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THE TENSOR PRODUCT OF A CSL AND AN ABSL

SAVVAS PAPAPANAYIDES

Abstract. We study the question that asks whether the tensor
product of two reflexive subspace lattices is reflexive. In particular,
we study the tensor product of a commutative subspace lattice L
and an atomic boolean subspace lattice M and we prove that it is
equal to the extended tensor product of the two subspace lattices.
Furthermore, we give a description of the subspace lattice L ⊗M
and with the help of a result of Harrison in [3] we prove that it
is reflexive. We also show that the lattice tensor product formula
holds for any Arveson algebra of L and algM.

1. Introduction

In this paper we consider every Hilbert space to be separable. If
H is a Hilbert space, then we set B(H) to be the set of all bounded
operators acting on H and P(H) to be the set of all orthogonal
projections acting on H. If P,Q ∈ P(H) then we define P ∨Q to be
the projection with range PH ∨QH and P ∧Q the projection with
range PH∧QH. It is clear that P(H) is a lattice with respect to the
binary operations of the intersection ∧ and the closed linear span
∨. A strongly closed sublattice of P(H) (with respect to the binary
operations of the intersection and the linear span) that contains 0
and the identity operator I is called a subspace lattice.

If A is an operator algebra acting on a Hilbert space H then we
define

latA = {P ∈ P(H) : PTP = TP for each T ∈ A}.
Obviously latA is a subspace lattice. Subspace lattices of this form
are called reflexive. Similarly, if L is a subspace lattice then we
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define

algL = {T ∈ B(H) : L⊥TL = 0, for each L ∈ L}.

Clearly algL is a weakly closed unital subalgebra of B(H).
Let Ti be a bounded operator acting on a Hilbert space Hi for

i = 1, 2. We define T1 ⊗ T2 be the bounded operator acting on the
Hilbert space H1 ⊗ H2 such that, if x1 ∈ H1 and x2 ∈ H2, then
T1 ⊗ T2(x1 ⊗ x2) = T1x1 ⊗ T2x2.

If A1 and A2 are ultraweakly closed algebras, then we denote by
A1⊗A2 the ultraweakly closed algebra generated by the elementary
tensors A1 ⊗A2 where Ai ∈ Ai, i = 1, 2. Similarly, if L1 and L2 are
subspace lattices we denote by L1⊗L2 the smallest subspace lattice
containing all elementary tensors L1 ⊗ L2 where Li ∈ Li, i = 1, 2.

Given two subspace lattices L andM, the algebra tensor product
formula (ATPF) holds for L andM if alg(L⊗M) = algL⊗algM.
Analogously, the lattice tensor product formula (LTPF) holds for
two operator algebras A and B if lat(A ⊗ B) = latA ⊗ latB. The
LTPF was first introduced by Hopenwasser in [4].

Let Y be a compact metric space and ν a finite regular Borel
measure on Y . If A ⊆ Y is measurable, then we denote by MA the
map that sends ψ ∈ L2(Y, ν) to ψχA where χA is the characteristic
function on A.

Let L be a commutative subspace lattice (CSL). It follows from
Arveson [1] that there exists a compact metric space X, a standard
preorder ≤ on X and a finite regular Borel measure µ on X such
that L is unitarily equivalent to

L(X,µ,≤) = {MB : B ⊆ X measurable and almost increasing}.

A subset B ⊆ X is almost increasing if there exists a null subset Γ ⊆
X such that B\Γ is increasing. IfM be a subspace lattice acting on
a Hilbert space K, then a function φ : X →M is almost increasing
if there exists a null subset γ ⊆ X such that φ is increasing on
X\γ. Also, the function φ is measurable if the map x→ (φ(x)ξ, η)
is measurable for all ξ, η ∈ K. We define L∞(X,µ,≤,M) to be
the space of all essentially bounded, M-valued, almost increasing
and measurable functions on X. If φ ∈ L∞(X,µ,≤,M), then we
denote by Mφ the map from L2(X,µ,K) to L2(X,µ,K) such that
(Mφf)(x) = φ(x)f(x) for all f ∈ L2(X,µ,K) and for all x ∈ X.
The extended tensor product of L and M is defined to be the
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space

{Mφ : φ ∈ L∞(X,µ,≤,M)}
and it is denoted by L⊗extM. In many occasions it is easier to
identify L⊗extM with L∞(X,µ,≤,M) through the map that sends
φ to Mφ for all φ ∈ L∞(X,µ,≤,M). Also, if B ⊆ X is almost
increasing and measurable and L ∈M, then through the map that
sends MB⊗L to the function x→ χB(x)L, where x ∈ X, we identify
L⊗M with a subset of L⊗extM and we consider L⊗M ⊆ L⊗extM.

The extended tensor product was firstly introduced by Harrison
in [3]. One of the main results obtained in that paper is that the
extended tensor product of a completely distributive CSL L and any
subspace lattice M is equal to their tensor product. An interesting
question emerging from this result is whether the equality between
the tensor product and the extended tensor product still holds, if
we remove the property of complete distributivity from the subspace
lattice L to the subspace lattice M. The main result of this paper
answers the previous question positively in the case where the sub-
space latticeM is an atomic Boolean subspace lattice (ABSL). Also,
if M is an ABSL, it follows that the tensor product of L and M is
reflexive and that the LTPF holds for every Arveson algebra of L
and algM. Furthermore, we have a description of L⊗M in terms
of the elements of L and the atoms of M.

2. The main results

Recall at this point of the paper that a subspace lattice M is an
ABSL if it is distributive, complemented (i.e. for every P ∈M there
exists an element P ′ ∈ M such that P ∧ P ′ = 0 and P ∨ P ′ = I)
and there exists a subset K ⊂ M of non-zero elements (called the
atoms) such that (i) if M ∈ M, K ∈ K and 0 ⊆ M ⊆ K, then
either M = 0 or M = K and (ii) if M ∈ M then M is equal to the
closed span of the atoms that it majorises.

Lemma 2.1. If M is an ABSL acting on a separable Hilbert space
H, then M has at most a countable number of atoms.

Proof. Let (Ej)j∈J be the set of atoms of M and (e
(j)
k )k∈Kj

be an
orthonormal basis of EjH, j ∈ J . Since H is separable, it follows
that Kj is at most countable for all j ∈ J . It is also clear that
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∨
j∈J

( ∨
k∈Kj

e
(j)
k ) = H. The class of subsets of T = ∪

j∈J
{e(j)k : k ∈ Kj}

whose closed span equals H is not empty as T is such a set itself.
Also, if there exists S ⊆ T and i ∈ J such that S ∩ Ei = ∅, then
∨{s : s ∈ S} ⊆ ∨

j 6=i
Ej 6= H. Hence, for every subset S of T whose

closed span is equal to H and for every i ∈ J we have that S∩Ei 6= ∅
and thus the cardinality of each of those sets is bigger or equal to
the cardinality of J .

Let (fn)n∈N be an orthonormal basis of H. Obviously, for each

n ∈ N, there exists a sequence (a
(n)
l )l∈N such that

a
(n)
l =

k
(n)
l∑
i=1

µ
(l,n)
i e

(l,n)
i , µ

(l,n)
i ∈ C,

where k
(n)
l ∈ N, e

(l,n)
i ∈ ∪

j∈J
{e(j)k : k ∈ Kj} for all 1 ≤ i ≤ k

(n)
l and all

l ∈ N, and fn = lim
l→∞

a
(n)
l . Let V = {e(l,n)i : 1 ≤ i ≤ k

(n)
l and l, n ∈ N}.

Then V is at most countable and the closed span of its elements is
equal to H. Since V ⊆ T , it follows from our previous observation
that the cardinality of J is smaller than the cardinality of V and
thus it is at most countable proving our lemma. �

Theorem 2.2. Let X be a compact metric space, µ be a finite Borel
measure, ≤ be a standard preorder, L = L(X,µ,≤) be a CSL acting
on the Hilbert space K = L2(X,µ) and M be an ABSL acting on
a Hilbert space H with atoms {Ej : j ∈ J}. Then every element of
L⊗extM can be written in the form ∨

j∈N
(Mαj

⊗Ej) where αj ⊆ X is

almost increasing and measurable and thus L⊗extM = L ⊗M.

Proof. In the proof of this theorem we identify L∞(X,µ,≤,M) with
L⊗extM. By Lemma 2.1, M has at most a countable number of
atoms. Since L⊗M ⊆ L⊗extM, we only need to prove the opposite
inclusion. Fix P ∈ L⊗extM and let βj = {x ∈ X : P (x) ≥ Ej} for
all j ∈ J . Let j ∈ J and (ek)k∈N be an orthonormal basis of Ej. It
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follows that

βj = {x ∈ X : P (x) ≥ Ej}
= {x ∈ X : (P (x)ek, ek) = (Ejek, ek), k ∈ N}
=

⋂
k∈N

{x ∈ X : (P (x)ek, ek) = 1}. (1)

The function x → (P (x)ξ, η) is measurable by definition for all
ξ, η ∈ H and thus the set {x ∈ X : (P (x)ek, ek) = 1} is measurable
for all k ∈ N. It follows from (1) that βj is measurable for all
j ∈ J . Also, P is almost increasing and thus there exists a null set
A such that P is increasing on X\A. If for some j ∈ J , x ∈ βj\A,
y ∈ X\A and x ≤ y, then by the definition of βj, we have that
P (x) ≥ Ej. Since x ≤ y and P is increasing on X\A, it follows that
P (y) ≥ P (x) ≥ Ej. By the definition of βj, we have that y ∈ βj.
Hence, βj is increasing in X\A and thus it is almost increasing.
Since j ∈ J is arbitrary, βj is almost increasing for all j ∈ J .

It now suffices to show that P = ∨
j∈J

(Mβj ⊗ Ej). It is well known

that there exists a null subset N ⊆ X such that ( ∨
j∈J

(Mβj⊗Ej))(x) =

∨
j∈J

((Mβj⊗Ej)(x)) for all x ∈ X\N (for a detailed proof of this state-

ment see Proposition 1.5.2 in [5]). It is easy to see that (Mβj ⊗
Ej)(x) ≤ P (x) for all x ∈ X\N and for all j ∈ J , and thus
( ∨
j∈J

(Mβj ⊗ Ej))(x) ≤ P (x) for all x ∈ X\N . Since M is an

ABSL, P (x) is equal to the span of the atoms that it contains for
all x ∈ X. Hence, in order to prove the opposite inclusion it is
enough to show that all atoms contained in P (x) are also contained
in ( ∨

j∈J
(Mβj ⊗ Ej))(x) for all x ∈ X\N . Fix x ∈ X\N and i ∈ J

such that Ei ≤ P (x). It follows from the definition of βi that x ∈ βi
and thus

Ei ≤ ∨
j∈J

((Mβj ⊗ Ej)(x)) = ( ∨
j∈J

(Mβj ⊗ Ej))(x).

Since Ei is an arbitrary atom contained in P (x), it follows that

P (x) = ( ∨
j∈J

(Mβj ⊗ Ej))(x).

Since N is null and x ∈ X\N is arbitrary, P = ∨
j∈J

(Mβj ⊗ Ej) and

the theorem is proved. �
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Recall at this point from Arveson [1] that for every CSL L there ex-
ists a minimal weak* closed algebra Amin such that i) Amin contains
a maximal abelian selfadjoint algebra (masa), and ii) latAmin = L.
Every weak* closed algebra satisfying those two conditions is called
an Arveson algebra.

Corollary 2.3. Let L be a CSL acting on a separable Hilbert space
K, B be an Arveson algebra of L, M be an ABSL and A = algM.
Then the LTPF holds for A and B and L ⊗M is reflexive.

Proof. Recall from Section 1 that there exists a compact metric space
X, a finite Borel measure µ and is a standard preorder ≤ acting on
X such that L is unitarily equivalent to N = L(X,µ,≤). By [3,
Theorem 1], we have that

N⊗ext latA = lat(Amin ⊗A)

where Amin is the smallest ultraweakly closed algebra containing a
masa for which N = latAmin. Since every ABSL is reflexive [2], we
have that

N⊗extM = lat(Amin ⊗A).

It follows by Theorem 2.2 that N ⊗M = lat(Amin ⊗ A) and thus
N ⊗M is reflexive. Hence L ⊗M is reflexive and if Bmin is the
smallest ultraweakly closed algebra containing a masa for which L =
latBmin, then

L ⊗M = lat(Bmin ⊗A) ⊇ lat(B ⊗A) ⊇ latB ⊗ latA = L ⊗M
and the LTPF holds for A and B. �
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