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Some Residually Solvable One-Relator Groups

KATALIN BENCSÁTH, ANDREW DOUGLAS,

AND DELARAM KAHROBAEI

Abstract. This communication records some observations

made in the course of studying one-relator groups from the

point of view of residual solvability. As a contribution to clas-
sification efforts we single out some relator types that render

the corresponding one-relator groups residually solvable.

1. Introduction

It is well known that free groups are residually nilpotent and, conse-
quently, residually solvable. The literature contains a sizable amount
of information about structural, residual, virtual properties of one-
relator groups. The purpose of this communication is to offer a
collection of facts and examples gathered while attempting to char-
acterize the residually solvable one-relator groups in terms (of the
form) of the (single) defining relator. In what follows we prove suf-
ficiency results for certain cases when the relator is a commutator,
and then raise some questions.

The class of one-relator groups shows a varied pattern of behavior
with respect to residual properties. We begin with reviewing some
of the literature that motivated our interest in the topic. G. Baum-
slag in [3] showed that positive one-relator groups, which is to say
that the relator has only positive exponents, are residually solvable.
In the same paper he provided a specific example to demonstrate
that not all one-relator groups are residually solvable. A free-by-
cyclic group is necessarily residually solvable. As well are the free-
by-solvable Baumslag–Solitar groups Bm,n (the groups with presen-
tation 〈a, b; a−1bma = bn〉 for pairs of non-zero integers m,n), by
a result of Peter Kropholler [15] who showed that in these groups
the second derived subgroup is free. The Baumslag–Solitar groups
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B1,n (n 6= 0 integer) are solvable but not polycyclic; and the non-
Hopfian (therefore not residually finite) Baumslag–Solitar groups are
not residually nilpotent.

It is worth mentioning here that a large class of residually solvable
one-relator groups is indicated by [8]: G. Baumslag, Fine, Miller and
Troeger established that many one-relator groups, in particular cycli-
cally pinched one-relator groups, are either free-by-cyclic or virtually
free-by-cyclic. Further, a recent result of M. Sapir and I. Spakulova
in [17] tells that, with probability (measured in terms of the length
of the relator) tending to 1, a one-relator group with at least 3 gener-
ators is residually finite, even virtually a residually (finite p)-group,
and coherent, for all sufficiently large primes p. In his subsequent
work [16] M. Sapir also focuses on residual properties of one-relator
groups with at least 3 generators. Our attention is turned mainly
toward two-generator one-relator groups.

Our two main results concern the situation where G is a one-
relator group whose relator is a commutator. First we recall, in fair
detail, some classes of one-relator groups whose behavior with regard
to residual solvability has been established before. Then we show suf-
ficiency, for residual solvability, of certain conditions imposed on the
(single) defining relator of the one-relator group. Then, we provide
examples illustrating the difficulty in determining residual solvability
of one-relator groups with arbitrary commutator.

Clearly, attempts to find criteria for residual solvability could
be facilitated by linkages to outcomes of recent and older studies
on the (fully) residually freeness of one-relator groups, in particu-
lar. For example, surface groups are easily found residually solvable
since they are known to be fully residually free [6]. Also, in [2]
B. Baumslag shows residual freeness for one-relator groups of the
type 〈a1, · · · , ak; a1

w1 · · · akwk = 1〉, where k > 3, and the wi’s in
the ambient free group on a1, · · · , ak satisfy certain conditions; thus
residual solvability for such one-relator groups is immediate.

2. Preliminaries

For convenience, we start with a list of some of the definitions, facts,
and theorems we will rely on throughout.

Theorem 2.1 (Von Dyck). Suppose G = 〈X;R〉 and D = 〈X;R ∪
S〉, with presentation maps γ and µ respectively. Then xµ 7→ xγ
(x ∈ X) defines a homomorphism of G onto D.
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Theorem 2.2 (Freiheitssatz, [14]). Let G be a one-relator group,
i.e., G = 〈x1, · · · , xq; r = 1〉. Suppose that the relator r is cyclically
reduced, i.e., the first and the last letters in r are not (formal) in-
verses of each other. If each of x1, · · · , xq actually appears in r, then
any proper subset of {x1, · · · , xq} is a free basis for a free subgroup
of G.

W. Magnus’ method of structure analysis [14] for groups with a
single defining relation has the following immediate consequence:

Lemma 2.3. Let G = 〈b, x, · · · , c; r = 1〉 be a one-relator group.
Suppose that b occurs in r with exponent sum zero and that upon re-
expressing r in terms of the conjugates bixb−i = xi, · · · , bicb−i = ci
(i ∈ Z) and renaming r as r0, µ and ν are respectively the minimum
and maximum subscripts of x occurring in r0. If µ < ν and if both
xµ and xν occur only once in r0 then N = gpG(x, · · · , c) is free. If
G is a two-generator group with generators b and x, then N is free
of rank ν − µ+ 1.

Definition 2.4. A group G is residually solvable if for each w ∈ G
(w 6= 1), there exists a solvable group S = S(w) and an epimorphism
φ : G −→ S such that wφ 6= 1.

Theorem 2.5 (Kahrobaei, [12], [13]). Any generalized free product
of two finitely generated torsion-free nilpotent groups, amalgamating
a cyclic subgroup, is an extension of a residually solvable group by a
solvable group. It is therefore residually solvable.

Theorem 2.6 (Kahrobaei, [12], [13]). Any generalized free prod-
uct of an arbitrary number of finitely generated nilpotent groups of
bounded class, amalgamating a subgroup central in each of the fac-
tors, is an extension of a free group by a nilpotent group. It is there-
fore residually solvable.

Theorem 2.7 (Kahrobaei, [12], [13]). The generalized free prod-
uct of a finitely generated torsion-free abelian group and a nilpo-
tent group is (residually solvable)-by-abelian-by-(finite abelian), con-
sequently residually solvable.

Note that the groups in all three of these theorems above satisfy
the conditions of K. Gruenberg’s portent observation [10] that we
record here as

Lemma 2.8. Suppose P is any group, K C P with P/K solvable
and K residually solvable. Then P is residually solvable.
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3. The Single Relator is a Commutator

We first recall a result from [4] for a particular class of non-positive
one-relator groups. Let G be a group that can be presented in the
form,

G = 〈t, a, ..., c;uw−1 = 1〉, (1)
where u and w are positive words in the given generators and each
generator occurs with exponent sum zero in uw−1. Then G is resid-
ually solvable. In fact, G is free-by-cyclic.

Now consider the group

H = 〈t, a, ..., c; [u,w] = 1〉. (2)

If u and w are positive, H can be recognized as one of the groups
in the preceding class (1). Hence H is free-by-cyclic and therefore
residually solvable. However, known examples show that residual
solvability for H is not guaranteed once the requirement that both
u or w be positive is relaxed:

Example 3.1. [4] If G = 〈a, b, ..., c; [u, v] = 1〉, where

u = a, v = [a, b][w,wb], and w = [a, b]−1[a, b]a,

then G is not residually solvable.

Proof. It follows from Magnus’ solution of the word problem that
w 6= 1 in G [14]. Since [u, v] = 1, we find that

[a, b]a[w,wb]a = [a, b][w,wb],

so that
w = [a, b]−1[a, b]a = [w,wb]([w,wb]a)−1.

Thus w lies in every term of the derived series of G. �

In contrast, the next example is a residually solvable one-relator
group.

Example 3.2. The group G = 〈a, b; [a, [a, b]]〉 is free-by-cyclic.

Proof. We expand and re-express the relator,

r = [a, [a, b]] = a−1[a, b]−1a[a, b] = a−1b−1a−1bab−1ab. (3)

Observe that in
r0 = b−1

1 b2b
−1
1 b0

µ = 2, ν = 0, b0 and b2 both occur only once, so we can invoke
Lemma 2.3. Therefore G, as a cyclic extension of the free group
N = gpG(b), is residually solvable (cf. 2.8). �
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4. Connection between Generalized Free Products and
One-Relator Groups

Over the years since W. Magnus developed his treatment of one-
relator groups the increased interest in them yielded many new re-
sults. Karrass and Solitar in 1971 showed that a subgroup of a
one-relator group is either solvable or contains a free subgroup of
rank two. G. Baumslag and Shalen showed that every one-relator
group with at least four generators can be decomposed into a gener-
alized free product of two groups where the amalgamated subgroup is
proper in one factor and of infinite index in the other. Fine, Howie
and Rosenberger [7], and Culler and Morgan [9] showed that any
one-relator group with torsion and at least three generators can be
decomposed, in a non-trivial way, as an amalgamated free product.
These results made it seem reasonable to expect that a closer look
at the residual solvability of generalized free products of two groups
could provide further tools for detection of residual solvability of
one-relator groups. The following result confirms that assumption.

Theorem 4.1. The group G = 〈a, b; [a,w]〉, where w = [a, b]n (n ∈
N), is residually solvable.

Proof. Put N = gpG(b), the normal closure of b in G. Using the
Magnus break-down, we consider:

N0 = 〈b0, b1, b2; (b1b0)n = (b−1
2 b1)n〉. (4)

Now let
x0 = b−1

1 b0, x1 = b−1
2 b1, y = b1.

Tietze transformations confirm that

N0 = 〈x0, x1, y; (x0)n = (x1)n〉 = 〈x0, x1; (x0)n = (x1)n〉 ∗ 〈y〉. (5)

Next let K = 〈x0, x1; (x0)n = (x1)n〉. Clearly

K = {〈x0〉 ∗ 〈x1〉; 〈xn0 〉 = 〈xn1 〉} (6)

Since each factor ofK is abelian, by Theorem 2.5K is residually solv-
able. The free factor of N0, 〈y〉 is also residually solvable. Therefore
N0 is residually solvable, and it follows for every i ∈ N that Ni is
residually solvable. If we put Ni,j = gp(Ni, Ni+1, ..., Nj), the pre-
ceding approach gives

Ni,j = 〈xi〉 ∗〈xn
i 〉=〈xn

i+1〉 ∗〈xi+1〉 ∗ · · · ∗ 〈xj〉 ∗〈xn
j 〉=〈xn

j+1〉 ∗〈xj+1〉 ∗ 〈y〉.
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Therefore, by Theorem 2.6, Ni,j is residually solvable. A task
that remains for completing the proof is to show that the ascending
union N = ∪r<0;s>0Nr,s is residually solvable, which will be taken
care of by the following Proposition 4.2. Granted that, the residual
solvability of G follows with the use of Corollary 2.8. �

Proposition 4.2. N = ∪r<0;s>0Nr,s is residually solvable.

Proof. We will retain notation from the proof of Theorem 4.1 and
start with the assumption that Ni,j is residually solvable for all i, j ∈
N (i ≤ j). For the derived series of N = ∪r<0;s>0Nr,s, we have

δiN = δi(∪r<0;s>0Nr,s).

Every element g ∈ δiN is a finite product of commutators of elements
from a (finite) subset of the Nr,s groups. So g ∈ δiNr,s for suitably
small value of r < 0 and suitably large value of s > 0. Thus δiN =
∪r<0;s>0Nr,s. Now, if j, k are a pair of fixed integers the infinite
union above can be rewritten as

δiN = ∪r<0;s>0δiNj+r,k+s,

so that,
δiN ∩Nj,k = (∪r<0;s>0δiNj+r,k+s) ∩Nj,k.

Equivalently,

δiN ∩Nj,k = ∪r<0;s>0(δiNj+r,k+s ∩Nj,k).

Further, each term in the union can be written as

δiNj+r,k+s ∩Nj,k = (δiNj,k+s ∩Nj,k) ∩ (δiNj+r,k ∩Nj,k).

And because s < 0 and r > 0, an argument fashioned after that in
[3, p. 175, Lemma 4.3] yields after suitable conjugations that

δiNj,k+s ∩Nj,k = δiNj,k and

δiNj+r,k ∩Nj,k = δiNj,k.

So each term in the union can be re-expressed as

δiNj+r,k+s ∩Nj,k = δiNj,k.

Notice that this expression is independent of r and s. Thus, we get

δiN ∩Nj,k = δiNj,k ([3, pg. 175, line 16]).

We claim that
δiN ∩Nj,k = δiNj,k
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implies that N is residually solvable. To see this, let g be a non-
trivial element of

N = ∪r<0;s>0Nr,s.

Then there is an integer j = j(g) ∈ N such that g ∈ N−j,j . By
our (inductive) hypothesis at the outset N−j,j is residually solvable.
Consequently, there exists an integer i ∈ N such that g /∈ δiN−j,j .
Then, since δiN ∪ N−j,j = δiN−j,j , we see that g /∈ δiN ∩ N−j,j .
But g ∈ N−j,j . So it must be the case that g /∈ δiN . Thus we have
found a normal subgroup δiN CN with the property that g /∈ δiN
and N/δiN is solvable. Hence N is residually solvable. �

5. The Relator is a Basic Commutator

The tools of the Magnus theory were of good use for proving residual
solvability through gaining information about the structure of the
two-generator one-relator groups where the relator is a particular
type of basic commutator.

We begin with recalling P. Hall’s [11] definition of the basic com-
mutators (in terms of the free group F on {x1, ..., xq}) and their
linear ordering (in terms of their weights).

Definition 5.1. Basic Commutators.
(1) The basic commutators of weight one with their linear or-

der are x1 < x2 < · · · < xq; for their weights we write
wt(xi) = 1.

(2) Having defined the basic commutators of weight less than
n, the basic commutators with weight n are of the form
cn = [ci, cj ] where ci and cj are all the basic commutators
satisfying wt(ci) + wt(cj) = n, ci > cj , and such that if
ci = [cs, ct], then cj ≥ ct.

In the following we will use the notation s1 = x and sk+1 = [sk, y]
for positive integers k.

Theorem 5.2. The group G = 〈x, y; r = [sk, y]〉 is free-by-cyclic,
therefore residually solvable.

Proof. Following the Magnus theory we put xi = y−ixyi for this two
generator case. Using induction on the weight of the commutator
and the relationship

[sk, y] = s−1
k (sk)y (k > 0),
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we see that the minimum index and maximum index in r0 are 0 and
k, respectively, and both of x0 and xk occur only once in r0. By
Lemma 2.3 it follows, similarly to previous cases, that G is free-by-
cyclic. �

6. Open Problems

(1) Is it algorithmically decidable whether a one-relator group is
residually solvable?
(2) Are one-relator groups generically residually solvable? In other
word, are they in most cases residually solvable? I. Kapovich con-
jectured [5] that many one-relator groups are finitely generated free-
by-cyclic.
(3) Do there exist residually finite one-relator groups that are not
residually solvable? (This is recasting a question in [1] in this con-
text.)
(4) As defining relators, certain basic commutators were shown in
this paper to render the respective one-relator groups residually solv-
able. Would all basic commutators have that property? If not, can
the techniques used here be extended to one-relator groups with fur-
ther types of basic commutator for their defining relator?
(5) Find further examples of non-positive one relator groups that
fail to be residually solvable.
(6) Find examples of residually solvable one-relator groups that are
not free-by-cyclic.
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