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A little Help from my Friends

ANTHONY G. O’FARRELL

Abstract. This article is based on a talk given at a one-day
meeting in NUI, Maynooth on the Fourth of April, 2008, held

to honour David Walsh and Richard Watson.

1. Introduction

This is a tribute to my dear colleagues and friends David Walsh
and Richard Watson, who were here before me in Maynooth, and
who laboured with me in the day and the heat. They cheerfully
shouldered with me a teaching load that would, apparently, kill the
academics of today. The teaching load required, in order to ensure
that our students were adequately trained, continued to be a problem
until the presidency of Mı́chael Ledwith, in the early 1990’s. It was
not easy to pursue research while giving 275 lectures a year, but they
gave it their best. At distinct times, both helped me in my inves-
tigations. David was sound on complex analysis and hard analysis,
so we joined forces to tackle some problems that required technical
estimates for integral kernels that solve the ∂̄-problem. Richard had
a sound background in algebra, and he worked with me on problems
that could be addressed using algebras of smooth functions. Richard
became my Ph.D. student, after a while, and then, after graduating,
continued to work with me for a few years. My period of active col-
laboration with David was in the early eighties, and with Richard the
nineties. Recently, both have taken some interest in my reversibility
project.

Most of the sources referred to in what follows will be found in
the references cited in our joint papers, which are listed in the bib-
liography below.



32 Anthony G. O’Farrell

2. A Way to think of Complex Analysis

Holomorphic functions are the solutions to the ∂̄ equation

∂̄f = 0,

where

∂̄f =
∂f

∂z̄
dz̄,

∂f

∂z̄
=

1
2

{
∂f

∂x
+ i

∂f

∂y

}
.

We shall refer to both ∂̄ and ∂
∂z̄ as “the ∂̄ operator” (pronounced

d-bar operator), as convenient.
The ∂̄ operator is skew:∫

C
φ
∂ψ

∂z̄
dx dy = −

∫
C
ψ
∂φ

∂z̄
dx dy,

whenever φ and ψ belong to the space D of C∞ complex-valued
functions on C, having compact support.

The adjoint operator acts on distributions:〈
φ,

(
∂

∂z̄

)∗
f

〉
=
〈
∂

∂z̄
φ, f

〉
,

whenever φ ∈ D, and f belongs to D′. In view of the skewness, we
define

∂f

∂z̄
= −

(
∂

∂z̄

)∗
f, ∀f ∈ D′,

so that the operator ∂
∂z̄ onD′ is the weak-star continuous extension of

∂
∂z̄ on D, when we regard D as a subset of D′, under the identification
of each f ∈ L1

loc(dxdy) with the distribution represented by f , given
by

〈φ, f〉 =
∫

C
φfdxdy, ∀φ ∈ D.

Complex Radon measures (Borel-regular complex-valued measures
on C, having finite total variation on each compact subset of C) also
represent distributions. The measure µ acts continuously on the
space C0

cs of continuous complex-valued functions on C having com-
pact support, and equipped with the usual inductive limit topology,
via

〈φ, µ〉 =
∫

C
φfdµ, ∀φ ∈ C0

cs

and hence restricts to a continuous linear functional on D. If we
identify f ∈ L1

loc with the measure fdxdy, then this generalises the
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previous remark. A measure is uniquely-determined by the corre-
sponding distribution, because D is dense in C0

cs, so we may identify
the measure and distribution, without fear of confusion.

The ∂̄ operator is linear and translation-invariant. It is also el-
liptic: this means that it is almost invertible; more precisely it has
finite-dimensional kernel and cokernel, when restricted to a suitable
space. When restricted to D′, it has a very big kernel, the space of
all entire functions. This statement is a case of Weyl’s Lemma: a
distributional solution u ∈ D′(U) (where D(U) is the space of C∞

complex-valued functions on U) of ∂̄u = 0 on an open set U ⊂ C is
representable by a holomorphic function on U . This is a good thing,
because it gives complex analysts a nontrivial field of study. But
when restricted to E ′, the dual of the space of C∞ functions on C
with compact support, ∂̄ is injective. The fundamental solution is
the locally-integrable function −1/πz, i.e.

∂

∂z̄

(
− 1
πz

)
= δ0,

the point mass at 0. For φ ∈ D, we have

∂

∂z̄
φ̂ = φ,

where

φ̂ =
(
− 1
πz

)
∗ φ,

the Cauchy transform of φ. We extend the transform to a map
E ′ → D′ by setting

〈φ, f̂〉 = −〈φ̂, f〉, ∀φ ∈ D, ∀f ∈ E ′.

We have
∂

∂z̄
f̂ = f, ∀f ∈ E ′.

In particular, for each f ∈ E ′, the distribution f̂ is (represented by) a
holomorphic function off sptf , the support of f . Because of all this,
the Cauchy transform is intimately connected with analytic function
theory, and one can use it to establish many interesting results.
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3. Some Holomorphic Approximation Theorems

For X ⊂ Cn, let O(X) denote the space of functions holomorphic
near X. For compact Hausdorff X, let C0(X) denote the Banach
space of all continuous, complex-valued functions on X, with the sup
norm.

Theorem 3.1 (Hartogs–Rosenthal, 1931). Suppose X ⊂ C is com-
pact and has area zero. Then O(X) is dense in C0(X).

Proof. By the Separation Theorem for Banach spaces, it suffices to
show that

L ∈ C0(X)∗ ∩ O(X)⊥ ⇒ L = 0.

By the Riesz Representation Theorem, the dual C0(X)∗ = M(X),
the space of (complex, Radon) measures supported on X.

Fix µ ∈ M(X) with µ ⊥ O(X), i.e.
∫
f dµ = 0 whenever f ∈

O(X).
Regarding µ as a distribution on C, we find that µ̂ is the locally-

integrable function given by

µ̂(ζ) =
1
π

∫
dµ(z)
z − ζ

, ∀ζ ∈ C.

Since the function z 7→ 1/(z − ζ) belongs to O(X) for ζ 6∈ X, we
have µ̂ = 0 dxdy-a.e., hence µ̂ = 0 as a distribution, hence

µ =
∂µ̂

∂z̄
= 0. �

Corollary 3.2 (A. Browder). Suppose X ⊂ Cn is compact, and
each coordinate projection of X has area zero. Then O(X) is dense
in C0(X).

Proof. Denote z = (z1, . . . , zn), and zj = xj+iyj . Fix j ∈ {1, . . . , n}.
Let πj : z 7→ zj . Then πj(X) has area zero, so by Hartogs–Rosenthal
z 7→ xj and z 7→ yj are uniform limits of functions (depending only
on πj(z)) that are holomorphic on a neighbourhood of π−1

j (πj(X)),
and hence belong to O(X). Thus the uniform closure A on X of the
algebra O(X) contains all the coordinate functions xj and yj , so by
La Valleé Poussin’s extension of Weierstrass’ Polynomial Approxi-
mation Theorem (a special case of the Stone–Weierstrass Theorem),
we conclude that A = C0(X). �
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Consider the function spaces, for 0 < α < 1 and compact X ⊂ Cn:

Lip(α,X) =

{
f ∈ C0(X) : sup

z 6=w

|f(z)− f(w)|
|z − w|α

< +∞

}
,

and

lip(α,X) =

{
f ∈ Lip(α,X) : sup

0<|z−w|<δ

|f(z)− f(w)|
|z − w|α

→ 0 as δ ↓ 0

}
.

With a suitable norm, Lip(α,X) becomes a Banach algebra, and the
subspace lip(α,X) is a closed subalgebra, equal to the closure of D in
Lip(α,X). The elements of the dual lip(α,X)∗ may be represented
in a manner somewhat similar to the Riesz representation, as follows.

Fix any a0 ∈ X.
Given L ∈ lip(α,X)∗, there exist λ ∈ C and a measure µ on the

product X ×X having no mass on the diagonal, such that

Lf = λf(a0) +
∫
X×X

f(z)− f(w)
|z − w|α

dµ(z, w),

whenever f ∈ lip(α,X). If L1 = 0, then λ = 0. For such λ, this
permits us to represent L̂ by integration against an L1

loc function:

L̂(ζ) =
1
π

∫
(w − z) dµ(z, w)

(ζ − z)(ζ − w)|z − w|α
.

Using this, and essentially the same proof as given for the Hartogs–
Rosenthal Theorem, one obtains [6, p. 387]:

Theorem 3.3. If X ⊂ C is compact with area zero, then O(X) is
dense in lip(α,X) for 0 < α < 1.

Corollary 3.4. If X ⊂ Cn has all its coordinate projections of area
zero, then O(X) is dense in lip(α,X).

4. Higher-dimensional Cauchy Transforms

The utility of the Cauchy transform in one dimension prompted peo-
ple to seek a similar tool for problems of several complex variables.
Here one must use forms. The kernel −1/πz must be replaced by a
(2n− 1)-form of type (n, n− 1):

Ω =
n∑
j=1

Kj(ζ, z) dζ̄1 ∧ · · · dζ̄j−1 ∧ dζ̄j+1 ∧ · · · ∧ dζ̄n ∧ dζ1 ∧ · · · ∧ dζn,
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such that

φ(z) =
∫

Ω(ζ, z) ∧ ∂̄φ(ζ) (1)

holds for test functions φ. A form Ω that does this is called a Cauchy–
Leray–Fantappié form. There are many such forms, and depending
on the end in view, one prefers one or another. There are also more
complex forms, involving boundary terms (analogous to Pompeiu’s
formula), useful for specific purposes.

In joint work with David Walsh, and the late Ken Preskenis, we
obtained the following [8]:

Theorem 4.1. Let X ⊂ Cn be compact and holomorphically-convex.
Let E ⊂ X be closed, and suppose that each point a ∈ X ∼ E
has a neighbourhood N ⊂ Cn such that X ∩ N is a subset of a C1

submanifold without complex tangents. Then

closC0(X)O(X) = C0(X) ∩ closC0(E)O(X),

and

closLip(α,X)O(X) = lip(α,X) ∩ closLip(α,E)O(X), for 0 < α < 1.

In other words, approximation problems on X reduce to approx-
imation problems on the singular set E ⊂ X.

This generalised and extended to Lip(α) earlier work of Range and
Siu (E = ∅), Weinstock (X polynomially-convex), and ourselves [7]
(see below).

The proof comes down to showing that if a distribution L that
acts continuously on lip(α,X)∗ annihilates O(X), then L is sup-
ported on E. To do this, one constructs a kernel Ω(ζ, z) such that
Equation (1) holds for z on a neighbourhood U of X and φ ∈ D(U),
and a second kernel Ω̃(ζ, z) such that Ω̃(ζ, z) = Ω(ζ, z) for z ∈ X

and ζ ∈ U , and Ω̃ has coefficients K̃j(ζ, z) that are holomorphic in
z ∈ U for each ζ ∈ U ∼ X, and have another technical property.
This construction is based on work of Berndtsson, building on the
special Bochner–Martinelli kernel. Then, representing L as before
by a measure µ on X × X with no mass on the diagonal, we can
represent

〈φ,L〉 =
∫
X×X

1
|z − w|α

∫
U

{Ω(ζ, z)− Ω(ζ, w)} ∧ ∂̄φ(ζ) dµ(z, w)

=
∫
U

∫
X×X

1
|z − w|α

{Ω(ζ, z)− Ω(ζ, w)} dµ(z, w) ∧ ∂̄φ(ζ),
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by Fubini’s Theorem. (There are substantial technical estimates
involved in justifying this.)

It remains to show that∫
X×X

1
|z − w|α

{Ω(ζ, z)− Ω(ζ, w)} dµ(z, w) = 0

for almost all ζ ∈ U . The fact that Ω(ζ, z) = Ω̃(ζ, z) for z ∈ X and
that the latter is holomorphic in z, and the technical properties (the
most important of which is an “omitted sector property”) allow us
to approximate each coefficient in the integral by elements of O(X),
and gives the desired result. For the details, see [8].

Corollary 4.2 (Range-Siu). If E = ∅, then O(X) is dense in
C0(X).

Corollary 4.3. Let F ⊂ Y , where Y is a compact subset of Cn and
F is a closed subset of Y . Let f be a Cn-valued function defined on
a neighbourhood of Y , let X = f(Y ) and E = f(F ). Suppose that
X is polynomially-convex, and the matrix fz̄ (with columns ∂f

∂z̄j
) is

invertible on Y ∼ F . Then

closC0(X)C[z, w] = C0(X) ∩ closC0(E)C[z, w], (2)

and
closLip(α,X)C[z, w] = lip(α,X) ∩ closLip(α,E)C[z, w]. (3)

Equation 2 is due to Weinstock.

Corollary 4.4. Suppose ρ is a C2 strictly plurisubharmonic function
on a neighbourhood of bdyX, where X is a compact subset of Cn,
with interior D, and that bdyX = {z : ρ(z) = 0}, {z : ρ(z) < 0} ⊂
D, and E = closD. Then Equations 2 and 3 hold.

In this case, Equation 2 is due to Henkin and Leiterer.

5. Extending Smooth Functions

According to one view, Geometry is an aspect of Group Theory. But
more accurately, Geometry is Ring Theory. To be absolutely precise,
Geometry is Topological Ring Theory.

Let M be a Ck manifold, and X ⊂ M . Given f : X → R,
when does there exist a Ck function f̃ : M → R such that the
restriction f̃ |X = f? This problem arises in many applications, and
has been studied since the 1930’s, with important work of Whitney
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and Glaeser. Richard Watson and I studied it in the early 1990’s
drawing on some ideas of mine that go back to the 1970’s.

We deal now with real-valued functions, real vector spaces and
algebras, and i is just an index, or multi-index, and not

√
−1 any

more.
Let Ck(M) now denote the algebra (under pointwise operations)

of Ck real-valued functions on M . This is a Fréchet algebra (a com-
plete metric algebra) with the natural topology. For S ⊂ Ck(M),
let

S⊥ = {L ∈ Ck(M)∗ : Lf = 0,∀f ∈ S},
where Ck(M)∗ denotes the space of continuous linear functionals
L : Ck(M) → R. Note that Ck(M)∗ is a module over Ck(M). For
X ⊂M , let

X⊥ = {f ∈ Ck(M) : f(a) = 0,∀a ∈ X}.
Let a⊥ = {a}⊥, when a ∈ X. Each X⊥ is an ideal in Ck(M).
The ideal (a⊥)k+1 is generated by products of k + 1 elements of
a⊥. Its annihilator ((a⊥)k+1)⊥ consists of the so-called “k-th order
point differential operators”. In local coordinates (x1, . . . , xd), each
∂ ∈ ((a⊥)k+1)⊥ takes the form

∂f =
∑
|i|≤k

αi
∂f

∂xi
(a), ∀f ∈ Ck(M),

where i = (i1, . . . , id) ∈ Zd+ denotes a multi=index, |i| =
∑
j ij , and

αi ∈ R are constants depending on ∂, but not on f .
The k-th order tangent space to M at a is defined as

Tank(M,a) = Ck(M)∗ ∩ ((a⊥)k+1)⊥,

and the k-th order tangent space to X at a is defined as

Tank(M,X, a) = Tank(M,a) ∩ (X⊥)⊥,

the set of k-th order point differential operators ∂ at a such that ∂f
depends only on the values of f on X. The two disjoint unions

T k(M) =
⋃̇

a∈M
Tank(M,a),

T k(M,X) =
⋃̇

a∈M
Tank(M,X, a)

are called the k-th order tangent bundle of M , and the k-th order
tangent sheaf of X, respectively. The stalks Tank(M,X, a) have the
structure of finite-dimensional modules over a finite-dimensional real
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algebra, and provide numerical Ck invariants for the pair (M,X),
since the tangent construction behaves functorially. A Ck function
F : M → M ′ between Ck manifolds induces an algebra homomor-
phism

F# :
{
Ck(M ′) → Ck(M)

g 7→ g ◦ F
and a Ck-module homomorphism

F# = (F#)∗ : Ck(M)∗ → Ck(M ′)∗.

If F maps X into X ′, then F# maps the stalk Tank(M,X, a) to the
stalk Tank(M ′, X ′, f(a)), and so induces a map F∗ : T k(M,X) →
T k(M ′, X ′). We established the following [9]:

Theorem 5.1. Let X be a closed subset of a Ck manifold M ,
f : X → R be continuous, and

π :
{
M × R → M

(x, y) 7→ x

be the projection. Then f has a Ck extension to M if and only if
the map

π∗ : T k(M × R, f)→ T k(M,X)
is bijective.

This result, and the k-th order tangent concept, are not par-
ticularly difficult, but are completely fundamental for the exten-
sion problem. They reduce the extension problem to the problem
of deciding whether or not two integral dimensions (of Tank(M ×
R, f, (a, f(a)) and Tank(M,X, a)) agree at each point a ∈ X. We
were gratified by the favourable reception of our paper, which in-
cluded a congratulatory letter from Malgrange. It remained a prob-
lem to come up with a constructive procedure for deciding the ques-
tion. Whitney himself dealt with this in dimension one, for all k. We
provided a way to do it in 1993, in case k = 1, for all dimensions.
In recent years, C. Fefferman and co-workers have gone as far as can
be done in providing a constructive procedure for general k. See
the website [5] where this monumental corpus may be downloaded.
Their work employs, inter alia the k-th order sheaf we introduced
and our result. Fefferman was unaware of our work, having taken
the concept and result from the 2003 Inventiones paper of Bierstone,
Milman and Pawluckii [4]. I supplied a copy of our paper to Pawlucki
in December 1997, at his request. These authors included our paper
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among their references, but did not attribute the concept to us. They
referred to our paper only in order to make a gratuitously dismis-
sive remark about it. I am at a loss to understand this behaviour.
They called the tangent sheaf the Zariski paratangent bundle (al-
though it is not in general a bundle), and subsequently a number
of authors have referred to it as the Zariski paratangent bundle of
Bierstone, Milman and Pawlucki. The bundle T k(M) was originally
introduced by Pohl and Feldman, but the sheaf T k(M,X) appeared
first in our paper.

I must also mention the work of Declan O’Keeffe [10], who proved
the analogous result for Ck+α extensions (k ∈ N, 0 < α < 1), and
who also used T k to study algebraic curve singularities in C2.

6. Approximating C∞ Functions

In conclusion, here is a brief summary of the joint work with the late
Graham Allan, Grayson Kakiko and Richard, on Segal’s problem.
The problem called for a characterization of the closed subalgebras
of the algebra C∞(M,R), for a smooth manifold M . The problem
is local, so that we may take M = Rd. There is not much loss in
generality in considering subalgebras that are topologically-finitely-
generated, i.e. those of the form

A(Ψ) = closC∞(Rd)R[Ψ] = closC∞(Rd){g ◦Ψ : g ∈ C∞(Rr,R),

where Ψ = (ψ1, . . . , ψr) ∈ C∞(Rd). In 1950, Nachbin conjectured a
solution, analogous to Whitney’s Spectral Theorem for closed ideals.
Let R[[x1, . . . , xn]] denote the algebra of formal power series in n
indeterminates, let

T ′a : C∞(Rd,Rr)→ R[[x1, . . . , xd]]r

denote the truncated Taylor series map, for each a ∈ Rd, and let
Taf = f(a) + T ′af be the full Taylor series. (Note that xj would
have to be replaced by (xj − aj) in these series in applications of
Taylor’s Theorem.)

In case Ψ ∈ C∞(Rd,Rr) is injective, Nachbin’s conjecture comes
down to

A(Ψ) =
⋂

a∈critΨ

T−1
a R[[T ′aΨ]], (4)

which may be stated in loose terms as: f ∈ A(Ψ) if and only if f
has the “right kind” of Taylor series at each point.
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Theorem 6.1 (Tougeron 1971). Suppose that for each compact K ⊂
Rd there exists α > 0 and β > 0 such that

|Ψ(x)−Ψ(y)| ≥ α|x− y|β , ∀x, y ∈ K.

Then Equation (4) holds.

Corollary 6.2. If Ψ is injective and real-analytic, then Equation
(4) holds.

Our main result was this [1]:

Theorem 6.3. If Ψ is injective and d = 1, then Equation (4) holds.

The proof involves some hard analysis, to overcome the problems
around the accumulation points of the critical set.

We say that Ψ is flat at a if T ′aΨ = 0. We also proved the following
useful result [2].

Theorem 6.4. If Ψ is injective and f ∈ C∞(Rd) is flat at each
critical point of Ψ, then f ∈ A(Ψ).

Corollary 6.5. If Ψ is injective and flat on critΨ, then Equation
(4) holds.

Corollary 6.6. If Ψ is injective and critΨ is discrete, then Equation
(4) holds.

In further work [3], we studied A(Ψ) as a Fréchet algebra, for
injective Ψ. We established that it is always regular, and that mem-
bership of A(Ψ) is a local property.

7. Notes

It is convenient to take this opportunity to correct the definition of
proxy distance given on p. 49 of our paper [2] in the proceedings of
the meeting at Blaubeuren. This should read:
Definition. Let E ⊂ Rd be closed and κm ≥ 1 (m = 0, 1, 2, . . .).
A function dE : Rd → [0,+∞) that is C∞ on Rdi ∼ E is called a
{κm} proxy distance for E if

1
κ0
dE(x) ≤ dist(x,E) ≤ κ0dE(x), ∀x ∈ Rd

and

|DmdE(x)| ≤ κm · dist(x,E)1−m, ∀x ∈ Rd,∀m ≥ 1.
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No other change to the paper is needed, and it all remains true.
(The reason for the change is that dE cannot be C∞ on the whole
of Rd when ∅ 6= E 6= Rd; in the subsequent application dE is always
composed with functions φ that vanish near 0, so φ ◦ dE is C∞ on
Rd.)

I would also like to point out to readers of [8] that the interesting
case of Example 3.2 is when X 6= int closX. It is even interesting
when X has no interior.
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