Irish Math. Soc. Bulletin Number 72, Winter 2013, 71–74 ISSN 0791-5578

NESTING SYMMETRIC DESIGNS

PADRAIG Ó CATHÁIN

Arising from a problem concerning decomposition of graphs (see Section VI.24 of [3]), Darryn Bryant and Daniel Horsley posed the following problem:

Problem 1. Given a symmetric (v, k, λ) design Δ , when is it possible to add a point to each of the blocks of Δ to obtain a $(v, k+1, \lambda')$ design, Δ^* ?

We say that Δ can be *nested* if there exists a design Δ^* as in the problem. Nested triple systems have been considered in the literature: Stinson has shown that there exists a nested (v, 3, 1) if and only if $v \equiv 1 \mod 6$ [6]. We warn the reader that a related concept, also called nesting, involves the decomposition of a design with blocks of size dk into d designs with blocks of size k. Further details may be found in Section VI.36 of [3], but this problem will not be discussed here. In this note, we give a complete characterisation of nested symmetric designs. Our terminology for block designs is standard and follows, for example [1]. We remind the reader that a (0,1) matrix M is the incidence matrix of a symmetric (v, k, λ) design if and only if $MM^{\top} = (k - \lambda)I + \lambda J$, where I is the identity matrix, and J is the all ones matrix (we omit subscripts for matrix orders, these can be determined from context). We refer the reader to [4] for an introduction to Hadamard matrices, and to [5] for a relatively recent survey of skew-Hadamard matrices.

Definition 2. A Hadamard matrix H is *skew-Hadamard* (or skew) if

$$H + H^{\top} = 2I$$

Equivalently, H - I is a skew-symmetric matrix.

Received on 6-4-2013.

Support from the Australian Research Council through grant DP120103067 is gratefully acknowledged.

²⁰¹⁰ Mathematics Subject Classification. 05B05, 05B20.

Key words and phrases. Symmetric designs.

P. Ó CATHÁIN

We will require that a skew-Hadamard matrix has a skew-normal form. Denote by $\mathbf{1}$ a vector of 1s of length 4t - 1.

Lemma 3. Let H be a skew-Hadamard matrix. Then H - I is equivalent to a matrix of the form

$$\left(\begin{array}{cc} 0 & \mathbf{1} \\ -\mathbf{1}^\top & M \end{array}\right)$$

where M is skew. Furthermore, $MM^{\top} = (4t - 1)I - J$.

Proof. It suffices to observe that negating row i and column i of a skew matrix preserves the skew property.

To establish the claimed property of M, consider the matrix product

$$(H-I)(H^{\top}-I) = \begin{pmatrix} 0 & \mathbf{1} \\ -\mathbf{1}^{\top} & M \end{pmatrix} \begin{pmatrix} 0 & -\mathbf{1} \\ \mathbf{1}^{\top} & M^{\top} \end{pmatrix} = (n-1)I.$$

In particular, we see that $(-\mathbf{1})^{\top}(-\mathbf{1}) + MM^{\top} = (n-1)I$. But $(-\mathbf{1})^{\top}(-\mathbf{1}) = J$, and the result follows.

We recall that given a normalised Hadamard matrix, we obtain the incidence matrix of a (4t - 1, 2t - 1, t - 1) design by deleting the first row and column of the Hadamard matrix and replacing -1 by 0 throughout. (See for example Lemma 7 of [2].) A similar operation can be applied to a Hadamard matrix where H - I is in skew-normal form.

Lemma 4. Suppose that H - I is in skew-normal form. Then $D = \frac{1}{2}(M+J-I)$ is the incidence matrix of a (4t-1, 2t-1, t-1) design.

Proof. It suffices to show that $DD^{\top} = tI + (t-1)J$. We observe that the order of all matrices in the calculation below is 4t - 1, that M commutes with J, and that $M + M^{\top} = 0$. We calculate:

$$DD^{\top} = \frac{1}{4} \left[MM^{\top} + (M + M^{\top})J - (M + M^{\top}) + J^2 - 2J + I \right]$$

= $\frac{1}{4} \left[(4t - 1)I - J + (4t - 1)J - 2J + I \right]$
= $\frac{1}{4} \left[4tI + (4t - 4)J \right]$

Hence $\frac{1}{2}(M+J-I)$ is the incidence matrix of a (4t-1, 2t-1, t-1) design as required.

Definition 5. A design derived from a skew-Hadamard matrix as in Lemma 4 is a *skew-design*.

Lemma 6. Let D be the incidence matrix of a skew-design with parameters (4t-1, 2t-1, t-1). Then D+I is the incidence matrix of a (4t-1, 2t, t) design.

Proof. Observe first that $D + D^{\top} = \frac{1}{2}(M + J - I) + \frac{1}{2}(M^{\top} + J - I) = J - I$. Then:

$$(D+I)(D+I)^{\top} = DD^{\top} + (J-I) + I = tI + tJ.$$

Hence skew-designs are nested.

We conclude this note by showing that the nested property characterises skew-designs among all symmetric designs.

Theorem 7. A symmetric (v, k, λ) design can be nested if and only if it is a skew-design.

- *Proof.* (1) For any symmetric design we have that $\lambda = \frac{k(k-1)}{v-1}$. So for the statement of the theorem to hold, we require that $(v-1) \mid k(k-1)$ and $(v-1) \mid (k+1)k$. But then $v \mid k(k+1) - k(k-1)$, or $v-1 \mid 2k$. Since we can assume that $k \leq \frac{v}{2}$, we have that v = 2k+1, and D has parameters (4t-1, 2t-1, t-1).
 - (2) Points added to distinct blocks must be distinct (because the replication number of a point is an invariant of a symmetric design).
 - (3) Skew-designs are nested by Lemma 6.
 - (4) Let M be the incidence matrix of D. Without loss of generality we order the blocks of the design (rows of the incidence matrix) so that the i^{th} point is added to the i^{th} block. So the incidence matrix of the new design is M + I. Now we require that

$$(M+I)(M+I)^{\top} = tI + tJ.$$

But together with the requirement that $MM^{\top} = tI + (t-1)J$, this forces $M + M^{\top} = J - I$. So 2M - J + I is a skew matrix, and D is a skew-design. This completes the proof.

73

P. Ó CATHÁIN

References

- T. Beth, D. Jungnickel and H. Lenz: *Design Theory. Vol I*, Cambridge University Press, Cambridge, 1999.
- [2] P. O Catháin: Difference sets and doubly transitive actions on Hadamard matrices, Journal of Combinatorial Theory, Series A, (6) 119, 2012, 1235– 1249.
- [3] C.J. Colbourn and J.H. Dinitz: Handbook of combinatorial designs, Chapman & Hall/CRC, Boca Raton, FL, 2007.
- [4] K.J. Horadam: Hadamard matrices and their applications, Princeton University Press, Princeton, NJ, 2007.
- [5] C. Koukouvinos and S. Stylianou: On skew-Hadamard matrices, Discrete Mathematics, (13) 308 (2008), 2723–2731.
- [6] D.R. Stinson: The spectrum of nested Steiner triple systems, Graphs and Combinatorics, (2) 1 (1985), 189–191.

Padraig Ó Catháin completed a PhD in algebraic design theory under the supervision of Dr Dane Flannery at the National University of Ireland, Galway in March 2012. Since September 2012 he has been employed as a postdoctoral researcher at the University of Queensland. His research interests are broadly in the interaction between algebra and combinatorics.

School of Mathematics and Physics, The University of Queens-Land, St Lucia, QLD 4072, Australia

E-mail address: p.ocathain@gmail.com