≥
0. Moreover, we give all positive integer solutions of the equations
above.

We omit the proof of the following theorem, as it is based a
straightforward induction.
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Theorem 4.1. Let k ≥ 0 be an integer. Then all nonnegative inte-
ger solutions of the equation u2 − 2v2 = 2k are given by

(u, v) =

{
(2

k−2
2 vm, 2

k+2
2 Bm) if k is even

(2
k+1
2 P2m+1, 2

k−3
2 Q2m+1) if k is odd

with m ≥ 0 and all nonnegative integer solutions of the equation
u2 − 2v2 = −2k are given by

(u, v) =

{
(2

k−2
2 Q2m+1, 2

k
2P2m+1) if k is even

(2
k+3
2 Bm, 2

k−3
2 vm) if k is odd

with m ≥ 0.

Theorem 4.2. If k is even, then all positive integer solutions of
the equation x2 − 8Bnxy − 2y2 = 2k are given by (x, y) = (2

k
2
vn+m

vn
,

2
k+4
2

Bm

vn
) with m ≥ 1, n|m and m = 2rn for some r > 0. If k is odd,

then the equation x2−8Bnxy−2y2 = 2k has positive integer solutions
only when n = 0 and the solutions are given by (x, y) = (2

k+1
2 P2m+1,

2
k−3
2 Q2m+1) with m ≥ 0.

Proof. Assume that x2 − 8Bnxy − 2y2 = 2k for some x, y > 0.
Multiplying both sides of the equation by 4 and completing the
square give (2x − 8Bny)2 − (64B2

n + 8)y2 = 2k+2. It is clear from
(13) that 64B2

n + 8 = 2v2n. Hence, the preceding equation becomes
(2x − 8Bny)2 − 2(vny)2 = 2k+2. Let k be even. Then by Theo-

rem 4.1, we obtain |2x− 8Bny| = 2
k
2vm and vny = 2

k+4
2 Bm. Since

4 - vn and vn is even, it follows that (4, vn) = 2 and therefore
vn
2 y = 2

k+2
2 Bm. It can be easily seen that (vn2 , 2

k+2
2 ) = 1. Thus, we get

vn
2 |Bm, that is vn

2 |2
Bm

2 for even m. Since (vn2 , 2) = 1, vn
2 |

Bm

2 , implying
that vn|Bm. Therefore, we get from (26) that n|m and m = 2rn

for some r > 0. Hence, we conclude that y = 2
k+4
2

Bm

vn
. Suppose that

2x − 8Bny = 2
k
2vm. Substituting the value of y into the preced-

ing equation gives x = 2
k
2
vmvn+32BmBn

2vn
. This implies from (17) that

x = 2
k
2
vm+n

vn
. Now suppose that 2x − 8Bny = −2

k
2vm. In a similar

manner, we readily obtain x = 2
k
2
32BmBn−vmvn

2vn
. This gives from (18)

x = −2
k
2
vm−n
vn
. But in this case, x is negative and so we omit it. As

a consequence, we get (x, y) = (2
k
2
vn+m

vn
, 2

k+4
2

Bm

vn
). Now let k be odd.

Then by Theorem 4.1, we have vny = 2
k−1
2 Q2m+1. Since vn = Q2n and

vn|vny, it follows that Q2n|2
k−1
2 Q2m+1, implying that Q2n|2

k+1
2

Q2m+1

2 .
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It can be easily seen from (32) that (Q2n, Q2m+1/2) = 1. Hence,

Q2n|2
k+1
2 and this is possible only when n = 0. Thus, the main equa-

tion x2 − 8Bnxy − 2y2 = 2k turns into the equation x2 − 2y2 = 2k,
whose solutions are (x, y) = (2

k+1
2 P2m+1, 2

k−3
2 Q2m+1) by Theorem

4.1.
Conversely, if k is even and

(x, y) = (2
k
2
vn+m

vn
, 2

k+4
2 Bm

vn
)

with m ≥ 1, n|m and m = 2rn for some r > 0, then by (21), it
follows that x2 − 8Bnxy − 2y2 = 2k. And if k is odd and (x, y) =

(2
k+1
2 P2m+1, 2

k−3
2 Q2m+1) with m ≥ 0, then x2 − 8Bnxy − 2y2 = 2k

with n = 0. This completes the proof. �

Theorem 4.3. If k is even, then the equation x2 − 8Bnxy − 2y2 =
−2k has positive integer solutions only when n = 0 and the solutions
are given by (x, y) = (2

k−2
2 Q2m+1, 2

k
2P2m+1) with m ≥ 0. If k is odd,

then all positive integer solutions of the equation x2−8Bnxy−2y2 =
−2k are given by (x, y) = (2

k+5
2

Bn+m

vn
, 2

k−1
2

vm
vn

) with m ≥ 1, n|m and

m = (2r + 1)n for some r > 0.

Proof. When k is even, the method is similar to that used in The-
orem 4.2 for the case when k is odd. So, we immediately have
vny = 2

k+2
2 P2m+1. Since 4 - vn by (30) and vny = 2

k+2
2 P2m+1, it

clearly follows that vn|2
k+2
2 P2m+1. Since vn = Q2n, it can be easily

seen from (31) that (vn, P2m+1) = 1. So, vn|2
k+2
2 and this is possible

only when n = 0. Hence, the main equation x2−8Bnxy−2y2 = −2k

turns into the equation x2−2y2 = −2k, whose solutions are (x, y) =

(2
k−2
2 Q2m+1, 2

k
2P2m+1) by Theorem 4.1. Now let k be odd. Multi-

plying both sides of the equation x2− 8Bnxy− 2y2 = −2k by 4 and
completing the square give (2x − 8Bny)2 − (64B2

n + 8)y2 = −2k+2.
Using the fact that 64B2

n + 8 = 2v2n by (13), the previous equation
becomes (2x− 8Bny)2 − 2(vny) = −2k+2. Then by Theorem 4.1, we

obtain |2x− 8Bny| = 2
k+5
2 Bm and vny = 2

k−1
2 vm. Since 4 - vn and vn

is even, it follows that (4, vn) = 2 and therefore vn
2 y = 2

k−1
2

vm
2 . It can

be easily seen that (vn2 , 2
k−1
2 ) = 1. Thus, we get vn

2 |
vm
2 , that is vn|vm.

This implies from (25) that n|m and m = (2r+ 1)n for some r > 0.

Hence, we get y = 2
k−1
2

vm
vn
. Assume first that 2x − 8Bny = 2

k+5
2 Bm.

Substituting the value of y into the previous equation, we have
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x = 2
k+5
2

Bnvm+Bmvn
2vn

. Then by (19), we conclude that x = 2
k+5
2

Bm+n

vn
.

Now assume that 2x − 8Bny = −2
k+5
2 Bm. In a similar manner, we

get x = 2
k+3
2

Bnvm−Bmvn
2vn

. By (20), we conclude that x = 2
k+3
2

Bn−m
vn

.

But in this case since n−m < 0, it follows from (9) that Bn−m < 0
and therefore we see that x is negative. So, we omit it. Conversely,
if k is even and (x, y) = (2

k−2
2 Q2m+1, 2

k
2P2m+1) with m ≥ 0, then

by (12), x2 − 8Bnxy − 2y2 = −2k with n = 0. And if k is odd and

(x, y) = (2
k
2
Bn+m

vn
, 2

k+4
2

vm
vn

) with m ≥ 1, n|m and m = (2r + 1)n for

some r > 0, then by (22), x2− 8Bnxy− 2y2 = −2k . This completes
the proof. �

Now we consider the equations x2 − 8Bnxy
2 − 2y4 = ±2k and

x4 − 8Bnx
2y − 2y2 = ±2k, respectively.

Theorem 4.4. If k ≡ 0, 2, 3(mod 4), then the equation x2−8Bnxy
2−

2y4 = 2k has no solutions x and y. If k ≡ 1(mod 4), then the
equation x2 − 8Bnxy

2 − 2y4 = 2k has positive integer solutions only
when n = 0 and the solution is given by (x, y) = (2

k+1
2 , 2

k−1
4 ).

Proof. Firstly, assume that k is even in x2 − 8Bnxy
2 − 2y4 = 2k.

Then by Theorem 4.2, it follows that (x, y2) = (2
k
2
vn+m

vn
, 2

k+4
2

Bm

vn
)

with m ≥ 1, n|m and m = 2rn for some r > 0. Hence, we obtain

y2 = 2
k+4
2

Bm

vn
. Now we divide the proof into two cases.

Case 1 : Let k ≡ 0(mod 4). Then the equation y2 = 2
k+4
2

Bm

vn
clearly

follows that Bm = vnu
2, which is impossible by Theorem 3.11.

Case 2 : Let k ≡ 2(mod 4). Then the equation y2 = 2
k+4
2

Bm

vn
yields

that Bm = 2vnu
2, which is impossible by Theorem 3.12.

Secondly, assume that k is odd. Then by Theorem 4.2, it follows
that (x, y2) = (2

k+1
2 P2m+1, 2

k−3
2 Q2m+1) with m ≥ 0. This shows that

y2 = 2
k−3
2 Q2m+1. Again dividing the remainder of the proof into two

cases, we have
Case 1 : Let k ≡ 3(mod 4). Then we obtain Q2m+1 = u2 for some

u > 0. By (29), since Q2m+1 is even, it follows that u is even and
therefore 4|Q2m+1, which is impossible by (30).

Case 2 : Let k ≡ 1(mod 4). Then we have Q2m+1 = 2u2 for some

u > 0. By Theorem 3.6, we get m = 0. Thus y2 = 2
k−1
2 , implying

that y = 2
k−1
4 and x = 2

k+1
2 . This completes the proof. �

Theorem 4.5. If k ≡ 2, 3(mod 4), then the equation x2−8Bnxy
2−

2y4 = −2k has no solutions x and y. If k ≡ 0(mod 4), then all
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positive integer solutions of the equation x2−8Bnxy
2−2y4 = −2k are

given by (x, y) = (2
k
2 , 2

k
4 ) or (x, y) = (239 · 2k

2 , 13 · 2k
4 ). If k ≡ 1(mod

4), then there is only one positive integer solution of the equation

x2 − 8Bnxy
2 − 2y4 = −2k given by (x, y) = (2

k+5
2 Bn, 2

k−1
4 ).

Proof. Assume that k is even in x2 − 8Bnxy
2 − 2y4 = −2k. Then

by Theorem 4.3, it follows that (x, y2) = (2
k−2
2 Q2m+1, 2

k
2P2m+1) with

m ≥ 0. Hence, we obtain y2 = 2
k
2P2m+1. Dividing the proof into two

cases, we have
Case 1 : Let k ≡ 0(mod 4). Then from the equation y2 = 2

k
2P2m+1,

we obtain P2m+1 = u2 for some u > 0. By Theorem 3.5, we get
2m + 1 = 1 or 2m + 1 = 7. This implies that m = 0 or m = 3. If
m = 0, then we immediately have x = 2

k
2 and y = 2

k
4 . If m = 3,

then we obtain x = 239 · 2k
2 and y = 13 · 2k

4 .
Case 2 : Let k ≡ 2(mod 4). Then the equation y2 = 2

k
2P2m+1

becomes P2m+1 = 2u2, which is impossible since 2 - P2m+1 by (28).
Now assume that k is odd. Then by Theorem 4.3, we have

(x, y2) = (2
k+5
2

Bn+m

vn
, 2

k−1
2 vm

vn
)

with m ≥ 1, n|m and m = (2r + 1)n for some r > 0. Hence, we

obtain y2 = 2
k−1
2

vm
vn
. Now we divide the remainder of the proof into

two cases.
Case 1 : Let k ≡ 1(mod 4). Then the equation y2 = 2

k−1
2

vm
vn

implies

that vm = vnu
2 for some u > 0. By Theorem 3.13, this is possible

only when n = m. Hence, we get x = 2
k+5
2

B2n

vn
. Also using (14)

for the value of x gives that x = 2
k+5
2 Bn. Thus, we conclude that

(x, y) = (2
k+5
2 Bn, 2

k−1
4 ).

Case 2 : Let k ≡ 3(mod 4). So, we immediately have vn+m = 2vnu
2

for some u > 0. Since vn is even by (29), it is clear that 4|vn+m. But
this is impossible by (30). This completes the proof. �

Theorem 4.6. If k ≡ 0, 1, 2(mod 4), then the equation x4−8Bnx
2y−

2y2 = 2k has no positive integer solutions x and y. If k ≡ 3(mod 4),
then all positive integer solutions of the equation x4−8Bnx

2y−2y2 =
2k are given by (x, y) = (2

k+1
4 , 2

k−1
2 ) or (x, y) = (13 · 2k+1

4 , 239 · 2k−1
2 ).

Proof. Assume that x4−8Bnx
2y−2y2 = 2k for some positive integers

x and y. If k is even, then by Theorem 4.2, we have (x2, y) =

(2
k
2
vn+m

vn
, 2

k+4
2

Bm

vn
) with m ≥ 1, n|m and m/n is even. Hence, we get

x2 = 2
k
2
vn+m

vn
.
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Case 1 : Let k ≡ 0(mod 4). We readily obtain from x2 = 2
k
2
vn+m

vn

that vn+m = vnu
2 for some u > 0. By Theorem 3.13, this is possible

only when n + m = n, implying that m = 0, which contradicts the
fact that m ≥ 1.

Case 2 : Let k ≡ 2(mod 4). So, we immediately have vn+m = 2vnu
2

for some u > 0. Since vn is even by (29), we see that 4|vn+m, which
is impossible by (30).

If k is odd, then by Theorem 4.2, we have

(x2, y) = (2
k+1
2 P2m+1, 2

k−3
2 Q2m+1)

with m ≥ 0. This implies that x2 = 2
k+1
2 P2m+1.

Case 1 : Let k ≡ 1(mod 4). Then form x2 = 2
k+1
2 P2m+1, we obtain

P2m+1 = 2u2, which is impossible since 2 - P2m+1 by (28).

Case 2 : Let k ≡ 3(mod 4). Then the equation x2 = 2
k+1
2 P2m+1

gives that P2m+1 = u2 for some u > 0. By Theorem 3.5, we get
2m + 1 = 1 or 2m + 1 = 7, implying that m = 0 or m = 3.
Substituting these values of m into (x2, y) = (2

k+1
2 P2m+1, 2

k−3
2 Q2m+1),

we conclude that (x, y) = (2
k+1
4 , 2

k−1
2 ) or (x, y) = (13·2k+1

4 , 239·2k−1
2 ).

This completes the proof. �

Theorem 4.7. If k ≡ 1, 2, 3(mod 4), then the equation x4−8Bnx
2y−

2y2 = −2k has no positive integer solutions x and y. If k ≡ 0(mod
4), then there is only one positive integer solution of the equation

x4 − 8Bnx
2y − 2y2 = −2k given by (x, y) = (2

k
4 , 2

k
2 ).

Proof. Assume that x4 − 8Bnx
2y − 2y2 = −2k for some positive

integers x and y. If k is even, then by Theorem 4.3, it follows that
(x2, y) = (2

k−2
2 Q2m+1, 2

k
2P2m+1) with m ≥ 0. Hence, we get x2 =

2
k−2
2 Q2m+1.
Case 1 : Let k ≡ 0(mod 4). Hence, we immediately have from

x2 = 2
k−2
2 Q2m+1 that Q2m+1 = 2u2. By Theorem 3.6, we get m = 0.

This yields that (x, y) = (2
k
4 , 2

k
2 ).

Case 2 : Let k ≡ 2(mod 4). Hence, we readily obtain Q2m+1 = u2

for some u > 0. Since Q2m+1 is even by (29), it is clear that u is even
and therefore 4|Q2m+1, which is impossible by (30).

If k is odd, then by Theorem 4.3, it follows that
(x2, y) = (2

k+5
2

Bn+m

vn
, 2

k−1
2

vm
vn

) with m ≥ 1, n|m and m = (2r+ 1)n for

some r > 0. This implies that x2 = 2
k+5
2

Bn+m

vn
.
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Case 1 : Let k ≡ 1(mod 4). Then from 2
k+5
2

Bn+m

vn
, we obtain Bn+m =

2vnu
2, which is impossible by Theorem 3.12.

Case 2 : Let k ≡ 3(mod 4). Then we have Bn+m = vnu
2, which is

also impossible by Theorem 3.11. This completes the proof. �
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