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EXPANDER FAMILIES, GROUP STRUCTURE, AND
SEMIDIRECT PRODUCTS

MATTHEW AIVAZIAN AND MIKE KREBS

Abstract. Expander families are, essentially, sequences of large,
sparse, pseudorandom graphs. Many such families have been con-
structed as Cayley graphs. It is an interesting and open question
to determine which groups yield Cayley graphs that form expander
families. In this paper, we give a brief survey of expander families,
with an emphasis on known results pertaining to that question.
One minor new result is a necessary but insufficient condition for
a sequence of finite solvable groups, each constructed by iterating
semidirect products, to yield an expander family as a sequence of
Cayley graphs.

1. Introduction

Roughly speaking, expander families model large, fast, cheap, and
reliable communication networks. Alternatively, one can view them
as large, sparse, pseudorandom regular graphs. In §2, we give the
precise definitions. Expander families have a multitude of real-world
applications (especially in computer science) as well as connections
to many other branches of mathematics. In part for these reasons,
a great deal of research has been done on them recently. In §3, we
provide a short survey of known results and open problems. For
an elementary introduction to the subject, we refer to [9]; for an
advanced discussion, see [10].

One common method for forming expander families is the Cay-
ley graph construction. It is an open problem to find necessary
and sufficient conditions for a sequence of finite groups to admit
an expander family as a sequence of Cayley graphs. The class of
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nonabelian simple groups was resolved (in the affirmative) only re-
cently, after several decades’ work; the final case was proved in 2011
by Emmanuel Breuillard, Ben Green, and Terence Tao [4]. In §4, we
discuss in more detail what is known about the relationship between
group structure and expansion.

Section 5 is guided by the principle that one ought to begin as
simply and as generally as possible. It is known that many classes
of groups, including abelian groups, do not yield expander families.
We begin the section by surveying several previously established
positive results concerning solvable groups and iterated semidirect
products, as our view is that the family of groups which is easiest to
analyze but is not yet excluded is the family of groups constructed by
recursively forming semidirect products with cyclic groups. A new
result (Theorem 5.1) provides a necessary but insufficient condition
for a sequence of groups so constructed to yield an expander family.

2. Basic definitions

Definition 2.1. Let X be a finite graph with vertex set V . Let S be
a set of vertices of X. We define the boundary of S, denoted ∂S, to
be the set of edges in X incident to both a vertex in S and a vertex
not in S. We define the isoperimetric constant of X, denoted h(X),
to be the minimum, over all nonempty subsets S of V containing no
more than half the vertices of X, of |∂S|/|S|, where |A| denotes the
cardinality of the set A.

Definition 2.2. Let (Xn) be a sequence of finite graphs. We say
(Xn) is an expander family if

(1) each Xn is regular, each with the same degree, and
(2) |Vn| → ∞, where Vn is the vertex set of Xn, and
(3) there exists a real number ε > 0 such that h(Xn) ≥ ε for all

n.

Let G be a group, and let Γ be a symmetric subset of G. (Recall
that to say Γ is symmetric means that if γ ∈ Γ, then γ−1 ∈ Γ.)
Recall that the Cayley graph Cay(G,Γ) is the graph with vertex set
G so that two vertices x and y are adjacent if and only if xy−1 ∈ Γ.
Note that Cay(G,Γ) is regular with degree |Γ|.

Definition 2.3. Let (Gn) be a sequence of finite groups. We say
that (Gn) yields an expander family if there exists a positive integer
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d and symmetric subsets Γn ⊂ Gn with |Γn| = d for all n such that
(Cay(Gn,Γn)) is an expander family.

3. Expander families: A brief overview

There are three main approaches to determining whether a se-
quence of regular graphs forms an expander family: combinatorial,
probabilistic, and (in the case of Cayley graphs and related con-
structions) representation-theoretic.

3.1. Combinatorial methods. The definition of the isoperimetric
constant is combinatorial in nature. However, of all the existing
constructions of expander families, together with the proofs they
they are just that, only the one in the paper [2] uses the definition
directly to prove the result.

Looking closely at the definition, one can see why it is difficult to
work with. It is a minimum that ranges over the collection of all
subsets of the vertex set containing no more than half the vertices.
The number of possible subsets grows exponentially with the order
of the graph. Consequently, most proofs have come at the problem
indirectly, tying the isoperimetric constant to other graph invariants
that are easier to work with.

3.2. Probabilistic methods: Random walk theory. The eigen-
values of the adjacency operator of a graph encode a great deal of
information, though not complete information, about its structure.
The book [6] provides a thorough overview of many of the connec-
tions between graph eigenvalues and other graph invariants. In the
study of expander families, the most important such connection is
the following double inequality, attributed to Alon, Milman, Tanner,
and Dodziuk. Recall that the eigenvalues of the adjacency opera-
tor of a finite d-regular graph are all real and that for any such
eigenvalue λ, we have |λ| ≤ d.

Theorem 3.1. Let X be a finite d-regular graph with isoperimetric
constant h and second-largest eigenvalue λ1. Then

d− λ1
2
≤ h ≤

√
2d(d− λ1).

See [9] for a proof of Theorem 3.1.
The significance of Theorem 3.1 is that a sequence of d-regular

graphs is an expander family if and only if λ1 is uniformly bounded
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away from d. Tools from linear algebra, such as the Rayleigh-Ritz
theorem, can then be brought to bear. The landmark paper [15],
which introduces the zig-zag product of graphs as well as other graph
constructions, uses this approach to prove that iterating zig-zag
products in an appropriate way will yield expander families.

The theory of random walks sheds some light on why we might ex-
pect λ1 to be related to h. A large isoperimetric constant indicates
that a graph is “all mixed up,” that it is somewhat pseudo-random.
Too much structure will cause a graph to have large sets of ver-
tices with small boundary. Even cycle graphs furnish an illustrative
example; in a 2n-cycle, the “bottom half” of the graph forms an
isoperimetric set with just two boundary edges, giving us h = 2/n,
which vanishes as n→∞.

From the viewpoint of random walks, being “all mixed up” means
that a random walker on the graph will get lost quickly on it. For
a connected nonbipartite regular graph, it is known that any initial
probability distribution will converge to the uniform distribution as
one repeatedly takes random steps. Regarding the random walk as
a Markov process on the graph, one can see quickly by diagonalizing
and taking powers of the adjacency matrix that λ1 controls the rate
of this convergence.

Roughly speaking, Theorem 3.1 tells us that h is large if and only
if λ1 is small. For a d-regular graph with adjacency operator A, the
Rayleigh-Ritz theorem asserts that λ1 equals the maximum, over all
unit vectors v orthogonal to the constant vector, of 〈Av, v〉. (To
see why this holds, diagonalize and recall that the largest eigenvalue
is d.) So to continue our rough analysis, h is large if and only
if 〈Av, v〉 is small for all unit vectors v orthogonal to the constant
vector. But the inner product 〈Av, v〉 is small if and only if the angle
between Av and v is large, which in turn holds if and only if Av is
relatively far from v. This fact—the fact that adjacency operators
of graphs with large isoperimetric constant move most unit vectors a
long distance—conforms with our intuition that graphs in expander
families scramble everything up.

For good expansion, then, we want λ1 to be as small as possible.
However, there is an asymptotic lower bound, due to Alon and Bop-
pona, on how small λ1 can be. More precisely, we have the following
theorem.
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Theorem 3.2. Let d be a fixed positive integer, and let (Xn) be a
sequence of finite d-regular graphs whose orders approach infinity.
Then lim inf λ1(Xn) ≥ 2

√
d− 1.

One can prove Theorem 3.2 by obtaining a lower bound for the
number of closed walks with a given fixed point in the universal
cover of a d-regular graph, that is, a d-regular tree. Alternatively,
one can use the Rayleigh-Ritz theorem. Both proofs are presented
in [9].

LetX be a finite regular graph with n vertices. Let λ0, λ1, . . . , λn−1
be the eigenvalues of the adjacency operator of X, listed in nonde-
creasing order. Define

λ :=

{
max{|λ1|, |λn−1|} if X is nonbipartite

max{|λ1|, |λn−2|} if X is bipartite.

Motivated in part by Theorem 3.2, we define a d-regular graph X
to be Ramanujan if λ ≤ 2

√
d− 1. For an integer d ≥ 3, a short

computation shows that a family of d-regular Ramanujan graphs
will necessarily be an expander family. Indeed, Ramanujan graphs
are in some sense optimal expanders.

If d ≥ 3 is an integer such that d− 1 is a prime power, then there
exists a family of d-regular Ramanujan graphs [5, 11, 13, 14]. For
every d ≥ 3 not of that form, it is an open problem as to whether a
family of d-regular Ramanujan graphs exists.

3.3. Representation-theoretic methods. The vast majority of
expander families have been constructed via algebraic methods, es-
pecially the Cayley graph construction. For such graphs, one can
take advantage of the underlying group structure to attack the ques-
tion of expansion. In particular, the adjacency operator of a finite
Cayley graph enjoys a natural direct sum decomposition indexed
by the irreducible linear representations of the group—see [3], for
example, for a discussion of this useful fact.

In this direct sum, the trivial representation corresponds to the
space of constant vectors; the nontrivial representations index the
summands in its orthogonal complement. So for Cayley graphs,
we expect the isoperimetric constant to be large if and only if the
restriction of A to each such summand moves unit vectors far. That
motivates the following definition.
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Definition 3.3. Let G be a finite group. Let Γ be a subset of
G. Define the Kazhdan constant κ(G,Γ) to be the minimum value
of ||π(γ)v − v||, where γ ranges over Γ; π ranges over all nontrivial
irreducible unitary representations ofG; and v ranges all unit vectors
in the underlying representation space of π.

(Remark: Compactness of unit spheres shows that a minimum is
achieved.)

Theorem 3.4. Let G be a finite group, and let Γ be a symmetric
subset of G. Let d, h, and λ1 be the degree, isoperimetric constant,
and second-largest eigenvalue, respectively, of the Cayley graph of G
with respect to Γ. Then

2
√
dh ≥ κ(G,Γ) ≥

√
2(d− λ1)

d
.

A proof of Theorem 3.4 can be found in [9] or [12].
It follows immediately from Theorems 3.4 and 3.1 that a sequence

of d-regular Cayley graphs is an expander family if and only if the
corresponding Kazhdan constants are uniformly bounded away from
zero. Many proofs that certain families of groups yield expander
families rely primarily on this fact. The point is that for many
families of groups, we can use the detailed information we have about
their irreducible representations to come up with a lower bound for
the Kazhdan constant.

4. Group structure and expansion

Given a sequence of finite groups whose orders approach infinity,
does it yield an expander family? Stated in full generality, this
question remains open. However, several partial results are known.

Theorem 4.1. Any sequence of finite nonabelian simple groups
whose orders approach infinity yields an expander family.

Several authors over several decades joined forces to prove Theo-
rem 4.1. The proof relies on the classification of finite simple groups.
The survey [8] discusses all cases except Suzuki groups, which had
not yet been finished at that time. The case of alternating groups,
which is dealt with [7], required special attention. The proof was
completed in [4] by showing that Suzuki groups yield expander fam-
ilies.
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Although the answer is positive for nonabelian simple groups, not
so for perfect groups. The n-fold productGn of the alternating group
on 5 letters provides a counterexample; indeed, given any positive
integer d, then for sufficiently large n no set of d elements will gen-
erate Gn, so the associated Cayley graphs will be disconnected and
therefore have vanishing isoperimetric constant.

We now turn our attention to negative results.

Lemma 4.2. No sequence of abelian groups yields an expander fam-
ily.

The idea of the proof is that expander families have logarithmic
diameter (as a function of the number of vertices), whereas for Cay-
ley graphs on abelian groups, the diameter grows at least as fast as
a root function. For details, see [9, Prop. 4.25].

Lemma 4.3. Let (Gn) and (Qn) be sequences of finite groups such
that each Qn is a homomorphic image of Gn. Suppose that |Qn| →
∞ and that (Qn) does not yield an expander family. Then (Gn) does
not yield an expander family.

Proof. The idea of the proof is to project down from a Cayley graph
on Gn to a corresponding Cayley graph on Qn, then take the inverse
image of a subset of Qn that achieves the minimum in the definition
of isoperimetric constant. For details, see [9, Prop. 2.20]. �

Lemma 4.4. Let (Gn) be a sequence of finite groups with |Gn| → ∞.
For each n, let Hn be a subgroup of Gn. Suppose that the sequence
[Gn : Hn] of indices is bounded. If (Hn) does not yield an expander
family, then Gn does not yield an expander family.

The idea of the proof of Lemma 4.4 is to use Schreier generators
to transfer from Gn to Hn. For details, see [9, Prop. 2.46].

The paper [12] also discusses other restrictions to expansion, from
a function-analytic point of view.

5. Expanders and semidirect products

Cyclic groups are nearly always the easiest family of groups to
work with. However, Lemma 4.2 shows that no sequence of cyclic
groups yields an expander family. Next, one might consider dihe-
dral groups, which are in some sense next-easiest. Lemmas 4.2 and
4.4 together imply, though, that the dihedral groups also do not
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yield an expander family. More generally, a sequence (Hn o Kn)
of semidirect products of cyclic groups cannot yield an expander
family, for either the sequence (Kn) of quotients is unbounded, or
else the sequence (Hn) of subgroups has bounded index. Proceeding
inductively, we see that no sequence of groups, each constructed by
iterating semidirect products of cyclic groups k times for some fixed
positive integer k, can yield an expander family.

With that in mind, we consider sequences of groups constructed
recursively as follows. Let (Kn) be a sequence of cyclic groups. Let
G1 = K1. Let Gn+1 = GnoKn. Can a sequence (Gn) so constructed
yield an expander family?

We begin by discussing several known results relevant to this ques-
tion, some of which suggest that this construction is not as un-
promising as it first appears. We then conclude by proving a nec-
essary condition for such a sequence of iterated semidirect products
to yield an expander family and by giving an example to show that
this condition is not sufficient.

5.1. Known results. Any group constructed by iterating semidi-
rect products of cyclic groups will necessarily be solvable. Perhaps
solvability precludes expansion? Almost, but not quite. Lemmas
4.2, 4.3, and 4.4 together imply that no sequence of solvable groups
with bounded derived length can yield an expander family. Lubotzky
and Weiss show in [12], however, that there exists a sequence of solv-
able groups (indeed, p-groups) that yields an expander family.

If (Xn) is an expander family and each graph Xn has rn vertices,
then diam(Xn) = O(log rn). In other words, expander families have
logarithmic diameter. Let Ck denote the cyclic group of order k, and
let Gn be the wreath product of C2 with Cn. That is, Gn = Cn

2 o
Cn, where Cn acts on Cn

2 by cyclically permuting the coordinates.
Then (Gn) admits a sequence of 3-regular Cayley graphs (the cube-
connected cycle graphs) with logarithmic diameter. But each Gn has
derived length 2, so this sequence cannot be an expander family.
(See [9] for more details of this example.) The point here is that a
semidirect products of two abelian groups admit Cayley graphs that
in a sense come close to being an expander family.

In [15], Reingold, Vadhan, and Wigderson defined a new graph
operation called the zigzag product. They show that iterating zigzag
products appropriately will yield an expander family. In [1], Alon,
Lubotzky, and Wigderson show that under certain circumstances,
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the zigzag product of two Cayley graphs is a Cayley graph on the
semidirect product of the two underlying groups. We note that one
of the Reingold-Vadhan-Wigderson constructions, the base graph is
a Cayley graph on an abelian group. In [16], Rozenman, Shalev, and
Wigderson employ the results of [1] to construct expander families
as Cayley graphs on iterated wreath products of alternating groups.

5.2. Iterated semidirect products of cyclic groups. In this
subsection, we investigate the question of when groups constructed
by iterating semidirect products of cyclic groups can yield expander
families. We provide a necessary condition, and then give an exam-
ple to show that it is not sufficient.

Theorem 5.1. Suppose (Cn) is a sequence of nontrivial finite cyclic
groups, where an generates Cn. Let G1 = C1. Suppose that for all
n ≥ 2, we have that Gn+1 = Gn oθn Cn+1 for some homomorphism
θn : Cn+1 → Aut(Gn). If (Gn) yields an expander family, then θn(an)
must be outer for infinitely many n.

Proof. We first show that if G,H are groups, where H is cyclic with
generator a, and θ : H → Aut(G) is a homomorphism such that
θ(a) is inner, then (G oθ H)′ = G′. Here we identify G and H as
subgroups of GoθH via the embeddings g 7→ (g, 1) and h 7→ (1, h).
The inclusion G′ ⊂ (Goθ H)′ is immediate.

For the converse, we compute that

(g1a
r)(g2a

s)(g1a
r)−1(g2a

s)−1

= (g1a
r)(g2a

s)(x−rg−11 xra−r)(x−sg−12 xsa−s)

= (g1x
rg2x

−rar+s)(x−rg−11 x−sg−12 xr+sa−r−s)

= g1x
rg2x

s−rg−11 x−sg−12 x−s

= (g1x
r)(g2x

s)(g1x
r)−1(g2x

s)−1

where θ(a) is the inner automorphism g 7→ xgx−1. Therefore (Goθ

H)′ = G′.
Therefore, if only finitely many θ(an) are outer, then |Gn/G

′
n| →

∞. Observe, however, that together Lemmas 4.2 and 4.3 imply that
if (|Gn/G

′
n|) is unbounded, then (Gn) does not yield an expander

family. The theorem follows. �

We now show that the converse of Theorem 5.1 fails; that is, we
exhibit an example of a sequence (Gn) of groups constructed as in
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Theorem 5.1 but with infinitely many (indeed, all but finitely many)
of the θn outer such that (Gn) does not yield an expander family.

We construct (Gn) as follows. Let G1 = Z2, the group of integers
modulo 2 under addition. Let G2 = Z2 × Z2. (Recall that the
direct product is a special case of the semidirect product.) Define
θ2 : Z2 → Aut(G2) by θ2(1) : (a, b) 7→ (b, a). Let G3 = G2 oθ2 Z2.
Observe that G3

∼= D4, the dihedral group of order 8. Define the
dihedral group of order 2n by Dn := 〈r, s | rn = s2 = 1, rs = sr−1〉.
Define τ : Z2 → Aut(Dn) by τ(1) : r 7→ r−1 and s 7→ rs. For n ≥ 4,
let Gn = D2n−2 oτ Z2. Observe that D2n−1

∼= Gn by the isomorphism
r 7→ (s, 1), s 7→ (1, 1). So the sequence (Gn) is indeed constructed
by iterating semidirect products with cyclic groups.

When n is even, the commutator subgroup of Dn is generated by
r2 and so has order n/2. Hence, for n ≥ 4, we have

|(D2n−2 oτ Z2)
′| = |D′2n−1| = 2n−2,

whereas |D′2n−2| = 2n−3. From the first half of the proof of Theorem
5.1, then, it follows that τ is outer.

It remains to be shown that (Gn) does not yield an expander
family. First observe that for all n, the group Gn admits Z2n−2 as a
subgroup of index 2. From Lemma 4.2, we know that (Z2n−2) does
not yield an expander family. It then follows from Lemma 4.4 that
(Gn) does not yield an expander family.

References

1. N. Alon, A. Lubotzky, and A. Wigderson, Semi-direct product in groups and
zig-zag product in graphs: connections and applications (extended abstract),
42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV,
2001), IEEE Computer Soc., Los Alamitos, CA, 2001, pp. 630–637.

2. N. Alon, O. Schwartz, and A. Shapira, An elementary construction of
constant-degree expanders, Combin. Probab. Comput. 17 (2008), no. 3, 319–
327. MR MR2410389 (2009b:05070)

3. L. Babai, Spectra of Cayley graphs, Journal of Combinatorial Theory, Series
B 27 (1979), 180–189.

4. E. Breuillard, B. Green, and T. Tao, Suzuki groups as expanders, Groups
Geom. Dyn. 5 (2011), no. 2, 281–299.

5. P. Chiu, Cubic Ramanujan graphs, Combinatrica 12 (1992), 275–285.
6. F. R. K. Chung, Spectral graph theory, CBMS Regional Conference Series in

Mathematics, vol. 92, Published for the Conference Board of the Mathemat-
ical Sciences, Washington, DC, 1997. MR MR1421568 (97k:58183)

7. M. Kassabov, Symmetric groups and expander graphs, Invent. Math. 170
(2007), no. 2, 327–354. MR MR2342639



EXPANDERS AND GROUPS 31

8. M. Kassabov, A. Lubotzky, and Nikolov N., Finite simple groups as ex-
panders, Proceedings of the National Academy of Sciences of the United States
of America 103 (2006), no. 16, 6116–6119.

9. M. Krebs and A. Shaheen, Expander families and Cayley graphs: A beginner’s
guide, Oxford University Press, USA, 2011.

10. A. Lubotzky, Expander graphs in pure and applied mathematics, Bull. Amer.
Math. Soc. 49 (2012), no. 1, 113–162.

11. A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica
8 (1988), no. 3, 261–277.

12. A. Lubotzky and B. Weiss, Groups and expanders, Expanding Graphs, DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 10, American Mathematical Society, 1993, pp. 95–109.

13. G. A. Margulis, Explicit group-theoretical constructions of combinatorial
schemes and their application to the design of expanders and concentrators,
Problems of Information Transmission 24 (1988), no. 1, 39–46.

14. M. Morgenstern, Existence and explicit constructions of q + 1 regular Ra-
manujan graphs for every prime power q, J. Comb. Theory, Ser. B 62 (1994),
44–62.

15. O. Reingold, S. Vadhan, and A. Wigderson, Entropy waves, the zig-zag graph
product, and new constant-degree expanders, Ann. of Math. (2) 155 (2002),
no. 1, 157–187.

16. E. Rozenman, A. Shalev, and A. Wigderson, Iterative construction of Cayley
expander graphs, Theory Comput. 2 (2006), 91–120.

M. Aivazian received his Master’s Degree in Mathematics from California
State University, Los Angeles.

M. Krebs is an associate professor of mathematics at California State Univer-
sity, Los Angeles.

(M. Aivazian) Department of Mathematics, California State Uni-
versity - Los Angeles, 5151 State University Drive, Los Angeles,
California 90032

(M. Krebs) Department of Mathematics, California State Univer-
sity - Los Angeles, 5151 State University Drive, Los Angeles, Cal-
ifornia 90032

E-mail address : maivazian@calstatela.edu, mkrebs@calstatela.edu


	1. Introduction
	2. Basic definitions
	3. Expander families: A brief overview
	3.1. Combinatorial methods
	3.2. Probabilistic methods: Random walk theory
	3.3. Representation-theoretic methods

	4. Group structure and expansion
	5. Expanders and semidirect products
	5.1. Known results
	5.2. Iterated semidirect products of cyclic groups

	References

