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Conjugate deficiency in finite groups

STEPHEN M. BUCKLEY AND DESMOND MACHALE

Abstract. We consider the function r(G) = |G|−k(G), where the
group G has exactly k(G) conjugacy classes. We find all G where
r(G) is small and pose a number of relevant questions.

1. Introduction

Let G be a finite group and let G have exactly k(G) conjugacy
classes of elements. One of the most startling results in finite group
theory is the following beautiful theorem of Burnside [3, p.295].

Theorem A. If |G| is odd, then |G| − k(G) ≡ 0 (mod 16).

We note that no such result can hold if |G| is even. For example,
if S3 is the symmetric group of order 6 and A4 is the alternating
group of order 12, then k(S3) = 3, k(A4) = 4, so that r(S3) = 3,
r(A4) = 8, and gcd(3, 8) = 1.

Burnside proved Theorem A using matrix representation theory,
but later authors such as Hirsch [5] and Poland [7] proved Burn-
side’s result by elementary means and in fact generalized it. Theo-
rem A has some immediate consequences which are pretty and useful
enough to impress students taking a first course in group theory.

Consequence B. Groups of orders 3, 5, 7, 9, 11, 13, 15, and 17
are all abelian.

Consequence C. A non-abelian group of order 21 has exactly 5
conjugacy classes.

The form of Theorem A suggests that it would be worthwhile to
consider the function r(G) := |G|−k(G), which we call the conjugate
deficiency of a finite group G. In this note, we prove a number of
results about r(G) including the following.
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Theorem 1. There are only finitely many groups G with a given
value of r(G) > 0.

We note the obvious fact that there are infinitely many finite
groups with r(G) = 0, and these are precisely the abelian groups.
In what follows, we disregard these groups, so that throughout G
will denote a finite non-abelian group.

We use the following notation for some families of groups: Cn is
the cyclic group of order n; Sn is the symmetric group of order n!;
An is the alternating group of order n!/2; Dn is the dihedral group
of order 2n, n > 2; and Qn is the dicyclic group of order 4n, n > 1
(in particular, Q2 is the quaternion group).

Theorem 2. There is no G with r(G) = 1, 2, 4, 5, or 7.

Theorem 3. The groups with r(G) = 3 are S3, D4, and Q2.

Theorem 4. There are exactly nine groups with r(G) = 6.

Theorem 5. The only group with r(G) = 8 is A4.

This example A4 knocks on the head the conjecture that r(G) ≡ 0
(mod 3) if |G| is even. However Hirsch [5] shows that if |G| is even
and 3 - |G|, then r(G) ≡ 0 (mod 3). Also if |G| is odd and 3 - |G|,
then r(G) ≡ 0 (mod 48).

Theorem 6. The odd order groups which satisfy r(G) = 16 are one
group of order 21 and two groups of order 27.

Theorem 7. The only odd order group which satisfies r(G) = 32 is
the non-abelian group of order 39.

Theorem 8. There are exactly six odd order groups satisfying r(G) =
48.

We begin with the following elementary lemma which, combined
with a knowledge of groups of small order, yields all the above re-
sults.

Lemma 9. Suppose G is a non-abelian group. Let p be the least
prime dividing |G|, and suppose (G : Z(G)) ≥ n, where Z(G) is the
centre of G. Then

k(G) ≤ n + p− 1

pn
· |G| .
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In particular,

k(G) ≤ p2 + p− 1

p3
· |G| .

Proof. The number of single element conjugacy classes in G equals
|Z(G)|, and so is at most |G|/n. Since the size of a conjugacy class
is a divisor of |G|, any other class has at least p elements, so

k(G) ≤ 1

n
|G|+ 1

p

(
1− 1

n

)
|G| = n + p− 1

pn
· |G| .

Since G is non-abelian, G/Z(G) is not cyclic. Thus we can take
n = p2 to get the second estimate. �

We remark that this result is best possible, being attained for the
non-abelian groups of order p3, both for p = 2 and p an odd prime.
It follows from Lemma 9 that

r(G) = |G| − k(G) ≥ |G|
(

1− n + p− 1

np

)
=

(n− 1)(p− 1)

np
|G| .

Thus

|G| ≤ np · r(G)

(n− 1)(p− 1)
, (1)

where p is the least prime dividing |G| and n ≤ (G : Z(G)). Using
the second estimate in Lemma 9, we get

|G| ≤ p3 · r(G)

(p2 − 1)(p− 1)
, (2)

Since p3/(p2−1)(p−1) obviously decreases as p increases, we have
the following:

|G| ≤ 8r(G)

3
, for all finite non-abelian groups G. (3)

|G| ≤ 27r(G)

16
, for all finite non-abelian groups G of odd order.

(4)

Moreover, we have equality in (3) if and only if (G : Z(G)) = 4, and
equality in (4) if and only if (G : Z(G)) = 9. By (3), there is an
upper bound on |G| for any given r(G) > 0. Theorem 1 now follows
since there are only finitely many finite groups whose order does not
exceed a given number.

Using (3), we see that |G| ≤ 16/3 if r(G) ≤ 2, and no such non-
abelian group exists. If r(G) = 3, then |G| ≤ 8. There are exactly 3
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non-abelian groups of order at most 8, namely S3, D4 and Q2, and
r(G) = 3 in all three cases.

Using (3), we see that |G| ≤ 16 if r(G) ≤ 6, so to understand
how 4 ≤ r(G) ≤ 6 can arise, we need to examine all non-abelian
groups of orders between 9 and 16 inclusive. There are fourteen such
groups, and for nine of these we have k(G) = 6, namely D5; Q3;
D6 = S3 × C2; and the six groups of order 16 with (G : Z(G)) = 4,
namely D4 × C2, Q2 × C2, and 16/8, 16/9, 16/10, and 16/11, in
the notation of [8]. The five remaining non-abelian groups with
orders between 9 and 16 inclusive have larger deficiencies: k(A4) = 8
and k(D7) = k(D8) = k(Q4) = k(SD16) = 9, where SD16 is the
semidihedral group of order 16. Thus there are no groups with
r(G) ∈ {4, 5}, and nine groups with r(G) = 6.

Using (3), we see that |G| ≤ 64/3 if r(G) ≤ 8, so to understand
how 7 ≤ r(G) ≤ 8 can arise, we need to examine the five non-abelian
groups with order at most 16 and r(G) > 6, plus groups of order
between 17 and 21 inclusive. Of the five with order at most 16 and
k(G) > 6, the only one with r(G) ≤ 8 is A4 giving r(A4) = 8.

As for the groups of larger order between 17 and 21, we need only
check the even order groups, since (4) tells us that |G| ≤ 27/2 < 16
if |G| is odd and r(G) ≤ 8. It remains to check |G| ∈ {18, 20}, and
there are six such groups: three of order 18 (D9, S3 × C3, and a
semidirect product of C3 × C3 by C2) and three of order 20 (D10,
Q5, and the general affine group of degree 1 over GF5). In each case,
r(G) > 8. This establishes Theorems 2, 3, 4, and 5.

We now turn to the case where G has odd order, as suggested by
Theorem A. If |G| is odd and r(G) = 16, then by (4), |G| ≤ 27,
and just three groups emerge: the non-abelian group of order 21,
and two groups of order 27. Again for |G| odd and r(G) = 32, we
must have |G| ≤ 54 and just one group emerges, namely the non-
abelian group of order 39. For |G| odd and r(G) = 48, we must have
|G| ≤ 81, and we get 10 groups: one of order 55, one of order 57,
two of order 63, and six of order 81. This establishes Theorems 6,
7, and 8.

Now let t(n) be the number of groups which satisfy r(G) = n.
Here is a table listing the values of t(n) for n ≤ 30, obtained by the
above methods.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t(n) 0 0 3 0 0 9 0 1 7 0 0 23 0 0 10

n 16 17 18 19 20 21 22 23 24 25 26 27 28 28 30

t(n) 4 1 31 1 0 12 0 0 49 0 0 15 0 0 32

The dihedral groups alone suffice to get r(G) equal to any multiple
of 3. In fact for n > 1, it is well known that k(D(2n− 1)) = n + 1
and k(D(2n)) = n+ 5, and so r(D(2n− 1)) = r(D(2n)) = 3(n− 1).

It seems difficult to predict the values of t(n), but it is easy to see
that

r(A×G) = |A|r(G)

whenever A is a finite abelian group. Since there are abelian groups
of all orders, it follows that if a given number n is a value of r(G),
then so is mn for all m ∈ N. Moreover t(mn) ≥ t(n) for all m,n ∈ N.
This suggests that it would be important to consider prime numbers
p for which t(p) > 0.

We note that for each prime p, there is a group of order p3 with
p2 + p− 1 classes, so that r(G) = (p2 − 1)(p− 1) is always possible.
In addition, if p and q are primes with 2 < p < q, where p | (q − 1),
then the nonabelian group of order pq has p + (q − 1)/p conjugacy
classes, and so

r(G) =
(q − 1)(p2 − 1)

p
.

We close with a number of related problems, some of which could
prove difficult to solve.

Problem 1. Give a realistic upper bound for t(n) for each n.

Problem 2. Characterize the numbers n for which t(n) = 0.

With the help of [8] and GAP [4], we see that the numbers in the
above problem begin

1, 2, 4, 5, 7, 10, 11, 13, 14, 20, 22, 23, 25, 26, 28, 29,

31, 37, 41, 43, 46, 47, 49, 50, 52, 53, 58, 59, 61, 62, . . .

Are there infinitely many such numbers?

Problem 3. Are there infinitely many primes p for which t(p) > 0?
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The primes less than 199 for which t(p) > 0 are as follows:

3, 17, 19, 83, 97, 107, 113, 137, 149,

151, 157, 167, 173, 179, 181, 193, 197.

These values were found using the Small Groups Library of GAP
([4], [1]) by searching through groups of order at most 511.

Problem 4. Are there infinitely many pairs (n, n + 1) where 3 - n
and 3 - (n + 1) such that t(n) = t(n + 1) = 0?

Problem 5. For each k ≥ 4, is there an odd order group G with
r(G) = 2k?

If the answer to this last problem is positive, then we can find a
group of odd order with r(G) = 16l for all l ∈ N by taking direct
products as previously described. The answer is indeed positive for
4 ≤ k ≤ 12, because of groups of order 21, 39, 75, 147, 291, 579,
1161, 2307, 4221; the largest three of these orders were found with
the help of GAP. The desired group is given in all except two cases
by a semidirect product CnoC3, for n = |G|/3. The two exceptional
cases are |G| = 75 in which case G = C2

5 o C3, and |G| = 4221 in
which case G is of type (C7 o C3) × (C67 o C3). There does not
seem to be a clear enough pattern to these examples to justify a
conjecture that the answer is always positive.

Problem 6. Is the function t(n) onto N? Is there, for example, an
n with t(n) = 2?

Problem 7. For n odd and n > 3, do there exist primes p and q
with 2 < p < q where p | (q − 1), such that n = p + (q − 1)/p?

Computer results [2] show that this result is true for all n, 3 <
n < 10 000 001. If it is true in general, then it provides an answer
to the following question posed by the second author in [6].

For each odd k > 3, does there exist an odd order non-
abelian group with exactly k conjugacy classes?

Of particular interest is r(Sn) = n! − p(n), where p(n) is the
number of partitions of n. This purely arithmetic function is of
some interest in its own right, so we ask:

Problem 8. What is the range of values of r(Sn)?

We say that n is primitive if t(n) 6= 0, but t(d) = 0 for each proper
divisor d of n. For example, 3, 8, 17, and 19 are primitive.
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Problem 9. Are there infinitely many primitive values of n?
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