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QUADRATIC MONOMIAL ALGEBRAS AND THEIR
COHOMOLOGY

DAVID O’KEEFFE

Abstract. The aim of this note is to discuss and highlight the
use of projective modules and projective resolutions in homological
algebra. Using a minimal projective resolution by Sköldberg in
[8] , we describe the calculation of the cohomology groups for the
class of quadratic monomial algebras. The cohomology groups of
an associative algebra are invariants of an algebra and provide a
fundamental description of the structure of the algebra.

1. Introduction

In a forthcoming paper with Emil Sköldberg, the cohomology
groups and cohomology ring structure are explicitly described for a
particular class of associative algebras: the class of quadratic mono-
mial algebras. Until recently, little was known about the multiplica-
tive structure of the Hochschild cohomology ring for most classes
of associative algebras. During the last decade or so, more light
has been shed on this topic, with several papers published regarding
the structure of the Hochschild cohomology rings for various classes
of associative algebras, see for instance [1] and [2] . In [2], Claude
Cibils computes the cohomology groups and ring structure for the
class of radical square zero algebras. The aforementioned algebras
are a subclass of algebras considered in this paper.

2. QUIVERS AND QUADRATIC MONOMIAL
ALGEBRAS

In this section we begin by recapitulating the following definition
of a quiver and from there we will present the main objects of interest
in this article, namely the class of quadratic monomial algebras.
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Definition 1. A quiver ∆ = (∆0, ∆1), is an oriented graph, where
∆0 denotes the set of vertices, and ∆1 the set of arrows between the
vertices. The origin and terminus of an arrow a ∈ ∆1, is denoted
by o(a) and t(a) respectively.

We shall deal with finite connected quivers, that is the sets ∆0

and ∆1 are finite and the undirected graph will be connected. A
path α in ∆, is an ordered sequence of arrows, α = a1 · · · an,
ai ∈ ∆1 with t(ai) = o(ai+1) for i = 1, · · · , n − 1. We shall write
o(α) = o(a1) and t(α) = t(an) for the initial and terminal vertices
of α respectively. An oriented cycle in ∆, is a path α, where
o(α) = t(α). The length or degree of α, denoted |α| is equal to
the number of arrows in α and the set of all paths of length n, is
denoted ∆n. A vertex e ∈ ∆0 is considered to be a path of length
zero with o(e) = t(e) = e. We shall allow ∆ to have oriented cycles
and multiple arrows between vertices.

Now we would like to make a semigroup out of the paths, and we
will do this by first defining the set ∆̂ by

∆̂ = {⊥} ∪
∞⋃
i=0

∆i

The multiplication in ∆̂ is, for γ ∈ ∆i, δ ∈ ∆j, defined by γ · δ = γδ,

if t(γ) = o(δ) and γ · δ =⊥ otherwise. For all α ∈ ∆̂ we have
α · ⊥=⊥ ·α =⊥ . For k a commutative ring, we may now form
the semigroup-algebra k∆̂, and then we may view k∆, the path or
quiver algebra on ∆, as the quotient algebra k∆̂/(⊥). The benefit

of this definition is that k∆ becomes a ∆̂−graded algebra. There
is also an N−grading on k∆, where degN α = n, if α ∈ ∆n. The
paths of length 0, ∆0 generate a subalgebra k∆0 of k∆; hence k∆ is
a k∆0−bimodule. The identity element in k∆ is given by the sum
of vertices. The class of algebras studied here are quotients of path
algebras.

Definition 2. A quadratic monomial algebra A is a quotient of a
quiver algebra k∆, A = k∆/I, where I = (α1, . . . , αn) is a two
sided homogeneous ideal generated by a set of paths of length two
in ∆.

Since I is a two sided homogeneous ideal with respect to the
standard grading, A is a graded algebra and we may describe a
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canonical k−basis for A and denote it B(A). Such a basis consists
of all paths that do not contain a path from I. A typical basis
element in A may be written as a1 . . . an, where aiai+1 /∈ I for
1 ≤ i ≤ n− 1.

Example 1. Let k be any field and ∆ the following quiver:

b

##

c

;;

d

cc
a

55v1
• v2•

We may construct a quadratic monomial algebra which we shall
denote by A by choosing an ideal I, generated by paths of length
two and then forming the quotient A = k∆/I. For instance if we
let I = (aa, dd) then the following is an example of multiplication
in A:

v
1
· v

1
= v

1
, v

1
· v

2
= 0, v

1
· b = b, a · b = ab, b · a = 0, etc.

The products

a · a = aa, d · d = dd

are equal to 0 in A, since both of these paths are contained in I.

3. PROJECTIVE MODULES AND PROJECTIVE
RESOLUTIONS

A central theme in the world of homological algebra is the ex-
ploration of the structure of rings and modules. Projective modules
are a basic tool which are used extensively in this examination, since
any module may be viewed as an epimorphic image of a projective
module - just choose a set of generators {gi} for M and map a pro-
jective module on a corresponding set of generators {ei} to M by
sending ei to gi. In this way it is easy to compare any module to
a projective module: if d : P −→ M is an epimorphism, then we
may say that P differs from M by the kernel of d. For more on this,
see for example [3]. We will explore this idea in the present section.
We will assume that we are working with left modules unless stated
otherwise. There are several equivalent definitions of a projective
module but the one that will be of most interest to us at present
will be the following:
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Definition 3. Let A be a ring. An A module P is projective if it is
isomorphic to a direct summand of a free A module.

We will now introduce the following notation with the quadratic
monomial algebra A of example 1 in mind.

Let

Pv1 := 〈 All paths in A starting at v1, including the zero path v1 〉
Pv2 := 〈 All paths in A starting at v2, including the zero path v2 〉
Pv1 · J := 〈 All paths in A starting at v1 of length ≥ 1 〉.

Since a path may only begin at either vertex v1 or v2, we have

Pv1 + Pv2 = A and Pv1
⋂
Pv2 = 0

and so

A = Pv1
⊕

Pv2

Pv1 and Pv2 are direct summands of the left module A (which is
free over itself) and so we may regard them as (indecomposable)
projective left A modules. In the following we write im d to denote
the image of the homomorphism d and ker d to denote the kernel of
d.

Definition 4. Let M be an A-module. The sequence P∗ of A-
modules and A-module homomorphisms

P∗ : · · · d3−→ P2
d2−→ P1

d1−→ P0
ε−→M −→ 0

is called a complex if im di+1 ⊆ ker di for each i. P∗ is said to be exact
if the im di+1 = ker di for each i. P∗ is called a projective resolution
of M over A, if it is exact for all i ≥ 0 and each Pi is a projective
A-module.

For now, P∗ will denote a projective resolution of M and when we
write deleted projective resolution, we shall mean P∗ with the M
term removed. We will be mainly interested in the case when M =
A. Projective resolutions are utilised in homological algebra as a
way of approximating a module by using “well behaved” projective
modules. It is well known that any A-module admits a projective
resolution, see for instance [3] and we illustrate this below for the
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A−module Pv1/Pv1 · J taking the quadratic monomial algebra A in
example 1 on page 41, as a demonstration.

We begin by considering the epimorphism ε in the following exact
sequence:

Pv1
ε−→ Pv1/Pv1 · J −→ 0

Pv1 differs from Pv1/Pv1 · J and this difference is recorded in ker ε.

We may now form the exact sequence:

ker ε ↪→ Pv1
ε−→ Pv1/Pv1 · J −→ 0 (1)

but in the above, ker ε = Pv1 · J is not projective as an A−module,
since it is not a direct summand of the free module A. We may
correct this blemish however by finding a projective resolution of
Pv1 · J . Consider the following sequence

ker d1 ↪→ P
d1−→ Pv1 · J −→ 0

We would now like to construct a projective module P and epimor-
phism d1, making the aforementioned sequence exact. Note any
path in Pv1 · J can be expressed using the generating set
{ v1aα, v1bβ, v1cγ }, where α ∈ Pv1, β ∈ Pv2, and γ ∈ Pv2 (see
quiver on page 41). If we replace P with the direct sum of projective
modules Pv1⊕Pv2⊕Pv2 (which again results in a projective module),
then a typical element in Pv1 ⊕ Pv2 ⊕ Pv2 is of the form

v1α + v2β + v2γ

and we may define a surjective homomorphism d1 on a generating
element as follows:

d1(v1α + v2β + v2γ) = d1(v1α) + d1(v2β) + d1(v2γ)

= v1aα + v1bβ + v1cγ

It is easy to see that d1 is surjective and im d1 = ker ε = Pv1 · J
and so replacing ker ε, with Pv1 ⊕ Pv2 ⊕ Pv2 in (1), the projective
resolution of Pv1/Pv1 · J now becomes:

ker d1 ↪→ Pv1 ⊕ Pv2 ⊕ Pv2
d1−→ Pv1

ε−→ Pv1/Pv1 · J −→ 0

Again as before, the ker d1 is not projective as an A−module. We
may again tackle this situation using the same approach as previ-
ously: forming a projective resolution of ker d1. The kernel of d1
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is generated by v1 · a. We need to define a homomorphism and
projective module that maps onto ker d1:

Pv1
d2−→ ker d1 −→ 0 with v1

d2−→ v1a

and now the projective resolution of Pv1/Pv1 · J takes the form:

· · · d3−→ Pv1
d2−→ Pv1 ⊕ Pv2 ⊕ Pv2

d1−→ Pv1
ε−→ Pv1/Pv1 · J −→ 0

If we delete Pv1/Pv1 · J from the above exact complex, we get a
projective resolution Pv1/Pv1 ·J . We may view this deleted resolution
as an approximation of the simple module Pv1/Pv1 · J .

4. Hochschild cohomology

The appropriate cohomology theory for the class of associative
k−algebras was first described by Gerhard Hochschild in [6]. Before
continuing any further, we shall introduce the following notation:
Given an arbitrary associative k−algebra A with unit, we shall write
Ae = A⊗kAop to denote the enveloping algebra of A. Here we write
Aop to denote the opposite algebra of A; as vector spaces A and Aop

are isomorphic but Aop is endowed with the opposite multiplication
of A:

aopbop = (ba)op, where a, b ∈ A, aop, bop ∈ Aop

By HomAe(M,N) we shall mean the set of all Ae−homomorphisms
from M to N . This set may be endowed with the structure of an
abelian group, where for f, g ∈ HomAe(M,N) it may be shown that
f + g defined by (f+g)(m) = f(m)+g(m) is an Ae−homomorphism
for all m ∈M.

ExtAe(A,M) may be defined as the Hochschild cohomology group
H∗(A,M) of A with coefficients in the A−bimodule M . When
M = A, it may be shown that ExtAe(A,A) also possesses a rich
multiplicative structure:

ExtmAe(A,A)⊗k ExtnAe(A,A) −→ Extm+n
Ae (A,A)

turning ExtAe(A,A) into a graded commutative algebra. An algebra
A is graded commutative (or supercommutative) with homogeneous
elements a and b of degree m and n in A respectively if

ab = (−1)mn ba.
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To compute the aforementioned cohomology groups of A, we begin
by first applying the left exact functor HomAe( · ,M ) to the deleted
standard projective resolution of A, where the nth projective module
has the form Pn = A ⊗k A⊗n ⊗k A and so the resolution may be
written:

· · · −→ A⊗ A⊗n ⊗ A dn−→ · · · d2−→ A⊗ A⊗ A d1−→ A⊗ A −→ 0

The differential dn is given by

dn(a0 ⊗ a1 · · · an ⊗ an+1) = a0a1 ⊗ a2 · · · an ⊗ an+1

+
n−1∑
i=1

(−1)ia0 ⊗ a1 · · · (aiai+1) · · · an ⊗ an+1

+ (−1)n a0 ⊗ a1 · · · an−1 ⊗ anan+1

Now using the isomorphism HomAe(A⊗A⊗n⊗A,M) ∼= Homk(A
⊗n,M),

we get the so called Hochschild complex:

0 −→ A
δ0−→ Homk(A,M)

δ1−→ · · · δ−→ Homk(A
⊗n,M)

δ−→ · · ·

The nth Hochschild cohomology module of A with coefficients in M
is given by

Hn(A,M) ∼= ker δn/im δn−1 ∼= ExtAe(A,M).

In particular, we shall be interested in the case when M = A and
we shall write HH∗(A) instead of H∗(A,A). In this instance the
differential δ has the following form:

δ0 : A −→ Homk(A,A) with (δ0b)(a) = ab− ba for a, b ∈ A.

and for n ≥ 1, δn : Homk(A
⊗n, A) −→ Homk(A

⊗(n+1), A);

(δnf)(a1 ⊗ · · · an+1) = a1f(a2 ⊗ · · · ⊗ an+1)

+
∑

1≤j≤n

(−1)jf(a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an)an+1
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4.1. Interpreting the 0th and 1st cohomology groups. In this
subsection we highlight some aspects of the cohomology groups in
dimensions ≤ 2. In particular the Hochschild cohomology groups
may be interpreted as providing an insight into the structure of an
algebra. We begin by consideringHH0(A). This group is isomorphic
to the kernel of δ0 and hence consists of all those elements in A that
commute with all elements in A, that is HH0(A) is the centre of A:

HH0(A) ∼= {b ∈ A| ab = ba for all a ∈ A}.

Definition 5. A derivation of A to A is an k−module homomor-
phism f : A −→ A that satisfies Leibnitz’s rule:

f(ab) = af(b) + f(a)b for all a, b ∈ A
A derivation f of A to A is an inner derivation if there exists b ∈ A
such that:

f(a) = ab− ba for all a ∈ A

Now returning to the coboundary δ and setting

δ1(f)(a⊗ b) = af(b)− f(ab) + f(a)b

equal to zero, we observe that a 1-cocycle (an element in the kernel
of δ1) is also a linear map f : A −→ A which satisfies Leibnitz’s
condition. Similarly for each b ∈ A,

δ0(b)(a) = ab− ba for all a ∈ A
and so there is a one-to-one correspondence between the cobound-
aries lying in im δ0 and the inner derivations of A. The k−module
HH1(A) may be interpreted as the space of all bimodule derivations
of A modulo the inner derivations of A.

There are also connections to algebraic geometry. In [4], Murray
Gerstenhaber introduced a deformation theory for rings and algebras
based on formal power series. A formal deformation of an associative
algebra (A, µ) is an associative algebra A[[t]] with a multiplication
µt defined by

µt(p, q) = µ(p, q) + tµ1(p, q) + t2µ2(p, q) + · · ·

where p, q ∈ A. The algebra is said to be rigid if every formal
deformation is isomorphic to a trivial deformation. One may show
that separable semi-simple algebras are rigid. In the same paper
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Gerstenhaber observed that algebras A which satisfy HH2(A) = 0
are rigid.

4.2. A Projective Resolution of a Quadratic Monomial Al-
gebra. In general a module may have several projective resolutions.
When one wishes to compute (co)homology, a minimal projective
resolution is best. In the following we shall state a minimal projec-
tive Ae− resolution for a quadratic monomial algebra. This minimal
projective resolution was constructed by Emil Sköldberg in[8]. In
order to write down this resolution the following definition will be
required:

Definition 6. Let A = k∆/I be an algebra such that I is an ideal
generated by quadratic monomials. Define the ideal J to be gen-
erated by all quadratic monomials that do not lie in I; then the
Koszul dual of A, denoted by A!, is defined by A! = k∆/J .

Example 2. For the given quadratic monomial algebra A in exam-
ple 1 on page 41, we have A! = k∆/J , with J = (ab, ac, cd, bd). A!

has the same generators of A, with the following as an example of
multiplication in A! :

v
1
· v

1
= v

1
, v

1
· v

2
= 0, v

1
· b = b, a · a = aa, d · d = dd, etc.

The products

a · b = ab, d · d = dd a · c = ac, c · d = cd

are equal to zero in A!, since all products are contained in J .

The projective modules in the minimal projective gradedAe−resolution
of A have the following description. From here on, when we write
P∗ we shall be referring to the following minimal Ae−resolution.

Lemma 1. If A = k∆/I is a quadratic monomial algebra, then a
minimal projective resolution of A given as a left Ae-module is

Pi = A⊗k∆0
A!
i ⊗k∆0

A

and the Ae−linear differential is defined on the basis elements by

di(1⊗ a1 · · · ai ⊗ 1) = a1 ⊗ a2 · · · ai ⊗ 1 + (−1)i 1⊗ a1 · · · ai−1 ⊗ ai

Proof. See [8].
�
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Example 3. Consider A = k∆/I, where

∆ = •
a

''
v

•
w

b

gg

I = (ab, ba) and J = (∅). The projective modules Pi in P∗, have
the form, where we write ⊗ = ⊗k∆0

:

A⊗ aba⊗ A A⊗ ab⊗ A A⊗ a⊗ A A⊗ v ⊗ A
· · · d4−→ ⊕ d3−→ ⊕ d2−→ ⊕ d1−→ ⊕ ε−→ A→ 0

A⊗ bab⊗ A A⊗ ba⊗ A A⊗ b⊗ A A⊗ w ⊗ A

Notice that the module P
0

records the vertices of the quiver, P
1

records the arrows that generate A, P
2

records the relations of A,
P

3
records the relations (ab)a = a(ba) among relations of A, etc.

5. Cohomology of a Quadratic Monomial Algebra

In a forthcoming paper with Emil Sköldberg, the cohomology
groups for a quadratic monomial algebra are explicitly described. In
this section we illustrate this theory by calculating the Hochschild
cohomology groups of the given quadratic monomial algebra A in
example 3 on page 48. We begin with the following complex:

0 −→ HomAe(P
0
, A)

δ0−→ · · · δ
n−1

−→ HomAe(Pn, A)
δn−→ · · · (2)

The coboundary δ is induced by the differential d on P∗:

Pi+1
di+1 //

δi+1 ( f ) !!

Pi

f����
��

��
�

A

δi+1f(1⊗ a1 · · · ai+1 ⊗ 1) = f(di+1(1⊗ a1 · · · ai+1 ⊗ 1))

= f(a1 ⊗ a2 · · · ai+1 ⊗ 1)

+ (−1)i+1 f(1⊗ a1 · · · ai ⊗ ai+1)

where f ∈ HomAe (Pi, A). As we have seen earlier, the nth Hochschild
cohomology module of A with coefficents in A, may be found by
computing

HHn(A) ∼= ker δn/im δn−1 ∼= ExtnAe(A,A)
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We will use the following lemma to simplify our calculation of the
cohomology groups.

Lemma 2. The map φ : HomAe(Pi, A) −→ Homk∆e
0
(A!

i, A )
defined by

φ(f)(a1 · · · ai) := f(1⊗k∆0
a1 · · · ai ⊗k∆0

1),

f ∈ HomAe(Pi, A) is a chain map and vector space isomorphism for
each i.

Proof. This result is proved in the authors thesis.
�

We have established through lemma 2 that calculating the cohomol-
ogy of the cochain complex at (2), will yield the same results as
computing the cohomology of the following cochain complex:

0 −→ Homk∆e
0
(A!

0, A)
δ̄0−→ · · · δ̄

n−1

−→ Homk∆e
0
(A!

n, A)
δ̄n−→ · · · (3)

We shall now take a moment to describe the coboundary homomor-
phism δ̄ and the k−module Homk∆e

0
(A!, A) in a little more detail.

An element f ∈ Homk∆e
0
(A!, A) is a k∆e

0− linear homomorphism
from A! to A. For α ∈ B(A!) and β ∈ B(A), we shall use the nota-

tion (α, β) for the morphism α
f7−→ β, and γ 7→ 0 for all other basis

elements γ ∈ B(A!). We shall write o(α) = v and t(α) = w. Since
f ∈ Homk∆e

0
(A!

i, A) is linear over the vertices, we have

f(α) = f(v · α) = v · f(α) = v · β
and

f(α) = f(α · w) = f(α) · w = β · w

and so for an f ∈ Homk∆e
0
(A!, A), we shall write (α, β) such that

o(α) = o(β) and t(α) = t(β). It is shown in [7] that the coboundary
operator δ̄ on these basis elements is given by

δ̄(α, β) =
∑
a∈∆1

(aα, aβ) + (−1)|α|+1
∑
b∈∆1

(αb, βb)

From here on we shall write δ in of place of δ̄. We are now in a posi-
tion to calculate the cohomology groups of the quadratic monomial
algebra given in example 2, page 48.
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Example 4. We begin with the following deleted projective resolu-
tion of A:

A⊗ ab⊗ A A⊗ a⊗ A A⊗ v ⊗ A
· · · d3−→ ⊕ d2−→ ⊕ d1−→ ⊕ −→ 0

A⊗ ba⊗ A A⊗ b⊗ A A⊗ w ⊗ A

Applying HomAe(·, A ) and then using the isomorphism HomAe(Pi, A) ∼=
Homk∆e

0
(A!

i, A),we get the resulting cochain complex :

Homk∆e
0
(v, A ) Homk∆e

0
(a, A ) Homk∆e

0
( ab, A )

0 −→ ⊕ δ1−→ ⊕ δ2−→ ⊕ d3−→ · · ·
Homk∆e

0
(w, A ) Homk∆e

0
( b, A ) Homk∆e

0
( ba, A )

We would now like to calculate the cohomology in each degree of this
complex but before doing this we note a k-basis for Homk∆e

0
(A!, A) is

given by all (α, β) with o(α) = o(β) and t(α) = t(β). Hence we may
simplify the notation in the aforementioned complex by rewriting it
as:

k · (v, v) k · (a, a) k · (ab, v)

0 −→ ⊕ δ0−→ ⊕ δ1−→ ⊕ δ2−→ · · ·
k · (w, w) k · (b, b) k · (ba, w)

We may now calculate the cohomology groups in each degree. We
begin by computing HH0(A) ∼= ker δ0:

δ0(λ(v, v) + µ(w,w)) = λ((b, b)− (a, a))

+µ((a, a)− (b, b))

which is equal to zero ⇔ λ = µ for λ, µ ∈ k.
Hence the kernel of δ0 is one dimensional and is generated by
(u, u) + (v, v) and so HH0(A) ∼= k.

Next we compute HH1(A). Since dim( ker δ0) ∼= k and δ0 is a map
from a two dimensional vector space, we have dim( im δ0) ∼= k. Now

δ1(λ(a, a)) = λ(ba, ba) + λ(ab, ab) = 0

since ba ∈ J or ba ∈ I and ab ∈ J or ab ∈ I. For the same reason
we also have

δ1((µ(b, b))) = µ(ab, ab) + µ(ba, ba) = 0

Hence ker δ1 ∼= k ⊕ k and so we have HH1(A) ∼= k.
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Finally we compute HH2(A). Since the kernel of δ1 is two dimen-
sional, this means the dimension of the image im δ1 is trivial. Com-
puting as before, it is easy to show that the kernel of δ2 is generated
by (ab, v) + (ba, w) and so dim(ker δ2) ∼= k. Hence HH2(A) ∼= k.

�

6. Interpreting the 0th & 1st cohomology groups of A

As we have already seen, the zeroth cohomology group HH0(A)
coincides with the centre of A. We shall illustrate this with an
example.

Example 5. Let A = k∆/I be the quadratic monomial algebra
obtained from the quiver

• a //
u

•
v

where in this instance I = J = {∅}. Note the centre of an algebra
A consists of all those x of A such that xa = ax for all a in A.

We shall first compute the centre of the given quadratic monomial
algebra:

(λu + ϕv + ψa ) · u = u · (λu + ϕv + ψa )

⇔ λu = λu+ ψa ⇒ ψ = 0

(λu + ϕv ) · a = a · (λu + ϕv )

⇔ λa = ϕa ⇒ λ = ϕ

and so the centre of A is a one dimensional vector space spanned
by 〈u + v 〉. Computing HH0(A) from the following complex:

0 −→ k · (u, u)⊕ k · (v, v) −→ k · (a, a) −→ 0

it is easy to show that it is a one dimensional vector space gener-
ated by (u, u) + (v, v). Hence the centre of A and HH0(A) are
isomorphic as vector spaces.

�

Example 6. Let A = k∆/I be obtained from the following quiver

∆ := •
a //

u
b

//
•
v

We write f ∈ Homk(A, A) as



52 D. O’KEEFFE

f(u) = λ1u + λ2v + λ3a+ λ4b
f(v) = τ1u + τ2v + τ3a + τ4b
f(a) = ϕ1u + ϕ2v + ϕ3a+ ϕ4b
f(b) = ψ1u + ψ2v + ψ3a+ ψ4b

for all λi, τi, ϕi, ψi ∈ k. The derivations of A are defined as those
k−module homomorphisms f : A −→ A that satisfy

f(ab) = af(b) + f(a) b , for all a, b ∈ A.

We shall denote this group of derivations by Der(A,A) and we begin
now by computing all the derivations of the given algebra A:

λ1u+ λ2v + λ3a+ λ4b = f(u) = f(u · u) = u · f(u) + f(u) · u
= 2λ1u+ λ3a+ λ4b

This implies λ1u− λ2v = 0 or λ1 = λ2 = 0.

0 = f(u · v) = u · f(v) + f(u) · v = τ1u+ τ3a+ τ4b+ λ2v + λ3a+ λ4b

This means τ3 = −λ3, τ4 = −λ4, τ1 = 0, λ2 = 0. Continuing in the
same way and computing the remaining 14 derivations:

f(u · a), f(u · b), f(v · u), f(v · v), f(v · a) f(v · b), f(a · a),

f(a · v), f(a · b), f(a · u), f(b · u), f(b · a), f(b · b), f(b · v)

we also have λ1 = τ2 = ψ1 = ψ2 = ϕ1 = ϕ2 = 0 Substituting
τ3 = −λ3, τ4 = −λ4, the k-module of all derivations from A to A
is spanned by:

f(u) = λ3a+ λ4b,
f(v) = −λ3a− λ4b = −f(u),
f(a) = ϕ3a+ ϕ4b
f(b) = ψ3a+ ψ4b

for λ3, λ4, ϕ3, ϕ4, ψ3, ψ4 ∈ k. Hence Der(A,A) is a 6-dimensional
vector space, with basis , given by the set of all derivations
fi : A −→ A, 1 ≤ i ≤ 6;

f1(x) =

 a, if x = u,
−a, if x = v,

0 otherwise.
f2(x) =

 b, if x = u,
−b, if x = v,

0 otherwise.
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f3(x) =

{
a, if x = a,
0 otherwise.

f4 (x) =

{
b, if x = a,
0 otherwise.

f5(x) =

{
a, if x = b,
0 otherwise.

f6(x) =

{
b, if x = b,
0 otherwise.

where x a basis element in A. The inner derivations of A are com-
puted next.

u −→ u · u− u · u = 0 u −→ u · v − v · u = 0
v −→ v · u− u · v = 0 v −→ v · v − v · v = 0
a −→ a · u− u · a = −a a −→ a · v − v · a = a
b −→ b · u− u · b = −b b −→ b · v − v · b = b
= −f3 − f6 = f3 + f6 = −(−f3 − f6 )

u −→ u · a− a · u = a u −→ u · b− b · u = b
v −→ v · a− a · v = −a v −→ v · b− b · v = −b
a −→ a · a− a · a = 0 a −→ a · b− b · a = 0
b −→ b · a− a · b = 0 b −→ b · b− b · b = 0
= f1 = f2

The inner derivations form a 3-dimensional subspace of Der(A,A),
and so the quotient space of derivations modulo inner derivations is:

k⊕k⊕k⊕k⊕k⊕k
k⊕k⊕k

∼= k ⊕ k ⊕ k

On the other hand, suppose we calculate the Hochschild cohomology
of the complex associated with the given algebra:

0 −→ k(u, u)⊕ k(v, v)
δ0−→ k(a, a)⊕ k(b, b)⊕ k(b, a)⊕ k(a, b)

δ1−→ 0

we then have

HH1(A) ∼= k⊕k⊕k⊕k
k

∼= k ⊕ k ⊕ k

Hence as vector spaces, the space of outer derivations modulo the
space of inner derivations and HH1(A) are isomorphic (as expected
from section 4.1).

�
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