
Irish Math. Soc. Bulletin
Number 69, Summer 2012, 47–56
ISSN 0791-5578

THE EQUATION OF TIME AND THE ANALEMMA

PETER LYNCH

Abstract. The Earth’s progress around the Sun varies through
the year. Combined with the tilt of the axis of rotation, this re-
sults in variations of the length of a solar day. The variations are
encapsulated in the Equation of Time. A plot of altitude versus az-
imuth for the Sun at 12 noon local time through the year describes
a figure-of-eight curve known as an analemma. By analysis of the
observations, we find that the qualitative aspects of the analemma
can be reproduced using just two sinusoidal components.

1. Introduction

An analemma is the curve obtained by plotting the position of the
Sun, as viewed from a fixed location on Earth, at the same clock
time each day for a year. If the Earth’s orbit were perfectly circular
and the axis of rotation were perpendicular to the plane of the orbit,
the analemma would collapse to a fixed point. However, the orbit
is elliptical and the axis tilted, and the analemma is a large figure-
of-eight. This has important consequences for the measurement of
time.

On the East Pier in Dun Laoghaire there is an analemmatic sun-
dial. The hour-points are on an ellipse, the horizontal projection
of a circle parallel to the equator. The gnomon is formed by the
observer, whose shadow falls on the ellipse, indicating the time.
Three adjustments must be made to get mean time from sun-dial
time. First, since Dun Laoghaire is six degrees, eight minutes west
of Greenwich, 25 minutes must be added. Next, a seasonal correc-
tion must be made. This is read from a graph of the Equation of
Time, conveniently plotted on a bronze plaque (Fig. 1). Finally,
an extra hour must be added during Irish Summer Time. In this
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Figure 1. Bronze plaque indicating the Equation of
Time, on the analemmatic sundial installed on the East
Pier in Dun Laoghaire (Graph drawn by Capt. Owen
M. Deignan. Photo: Peter Lynch).

paper, we will examine the Equation of Time and show how it can
be expressed approximately in terms of two sinusoidal components.

2. Observations

The position of the Sun in the sky, as seen from the Royal Ob-
servatory, Greenwich at 12:00 GMT each day for 2006, is available
online [5]. The position is specified by two angles, analogous to lat-
itude and longitude: the altitude, or angle relative to the horizon
and the azimuth, or angle relative to true north. A plot of altitude
versus azimuth (Fig. 2) describes a figure-of-eight curve known as
an analemma.

The apparent variation in the position of the Sun has been in-
tensively studied by astronomers, and is well understood. It is the
cause of variations in the length of a solar day and the difference
between solar time and mean time. The variations are encapsulated
in an expression called the Equation of Time (the term ‘equation’ is
used here in a historical sense, meaning a correction or adjustment).
The difference between mean and solar time can be predicted with
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Figure 2. The analemma, based on observed values of
the azimuth and altitude of the Sun at 12.00 GMT at the
Royal Observatory, Greenwich for 2006 (see [5]). Note
the unequal axes.

great precision. For example, [2] gives an algorithm that calculates
the Equation of Time valid over a period of 6000 years, accurate
to within three seconds. So, accurate estimation of the correction is
not an issue. However, examination of the data shows that there are
dominant components of the Equation of Time that call for expla-
nation, and it is instructive and illuminating to examine these and
explain them in terms of the main variations in the Earth’s orbit.
This is the goal of the present note.

A Fourier analysis of the altitude and azimuth for the year 2006
shows that only the first few components have appreciable ampli-
tude. Fig. 3 (left panel) makes it clear that the altitude is dominated
by the component with a period of a year; the Sun moves between
the Tropics of Cancer and Capricorn in an essentially sinusoidal
fashion. In Fig. 3 (right panel), the amplitudes of the coefficients of
the transformed azimuth show that components 1 and 2 are domi-
nant; component 3 is not negligible, but it is substantially smaller
than the two main components. Thus, the principal variations in
azimuth have periods of a year and a half year.

When the altitude is plotted against the azimuth, the figure-of-
eight curve shown in Fig. 2 results. The pattern can be further bro-
ken down by taking the in-phase and quadrature elements of each
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Figure 3. Magnitude of the Fourier components of al-
titude (left) and azimuth (right). Only the first 8 com-
ponents are shown.

of the two components of the azimuth. Thus, for the annual com-
ponent, we plot the part in phase with the altitude in Fig. 4(A) and
the part orthogonal to altitude in Fig. 4(B). Similarly, the two parts
of the semi-annual component of azimuth are plotted in Fig. 4(C)
and Fig. 4(D).

The aim of the remainder of this paper is to explain the observed
variations in terms of the characteristics of the orbit of the Earth.
There are two main variations, the eccentricity of the Earth’s ellip-
tical orbit and the obliquity, or tilt of the axis relative to the ecliptic
or plane of the orbit around the Sun. We will examine each in turn.
We remark that highly accurate values for all the quantities and
expressions that we consider are available in the astronomical liter-
ature. The present note is concerned with elucidating mechanisms
rather than with precision.

3. Variations due to ellipticity of the orbit

To a high degree of approximation, the Earth’s orbit is a Keplerian
ellipse. Perihelion in 2006 was on 4 January and aphelion on 3 July.
The Earth rotates about its axis in a sidereal day and revolves about
the Sun in a year, so the ratio of mean angular velocity of revolution
$ to that of rotation Ω is about 1/365.
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Figure 4. Lissajous components of the analemma. A:
In-phase annual component; B: Quadrature annual com-
ponent; C: In-phase semi-annual component; D: Quad-
rature semi-annual component.

By Kepler’s Second Law, the angular momentum (per unit mass)
h = r2θ̇ is constant [6]. Here, r is the distance between the Earth and
Sun and θ is the ‘true anomaly’, the angle between the radius vector
and the line from the Sun to the perihelion. Let a be the semi-major
axis and e the eccentricity of the orbit. The perihelion and aphelion
distances are respectively rP = (1 − e)a and rA = (1 + e)a and, if
the angular velocities at these points are ωP = θ̇P and ωA = θ̇A, we
have

h = (1 − e)2a2ωP = (1 + e)2a2ωA .

Since the eccentricity is small (e ≈ 0.0167), we can take the mean
angular velocity to be $ = h/a2. Then

ωP = h/[(1 − e)a]2 ≈ (1 + 2e)$

ωA = h/[(1 + e)a]2 ≈ (1 − 2e)$

As the Earth rotates and revolves, the Sun appears to revolve about
it with angular velocity Ω − ω, so the difference between the rates
at aphelion and perihelion is

(Ω − ωA) − (Ω − ωP) = (ωP − ωA) ≈ 4e$

Thus, the fractional change is 4e$/Ω. This determines the length
of a solar day, which may be shorter or longer than the mean day
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by an amount 2e$/Ω ≈ 9.15 × 10−5 s s−1, or 7.9 seconds in a day.
This is small, but it accumulates over a period of weeks or months.

The variation in the length of a solar day can be approximated
by a sinusoidal wave with amplitude 2e$/Ω, varying on an annual
cycle:

∆ECC =
2e$

Ω
cosM1 (1)

where M1 = 2π(D −DP)/365 with D the day number and DP the
date of perihelion. Eccentricity causes a lengthening of the solar
day at perihelion (near mid-winter) and a shortening at aphelion
(near mid-summer), and ∆ECC is the amount that must be added
to correct solar time for the effect of the Earth’s elliptic orbit.

4. Variations due to obliquity of the orbit

Let us now disregard the eccentricity temporarily, and assume that
the Earth’s orbit is circular. If the axis of rotation were perpendicu-
lar to the ecliptic, or plane of the Earth’s orbit around the Sun, each
day would be the same length. The Earth would advance by about
1◦ during the course of a sidereal day, so a solar day would be longer
by a factor of about 1

360 , or about 4 minutes. However, the equatorial
plane of Earth is tilted to the ecliptic by an angle ε ≈ 23.44◦, called
the obliquity. So, the ecliptic plane cuts the earth in a great circle
that makes an angle ε with the equator at the two points where they
intersect. These points correspond to the equinoxes.

Let us also disregard the Earth’s rotation momentarily; effectively,
we are taking a stroboscopic view with a frequency Ω. Then, during
the course of a year, the Sun will trace out the great circle at a
constant rate. The equation for the great circle is an elementary
geometrical exercise; the latitude (φ) and longitude (λ) are related
by

tanφ = tan ε sin(λ− λ0) (2)

where λ0 corresponds to the vernal equinox. For simplicity, we set
λ0 = 0. Eqn. (2) corresponds to one of Napier’s rules for right
spherical triangles; see [8, p. 888]. Differentiating (2), we get

dφ

dλ
=

tan ε cosλ

1 + tan2 ε sin2 λ
.

The progress of the Sun along the trajectory (2) is constant, but
the change in longitude, which determines the time, is not. If we
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consider a small step dσ along the great circle, the spherical metric
gives dσ2 = cos2 φ dλ2 + dφ2, so the change in λ with respect to σ is

dλ

dσ
= (1 + tan2 ε sin2 λ) cos ε .

The extreme values follow immediately. For small or moderate val-
ues of the obliquity ε, they are:

Equinoxes (λ = 0, π) :
dλ

dσ
= cos ε ≈ 1 − 1

2ε
2

Solstices (λ =
π

2
,
3π

2
) :

dλ

dσ
= sec ε ≈ 1 + 1

2ε
2

Thus, the solar day may be shorter or longer than the mean day
by an amount 1

2ε
2$/Ω ≈ 2.29 × 10−4 s s−1, or 19.8 seconds in a day.

We note that [3] gives a more accurate expression where the factor
1
2ε

2 is replaced by 2 tan2 ε
2 . However, our concern here is less with

precision and more with simplicity.
The variation in the length of a solar day can be approximated by

a sinusoidal wave with amplitude 1
2ε

2$/Ω, varying on a semi-annual
cycle:

∆OBL =
ε2$

2Ω
cos 2M2 (3)

where M2 = 2π(D−DW)/365 with D the day number and DW the
date of the winter solstice (day 355 in 2006). Obliquity causes a
lengthening of the solar day at the equinoxes and a shortening at
the solstices, and ∆OBL is the amount that must be added to correct
solar time for its effect.

5. The Equation of Time

We now combine the effects of eccentricity (1) and obliquity (3) to
get the total difference between solar and mean time, ∆ = ∆ECC +
∆OBL. To calculate the accumulated difference, this must be inte-
grated, to give

E =
2e$

Ω
sinM1 +

ε2$

4Ω
sin 2M2

= 7.9 sin

(
2π(D − 3)

365

)
+ 9.9 sin 2

(
2π(D − 355)

365

)
. (4)
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Figure 5. Equation of Time (in minutes) as a function
of the day number, computed using (4). The compo-
nents due to eccentricity (dashed) and obliquity (dotted)
are shown. This is the correction that must be added to
solar time to get mean time.

This gives the difference between the mean and solar time in min-
utes. It varies by about 15 minutes in both directions. The approx-
imate curve, together with the two components, due to eccentricity
and obliquity, are shown in Fig. 5. There is good qualitative agree-
ment with the curve in Fig. 1.

To construct an approximation to the analemma, we convert time
in minutes given by (4) to degrees longitude by dividing by 4 and
adding 180◦. The approximate and observed curves are plotted in
Fig. 6. We see that the main features of the observed pattern are
replicated, but there are significant differences. These discrepancies
can be reduced by including higher terms. A very precise, but more
complicated, description of the Equation of Time is given in [2].

6. Discussion

The difference between mean time and solar time is expressed as
the Equation of Time. Fourier analysis of the observations at the
Royal Observatory in Greenwich shows that the variations in the
Sun’s noontime position are dominated by the first few Fourier coef-
ficients. This allows us to approximate the Equation of Time by two
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Figure 6. Solid line: analemma based on the approx-
imate Equation of Time (4). Dotted line: analemma
based on observations, as in Fig. 2.

sinusoidal components, with periods of a year and a half year. The
curve that results from plotting the resulting approximation against
solar altitude is qualitatively similar to the observed analemma.

The analemma has many applications. It can be used to estimate
the time and azimuth of sunrise and sunset, and to explain the
occurrence of latest sunset some days before the winter solstice and
the earliest sunrise some days later. Many geosynchronous, but
not geostationary, satellites move on analemmatic curves, and the
control systems for the paraboloidal dishes used to track them must
compute these curves to ensure optimum communications. Finally,
the Equation of Time is important in many scientific and engineering
contexts. It is used for the design of solar trackers and heliostats,
vital for harnessing solar energy.

If more precise approximations of the Equation of Time are re-
quired, they are available in [2]. Practical information on the con-
struction of analemmatic sundials is presented in [1] and [7], and a
program to compute the design for a given location is given in [4].
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