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TWO TRIGONOMETRIC IDENTITIES

HORST ALZER AND WENCHANG CHU

Abstract. We show that the trigonometric identities
n−1∏
k=1

{
1− cos

2kπ

n

}(n−k)`+m

= 2(1−n)(`n/2+m) n`n+2m

and
n−1∏
k=1

{
cos(2θ)− cos

2kπ

n

}(n−k)`+m

= 2(1−n)(`n/2+m)
{sin(nθ)

sin θ

}`n+2m

are valid for all `,m ∈ Z and 2 ≤ n ∈ N. They extend the results
due to Baica and Gregorac, who proved the identities for the special
case ` = 1, m = −1. Moreover, we determine all `,m, n such that
the first trigonometric product just displayed is an integer.

In 1986, Baica [1] applied methods from cyclotomic fields to provide
a rather long and complicated proof for the following interesting
trigonometric identity:

n−1∏
k=1

{
1− cos

2kπ

n

}n−k−1
= 2(1−n)(n/2−1) nn−2 (1)

where n = 2, 3, 4, · · · . Baica also remarked that “any proof avoiding
cyclotomic fields could be very difficult, if not insoluble” [1, P. 705].

In 1989, Gregorac [3] used properties of Chebyshev polynomials to
present a new proof of (1). Actually, he proved the identity

n−1∏
k=1

{
cos(2θ)− cos

2kπ

n

}n−k−1
= 2(1−n)(n/2−1)

{sin(nθ)

sin θ

}n−2
(2)

for n = 2, 3, 4, · · · , which, letting θ tend to 0, leads to (1).
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Here, we extend (1) and (2). First, we offer an elementary short
and simple proof of a generalization of Baica’s identity. In order to
verify our result we only make use of three well-known properties of
sine and cosine,

1− cos(2θ) = 2 sin2 θ, (3)

sin(π − θ) = sin θ, (4)
n−1∏
k=1

sin
kπ

n
= 21−n n. (5)

Formula (5) as well as many related formulas involving trigonometric
functions can be found in [2, Eq. 4.14].

We have the following extension of identity (1).

Theorem 1. Let `,m be integers and let n ≥ 2 be a natural number.
Then,

n−1∏
k=1

{
1− cos

2kπ

n

}(n−k)`+m

= 2(1−n)(`n/2+m) n`n+2m. (6)

Proof. Applying (3) yields

n−1∏
k=1

{
1− cos

2kπ

n

}(n−k)`+m

= 2(n−1)(`n/2+m)
n−1∏
k=1

{
sin

kπ

n

}2[(n−k)`+m]

.

(7)
From (4) we conclude that

n−1∏
k=1

{
sin

kπ

n

}(n−k)`+m

=
n−1∏
k=1

{
sin

(n− k)π

n

}k`+m

=
n−1∏
k=1

{
sin

kπ

n

}k`+m

.

(8)
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Using (8) and (5) gives

n−1∏
k=1

{
sin

kπ

n

}2[(n−k)`+m]

=
n−1∏
k=1

{
sin

kπ

n

}(n−k)`+m
n−1∏
k=1

{
sin

kπ

n

}(n−k)`+m

=
n−1∏
k=1

{
sin

kπ

n

}(n−k)`+m
n−1∏
k=1

{
sin

kπ

n

}k`+m

=
n−1∏
k=1

{
sin

kπ

n

}`n+2m

=
(
21−n n

)`n+2m
. (9)

Combining (7) and (9) leads to (6). �

Next, we extend Gregorac’s identity (2). We need the following
formulas:

sin
(π

2
− θ
)

= cos θ, (10)

sin(2θ) = 2 sin θ cos θ, (11)

cos y − cosx = 2 sin
x+ y

2
sin

x− y
2

, (12)

sin(nθ)

sin θ
= 2n−1

n−1∏
k=1

{
cos θ − cos

kπ

n

}
. (13)

Identity (13) is the well-known product representation for the Cheby-
shev polynomials of the second kind.

Theorem 2. Let `,m be integers and let n ≥ 2 be a natural number.
Then, for θ ∈ R,

n−1∏
k=1

{
cos(2θ)− cos

2kπ

n

}(n−k)`+m

= 2(1−n)(`n/2+m)
{sin(nθ)

sin θ

}`n+2m

.

(14)

Proof. Using (10) gives

n−1∏
k=1

sin
(kπ

2n
−θ

2

)
=

n−1∏
k=1

sin
((n− k)π

2n
−θ

2

)
=

n−1∏
k=1

cos
(kπ

2n
+
θ

2

)
. (15)
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Now, we apply (12), (15) and (11). Then we have

n−1∏
k=1

{
cos θ − cos

kπ

n

}
=

n−1∏
k=1

{
2 sin

(kπ
2n

+
θ

2

)
sin
(kπ

2n
− θ

2

)}

=
n−1∏
k=1

{
2 sin

(kπ
2n

+
θ

2

)
cos
(kπ

2n
+
θ

2

)}

=
n−1∏
k=1

sin
(kπ
n

+ θ
)
. (16)

From (4) and (12) we obtain

n−1∏
k=1

sin2
(kπ
n

+ θ
)

=
n−1∏
k=1

{
sin
(kπ
n

+ θ
)

sin
((n− k)π

n
− θ
)}

=
n−1∏
k=1

{
sin
(kπ
n

+ θ
)

sin
(kπ
n
− θ
)}

=21−n
n−1∏
k=1

{
cos(2θ)− cos

2kπ

n

}
. (17)

Applying (13), (16) and (17) yields

{sin(nθ)

sin θ

}2m

=22m(n−1)
n−1∏
k=1

{
cos θ − cos

kπ

n

}2m

=22m(n−1)
n−1∏
k=1

sin2m
(kπ
n

+ θ
)

=2m(n−1)
n−1∏
k=1

{
cos(2θ)− cos

2kπ

n

}m

. (18)
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From (4) and (12) we get

n−1∏
k=1

sinn
(kπ
n

+ θ
)

=
n−1∏
k=1

{
sinn−k

(kπ
n

+ θ
)

sink
(kπ
n

+ θ
)}

=
n−1∏
k=1

{
sink

((n− k)π

n
+ θ
)

sink
(kπ
n

+ θ
)}

=
n−1∏
k=1

{
sink

(kπ
n
− θ
)

sink
(kπ
n

+ θ
)}

=2(1−n)n/2
n−1∏
k=1

{
cos(2θ)− cos

2kπ

n

}k

. (19)

Combining (13), (16) and (19) gives{sin(nθ)

sin θ

}n

= 2(n−1)n/2
n−1∏
k=1

{
cos(2θ)− cos

2kπ

n

}k

. (20)

Finally, (18) and (20) lead to{sin(nθ)

sin θ

}2m+`n

= 2(n−1)(`n/2+m)
n−1∏
k=1

{
cos(2θ)− cos

2kπ

n

}m+k`

= 2(n−1)(`n/2+m)
n−1∏
k=1

{
cos(2θ)− cos

2kπ

n

}(n−k)`+m

.

This is equivalent to (14). �

Remark 1. Setting ` = 1 and m = −1 in (6) and (14), respectively,
gives (1) and (2).

Remark 2. Let `,m ∈ Z and 2 ≤ n ∈ N with `n + 2m > 0.
Applying (14) and the well-known inequality∣∣∣sin(nθ)

n sin θ

∣∣∣ ≤ 1 (n = 1, 2, 3, ...)

we obtain for all θ ∈ R:

n−1∏
k=1

{
cos(2θ)− cos

2kπ

n

}(n−k)`+m

≤ 2(1−n)(`n/2+m)n`n+2m. (21)
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Setting θ = 0 we conclude from (6) that the given upper bound is
sharp. If `n+ 2m < 0, then (21) holds with “≥” instead of “≤”.

The representation (6) reveals that if `,m ∈ Z, 2 ≤ n ∈ N, then the
product

Pn(`,m) =
n−1∏
k=1

{
1− cos

2kπ

n

}(n−k)`+m

is a rational number. In view of this result it is natural to ask
whether there exist numbers `,m, n such that Pn(`,m) is an integer.
The next theorem answers this question.

Theorem 3. Let `,m be integers and n ≥ 2 a natural number. The
product Pn(`,m) is an integer if and only if `n+ 2m = 0

or `n+ 2m > 0 with n = 2r (r = 1, 2); (22)

or `n+ 2m < 0 with n = 2r (3 ≤ r ∈ N). (23)

Proof. Using (6) we obtain:
if `n+ 2m = 0, then Pn(`,m) = 1;
if n = 2r (r = 1, 2) and `n+ 2m > 0, then

Pn(`,m) = 2(`n+2m)/2 ∈ Z;

if n = 2r (r ≥ 3) and `n+ 2m < 0, then

Pn(`,m) = 2−(2
r−2r−1)(`n+2m)/2 ∈ Z.

Now, let Pn(`,m) ∈ Z. We asssume (for a contradiction) that none
of (22), (23) and `n+ 2m = 0 is satisfied. We have

P2(`,m) = 2`+m,

P3(`,m) =
{3

2

}3`+2m

,

P4(`,m) = 22`+m,

P5(`,m) =
{5

4

}5`+2m

.

Case 1. `n+ 2m > 0.
Then, P3(`,m) /∈ Z and P5(`,m) /∈ Z. Let n ≥ 6. From

2(n−1)(`n+2m)/2 ·K = n`n+2m (K ∈ N) (24)
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we conclude that 2 divides n`n+2m. This implies that n is even. Let
n = 2rq, where r ≥ 1 and q is odd. Then, (24) leads to

2((n−1)/2−r)(`n+2m) ·K = q`n+2m.

Since q is odd, we obtain

n− 1

2
− r ≤ 0. (25)

Hence,
2r ≤ 2rq = n ≤ 2r + 1.

If follows that r = 1 or r = 2. However, this contradicts (25), since
n ≥ 6.

Case 2. `n+ 2m < 0.
Then, Pn(`,m) /∈ Z for n = 2, 3, 4, 5. Let n ≥ 6. From (24) we
obtain

n−(`n+2m) ·K = 2−(n−1)(`n+2m)/2.

This yields n = 2r with r ≥ 3. A contradiction. The proof is
complete. �
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