
Irish Math. Soc. Bulletin 62 (2008), 43–69 43

Recent Trends on Order Bounded Disjointness
Preserving Operators 1

KARIM BOULABIAR

1. Introduction

Disjointness preserving operators have been introduced in some form
or other in the forty’s. Indeed, linear multiplicative operations in the
work [55] by Vulikh are disjointness preserving operators in disguise.
However, only during the last decades have they made a formal entry
into the development of vector lattices. A first systematic study of
disjointness preserving operators goes back to the pioneering note [4]
by Abramovich, Veksler, and Koldunov published in the end of the
seventies. From then on, the interest in disjointness preserving oper-
ators has steadily grown and a series of works devoted to the subject
appeared in the literature. In this regard, spectral properties of order
bounded disjointness preserving operators were considered in great
details in [8, 30]. On the other hand, invertible disjointness preserv-
ing operators occupied a prominent role in a vast literature, such as
[7, 20, 33, 35] and mainly the remarkable memoir [3] by Abramovich
and Kitover. One of the external reasons for the continuing inter-
est in disjointness preserving operators is the fact that precisely the
order bounded disjointness preserving operators allow multiplicative
representations as weighted composition operators and, more gen-
erally, polar decompositions [2, 19, 28, 39]. They thus found appli-
cations in the theory of singular and integral equation, dynamical
system, and differential equations with delayed time [38, 46, 51].

The present survey on order bounded disjointness preserving oper-
ators has two main objectives. First, convince the young researchers
in vector lattices that disjointness preserving operators constitute
an honorable research activity. Secondly, inform the experts about

1Most of the content of this survey was presented by the author in the In-
structional Workshop organized by Professor Anthony Wickstead in the summer

of 2008 at Queen’s University Belfast.
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results on the subject obtained recently by the author. In fact, this
is a study of modest length—selectivity is a must—with the choices
of illustrations being left, for good or ill, to personal taste and preju-
dices. In this prospect, no attention has been paid to aspects of order
bounded disjointness preserving operators evoked in the preceding
paragraph, except of their representations as weighted composition
operators.

The exposition is divided in six sections. This introduction is
followed by a section dealing with what is considered today as the
most important result in the theory of order bounded disjointness
preserving operators, namely, Meyer’s Theorem [43]. In the third
section, order bounded disjointness preserving operators on certain
spaces of continuous functions are characterized. In this prospect,
some results are presumably known. However, the author has not
been able to locate precise references for them. For this reason,
complete proofs will be given. The fourth section contains extensions
of results in Section 3 to the more general setting of functions algebra
in the sense of Birkhoff and Pierce [15]. Section 5 gives a look at
disjointness preserving operators from a different ‘global’ point of
view. Indeed, the lattice structure of certain sets of order bounded
operators preserving disjointness are investigated and facts on the so-
called orthomorphisms are extended to such sets. Some results in this
section are new and they will be proved completely. The last section
concerns algebraic (in the sense of Kaplansky [37]) order bounded
disjointness preserving operators. To be a little more precise, we
focus on order bounded disjointness preserving operators that satisfy
a nontrivial polynomial equation. At last, we point out that this
survey contains some open problems. The hope of the author is that
the reader will find them rather worthy of interest.

The books [1, 6, 41, 45, 59] on the theory of vector lattices and
operators between them are used in this survey as the sources of
unexplained terminology and notation.

2. Meyer’s Theorem

Unless otherwise stated, L and M stand throughout for Archime-
dean vector lattices. A (linear) operator T from L into M is said to
be disjointness preserving (or to preserve disjointness) if

f, g ∈ L and |f | ∧ |g| = 0 in L imply |T (f)| ∧ |T (g)| = 0 in M.
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It is not hard to see that the operator T from L into M preserves
disjointness if and only if |T (f)| ∧ |T (g)| = 0 for all f, g ∈ L with
f ∧ g = 0. Also, |T (f)| = |T (|f |)| for all f ∈ L is a necessary and
sufficient condition for the operator T from L into M in order to be
disjointness preserving. Obviously, the operator T from L into M
is a lattice homomorphism if and only if T is a positive disjointness
preserving operator. As mentioned in the title, this survey will deal
with disjointness preserving operators that are order bounded. It
should be pointed out here that a disjointness preserving operator
need not be order bounded. An example in this direction is given
next.

Example 2.1. A real-valued function f defined on the real interval
[0,∞) is said to be essentially polynomial if there exist a real polyno-
mial pf and a real number λf with f (x) = pf (x) for all x ∈ [λf ,∞).
The set L of all essentially polynomial functions on [0,∞) is an
Archimedean vector lattice with respect to the usual pointwise op-
erations and ordering. The operator T from L into the vector lattice
R of all real numbers defined by Tf = pf (0) for all f ∈ L preserves
disjointness but is not order bounded.

At this point, recall that the set L (L,M) of all operators from
L into M is an Archimedean ordered vector space with respect to
the usual pointwise operation and ordering. The set Lb (L,M) of all
order bounded operators from L into M is an ordered vector subspace
of L (L,M). It is well-known that L (L, M) is not a vector lattice,
in general. In this regard, even an order bounded operator from L
into M need not have an absolute value nor in L (L, M) neither in
Lb (L,M). In spite of that, Lb (L,M) is a Dedekind complete lattice-
subspace [1] of L (L,M) as soon as M in addition Dedekind complete.
This leads us to the what is considered today as the fundamental
theorem of order bounded disjointness preserving operators, namely,
the following very famous Meyer’s Theorem.

Theorem 2.2. Let T be an order bounded disjointness preserving
operator from L into M . Then there exist unique lattice homomor-
phisms T+, T− from L into M such that T = T+ − T− and

T+ (f) = (T (f))+ , T− (f) = (T (f))− for all f ∈ L+.

In particular, T has an absolute value |T | in L (L,M) and |T | =
T+ + T−. Moreover, |T | is a lattice homomorphism from L into M
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such that

|T | (|f |) = |T (f)| = ||T | (f)| for all f ∈ L.

The first proof of the Theorem 2.2 was given in [43] by Meyer
himself. Meyer’s proof is not constructive, that is, it is based upon
the Zorn’s Lemma (i.e., the Axiom of Choice). Later, two Zorn’s
Lemma free proofs of Theorem 2.2 were provided by Bernau in [12]
and de Pagter in [47], respectively.

Meyer’s Theorem is in many ways the starting point of our in-
vestigation of order bounded disjointness preserving operators. Let
us collect some consequences. First of all, it is readily verified that
the kernel kerT of a lattice homomorphism T from L into M is
an order ideal of L. Theorem 2.2 yields directly that if T is an
order bounded disjointness preserving operator from L into M then
ker T = ker |T |. So, the kernel of any order bounded disjointness pre-
serving linear operator is again an order ideal. However, contrary
to lattice homomorphisms, the range Im T of the order bounded dis-
jointness preserving linear operator T from L into M need not be
a vector sublattice of M . To see this, consider the order bounded
disjointness preserving operator from the Archimedean vector lattice
C ([0, 1]) of all real-valued continuous functions on the real interval
[0, 1] into itself defined by (T (f)) (x) = xf (x) for all f ∈ C ([0, 1])
and x ∈ [0, 1]. Another nice application of Meyer’s Theorem was
obtained by Huijsmans and Wickstead in [34]. That is, if T is a
bijective order bounded disjointness preserving operator from L into
M , then the inverse T−1 is an order bounded disjointness preserv-
ing operator from M into L. Moreover, the equality |T |−1 =

∣∣T−1
∣∣

holds in L (M,L). In [8], Arendt proved that if L and M are Banach
lattices then an operator T from L into M is an order bounded dis-
jointness preserving operator if and only if |T (f)| ≤ |T (g)| holds in
M whenever |f | ≤ |g| holds in L. Relying on Meyer’s Theorem, [33]
Huijsmans and de Pagter extended the characterization obtained by
Arendt to arbitrary Archimedean vector lattices. This result is in-
teresting in part because it gives one equivalent condition to both or-
der boundedness and disjointness preservation. Since we are evoking
Arendt and his work [8], we point out that he called order bounded
disjointness preserving operators shortly Lamperti operators.

Now, we shift our emphasis from the general case to the particular
setting of band preserving operators. Let T be an operator on L
(i.e., from L into L) and recall that a nonvoid subset D of L is
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said to be T -invariant whenever T maps D into D. An operator T
on L is said to be band preserving if every band of L is T -invariant.
Hence, the operator T on L is band preserving if and only if |T (f)|∧
|g| = 0 for all f, g ∈ L with |f | ∧ |g| = 0. Obviously, if any band
preserving operator on L preserves disjointness. This implication is
not reversible, of course. On the other hand, the following example
(obtained by Meyer in [44]) shows that a band preserving operators
need not be order bounded.

Example 2.3. The set PL ([0, 1)) of all piecewise linear functions
on [0, 1) is an Archimedean vector lattice with respect to the usual
pointwise operations and ordering. Notice here that f ∈ PL ([0, 1)) if
and only if there exists a partition 0 = x0 < x1 < ... < xn−1 < xn =
1 of [0, 1) such that f is linear on [xi−1, xi) for each i ∈ {1, ..., n}.
The band preserving operator T on PL ([0, 1)) defined by

T (f) (x) = f ′r (x) for all f ∈ PL ([0, 1)) and x ∈ [0, 1) ,

where f ′r indicates the right derivative of f , is not order bounded.

Only order bounded band preserving operators will be considered
in this study. In this prospect, an order bounded band preserving
operator T on L is called an orthomorphism on L. Obviously, the
identity operator IL on L is an orthomorphism on L. Moreover,
the set Orth (L) of all orthomorphisms on L is an ordered vector
subspace of L (L) = L (L,L). Actually, Orth (L) is much more than a
simple ordered vector subspace of L (L). Indeed, Bigard and Keimel
in [14] and, independently, Conrad and Diem in [24] proved that
Orth (L) is a generalized vector sublattice (in the sense of [5]) of
L (L) with the lattice operations given pointwise, meaning that, if
S, T ∈ Orth (L) then (S ∨ T ) (f) = S (f) ∨ T (f) and (S ∧ T ) (f) =
S (f) ∧ T (f) for all f ∈ L+. In particular, if T ∈ Orth (L) then
the absolute value |T | exists and |T | (|f |) = |T (f)| = ||T | (f)| for all
f ∈ L. The latter can be obtained alternatively from Theorem 2.2
since T in particular preserves disjointness.

3. Concrete Situations

By and large, the notation and terminology of the great text [27] by
Gillman and Jerison will be used in this section unless it conflicts
with the by now standard notation used by workers in vector lattices.
In particular, RX will indicate the universally complete [6] vector lat-
tice of all real-valued functions on a nonvoid set X under the usual
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pointwise addition, scalar multiplication, and ordering. Moreover,
the constant function on X whose constant value is the real number
r is denoted by rX . Furthermore, if X is a topological space then
C (X) denoted the (relatively) uniformly complete [41] vector sub-
lattice of RX of all continuous functions on X. The main objective of
this section is to characterize order bounded disjointness preserving
operators on C (X)-type vector lattices under suitable restrictions
on X.

A topological space is called a Tychonoff space if it is a subspace
of a compact Hausdorff space. In [54], Tychonoff himself proved that
the topological space X is Tychonoff if and only if X is Hausdorff
and completely regular, that is, whenever F is a closed set in X and
xF ∈ X with xF /∈ F , there exists f ∈ C (X) such that f (xF ) = 0
and f (x) = 1 for all x ∈ F . It was known to both Stone [53] and
Čech [25] that for each topological space X, there is a Tychonoff
space X∗ such that C (X) and C (X∗) are isomorphic as vector lat-
tices. In fact, X∗ is obtained by first identifying those points which
cannot be separated by continuous functions, inducing the functions
of C (X) on X∗ in the obvious manner, and then furnishing X∗ with
the weakest topology in which these functions are continuous (see
Theorem 3.9 in [27] for more details). This observation eliminates
any reason for considering vector lattices of real-valued continuous
functions on other than Tychonoff spaces. Therefore, it will be as-
sumed henceforth that X is a Tychonoff space unless the contrary is
stated explicitly.

Hewitt’s great paper [32] built on the aforementioned works of
Stone and Čech and laid the foundation for the study of the inter-
play between C (X) and X. In today’s terminology the Tychonoff
space X is said to be realcompact if there is no strictly large Ty-
chonoff space Y such that X is dense in Y and every f ∈ C (X)
has an extension in C (Y ). Actually, Hewitt in [32] used the termi-
nology Q-space instead of realcompact space and proved that X is
realcompact if and only if it is homeomorphic to a closed subspace
of a product of real lines equipped with the usual product topology.
This characterization is often used as a definition of realcompact
spaces. Later, Shirota [52] showed that X is realcompact if and only
if to each algebra homomorphism ϕ from C (X) onto the real field
R there corresponds a point x of X such that ϕ (f) = f (x) for all
f ∈ C (X). This remarkable necessary and sufficient condition for
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a Tychonoff space to be realcompact was obtained very recently by
Ercan and Önal [26] via an elementary approach. These observa-
tions will be used next to obtain an alternative characterization of
realcompact spaces which is a little more fit for our study.

Lemma 3.1. Let X be a Tychonoff space X. Then the following
are equivalent.

(i) X is realcompact
(ii) To each lattice homomorphism ϕ from C (X) onto R with

ϕ (1X) = 1 there corresponds a point x of X such that
ϕ (f) = f (x) for all f ∈ C (X).

Proof. By the above Shirota’s result, it suffices to prove that if ϕ
is a mapping of C (X) to R with ϕ (1X) = 1, then ϕ is a lattice
homomorphism if and only if ϕ is an algebra homomorphism. So, let
ϕ be such a mapping and assume ϕ to be an algebra homomorphism.
If f ∈ C (X) then

0 ≤
(
ϕ

(
|f |1/2

))2

= ϕ (|f |) =
(
ϕ

(
f2

))1/2
=

(
(ϕf)2

)1/2

= |ϕ (f)| .

It follows that ϕ is a lattice homomorphism. Conversely, suppose
that ϕ is a lattice homomorphism and let f, h ∈ C (X) such that
ϕ (h) = 0. For every ε ∈ (0,∞), the inequalities 0X ≤ |fh| ≤
ε
∣∣f2h

∣∣ + ε−1 |h| hold in C (X). Thus,

0 ≤ |ϕ (fh)| ≤ εϕ
(∣∣f2h

∣∣) + ε−1ϕ (|h|) = εϕ
(∣∣f2h

∣∣) .

As ε is arbitrary in (0,∞), we get ϕ (fh) = 0. We derive that if
g ∈ C (X) then ϕ (g − ϕ (g)1X) = 0. Therefore,

ϕ (fg) = ϕ (fg)− ϕ ((g − ϕ (g)1X) f) = ϕ (f) ϕ (g) .

So, ϕ is an algebra homomorphism and we are done. �

From now on, Y stands for an arbitrary topological space. The
cozero-set of a function w ∈ C (Y ) is the set

coz (w) = {y ∈ Y : w (y) 6= 0}
Now, let w ∈ C (Y ) and τ be a function of Y to X which is continuous
on coz (w). It is readily verified that the mapping T from C (X) into
C (Y ) defined by

T (f) (y) = w (y) f (τ (y)) for all f ∈ C (X) and y ∈ Y

is an order bounded disjointness preserving operator. Such a map-
ping is usually called a weighted composition operator. Next, we
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discuss the question whether this implication is reversible. Surpris-
ingly, this question has an affirmative answer if X in addition is
realcompact.

Theorem 3.2. Let T be a mapping of C (X) to C (Y ) and assume
X to be realcompact. Then the following are equivalent.

(i) T is an order bounded disjointness preserving operator.
(ii) There exists w ∈ C (Y ) and a function τ of Y into X such

that τ is continuous on coz (w) and

T (f) (y) = w (y) f (τ (y)) for all f ∈ C (X) and y ∈ Y.

Proof. Only necessity will be proved. Let T be an order bounded
disjointness preserving operator from C (X) into C (Y ). Hence T+ is
a lattice homomorphism from C (X) into C (Y ) (see Theorem 2.2).
Put w+ = T+ (1X) and define for each f ∈ C (X) the function
S (f) ∈ C (coz (w+)) by

S (f) (y) =
T+ (f) (y)

w+ (y)
for all y ∈ coz (w+) .

The mapping S thus defined from C (X) into C (coz (w+)) is linear,
obviously. Moreover, if y ∈ coz (w+) then

(δy ◦ S) |f | = S (|f |) (y) =
T+ (|f |) (y)

w+ (y)

=
|T+ (f) (y)|

w+ (y)
= |S (f) (y)| = |(δy ◦ S) f | .

Hence, δy ◦ S is a lattice homomorphism from C (X) onto R with
(δy ◦ S) (1X) = 1. Lemma 3.1 yields that a point xy of X can be
found so that

S (f) (y) = (δy ◦ S) (f) = f (xy) for all f ∈ C (X) .

Let τ+ be the mapping of coz (w+) to X defined by τ+ (y) = xy for
all y ∈ coz (w+). By Theorem 3.8 in [27], τ+ is continuous. We get
also

T+ (f) (y) = w+ (y) (f ◦ τ+) (y) for all f ∈ C (X) , y ∈ coz (w+) .

On the other hand, let f ∈ C (X) and y ∈ Y such that T+ (1X) (y) =
0. Also, let ε ∈ (0,∞) and observe that

0X ≤ |f | ≤ |f | ∧ ε1X + ε−1f2.
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Therefore,

0 ≤
∣∣T+ (f) (y)

∣∣
≤

∣∣T+ (f) (y)
∣∣ ∧ εT+ (1X) (y) + ε−1T+

(
f2

)
(y)

= ε−1T+
(
f2

)
(y) .

So, (T+ (f)) (y) = 0 because ε is arbitrary in (0,∞). Now, choose an
arbitrary extension of τ+ to Y and denote such an extension again
by τ+. We derive directly that(

T+ (f)
)
(y) = w+ (y) f (τ+ (y)) for all f ∈ C (X) and y ∈ Y.

Analogously, if w− = T− (1X) then we may find a function τ− of Y
into X such that τ− is continuous on coz (w−) and

T− (f) (y) = w− (y) f (τ− (y)) for all f ∈ C (X) and y ∈ Y.

Observe now that

w+ ∧ w− = T+ (1X) ∧ T− (1X) = (T (1X))+ ∧ (T (1X))− = 0X

(where we use once more Theorem 2.2). But then

coz (w+) ∩ coz (w−) = ∅ and coz (w+) ∪ coz (w−) = coz (w) ,

where w = w+−w− ∈ C(Y ). Choose a function τ of Y to X so that

τ (y) = τ+ (y) if y ∈ coz (w+) and τ (y) = τ− (y) if y ∈ coz (w−) .

Since T = T+ − T−, we derive that

T (f) (y) = w (y) f (τ (y)) for all f ∈ C (X) and y ∈ Y

and we are done. �

Next, we shall say a few words to see that the condition of realcom-
pactness imposed on the Tychonoff space X in Theorem 3.2 is close
to being the best possible for order bounded disjointness preserv-
ing operators from C (X) into C (Y ) to be automatically weighted
composition operators. Indeed, assume that RC(X) is endowed with
the usual product topology. The mapping π of X to RC(X) defined
by π (x) (f) = f (x) for all x ∈ X and f ∈ C (X)sends X homeo-
morphically to π (X) = {π (x) : x ∈ X} (see [27]). Let υX denote
the closure of π (X) in RC(X). Hence, υX is the unique (up to a
homeomorphism leaving X pointwise fixed) realcompact topological
space such that X is dense in υX and every function f ∈ C (X)
has a unique extension fυ ∈ C (υX). The realcompact space υX is
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referred to as the realcompactification of X (see again [27]). More-
over, the mapping υ of C (X) to C (υX) defined by υ (f) = fυ for
all f ∈ C (X) is a lattice isomorphism as it was observed by Shirota
in [52] and Henriksen [31].

At this point, assume that X and Y are both locally compact
(and then Tychonoff). Recall that the set C0 (X) (C∞ (X) in the
book [27]) of all real-valued continuous functions on X vanishing at
infinity is a vector sublattice of RX . Meyer-Nieberg proved in [45]
that a mapping T of C0 (X) to C0 (Y ) is a lattice homomorphism
if and only if there exist a positive (real-valued) function w on Y
which is continuous on coz (w) and a continuous function τ of coz (w)
to X such that, if f ∈ C0 (X), then T (f) (y) = w (y) f (τ (y)) if
y ∈ coz (w) and T (f) (y) = 0 of y /∈ coz (w). In view of Theorem
2.2, a same argument as previously used in the end of the proof of
Theorem 3.2 leads straightforwardly to the following result.

Theorem 3.3. Assume that X and Y are locally compact and let T
be a mapping of C0 (X) to C0 (Y ). Then the following are equivalent.

(i) T is an order bounded disjointness preserving operator.
(ii) There exist a real-valued function w on Y which is continu-

ous on coz (w) and a continuous function τ of coz (w) to X
such that, if f ∈ C0 (X), then

T (f) (y) =

 w (y) f (τ (y)) if y ∈ coz (w)

0 if y /∈ coz (w) .

At last, it should be pointed out that Theorem 3.3 was obtained
in an alternative way by Jeang and Wong in [36]. Also, notice that
Theorem 3.2 and Theorem 3.3 have the same compact version. Such
a version has been obtained earlier by Arendt in [8] (see [35] by
Jarosz for a different approach). In this regard, one might hope that
Theorem 3.3 can be obtained from its compact version by extending
the order bounded disjointness preserving operator T from C0 (X)
into C0 (Y ) to an order bounded disjointness preserving operator Tα

from C (αX) into C (αY ), where αX denotes the one-point compact-
ification of X (see [27]). However, Jeang and Wong provided in [36]
the following example of an order bounded disjointness preserving
operator T from C0 (X) into C0 (Y ) which does not have any such
extension.
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Example 3.4. Let X = [0,∞) and Y = R with the usual topology
and define w, τ from R into R by

w (y) =


1 if y > 2

y − 1 if 0 ≤ y ≤ 2

−1 if y < 0

and τ (y) =

 y if y ≥ 0

−y if y < 0.

Let T be the mapping from C0(X) to C0(Y ) defined by T (f)(y) =
w(y fτ(y)) for all f ∈ C(X) and y ∈ Y . Clearly, T is an order
bounded disjointness preserving operator from C0 (X) into C0(Y ).
But no extension T a from C(αX) into C(αY ) of T can be an order
bounded disjointness preserving operator.

4. A Multiplicative Aspect

In this section, we show how can results in Section 3 be extended to
the more general setting of function algebras in the sense of Birkhoff
and Pierce [15]. A vector lattice L which is simultaneously an asso-
ciative algebra such that fg ∈ L+ for all f, g ∈ L+ is called a lattice
ordered algebras (briefly, an `-algebra). In [15], Birkhoff and Pierce
called the `-algebra L a function algebra (shortly, an f -algebra) if
(fh) ∧ g = (hf) ∧ g = 0 for all f, g, h ∈ L+ with f ∧ g = 0. One
of the most classical examples of f -algebras is RX for any nonvoid
set X. Moreover, if X is a topological space, then C (X) is a uni-
formly complete f -subalgebra of RX . In this space, we focus only on
Archimedean f -algebras. The Archimedean f -algebra L with a mul-
tiplicative unity is semiprime, meaning that, 0 is the only nilpotent
element of L. Orthomorphisms on an Archimedean vector lattice L is
an important example of f -algebras. Indeed, the Archimedean vec-
tor lattice Orth (L) is f -algebra with respect to the composition and
the identity operator IL on L is a multiplicative unity in Orth (L).
On the other hand, if L is an Archimedean semiprime f -algebra,
then L can be embedded in Orth (L) as an f -subalgebra. Below,
we shall identify L with an f -subalgebra of Orth (L) without further
ado. The reader is referred to the surveys [22, 23] for more infor-
mation on f -algebras. Also, Chapter 20 in [60] by Zaanen presents
an excellent study of f -algebras based upon the Ph.D. thesis [48] of
de Pagter. Next, we shall describe another important instance of
f -algebras, namely, the f -algebra of all extended orthomorphisms
on an Archimedean vector lattice.
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Let L be an Archimedean vector lattice. Luxemburg and Schep
in [40] defined an order bounded operator T from an order dense
order ideal DT of L into L to be an extended orthomorphism of L
if |f | ∧ |g| = 0 in DT implies |Tf | ∧ |g| = 0 in L. Of course, an ex-
tended orthomorphism T of L is an orthomorphism of L if DT = L.
A natural equivalence relation can be introduced in the set of all
extended orthomorphisms of L as follows. Two extended orthomor-
phisms of L are equivalent whenever they agree on an order dense
order ideal in L or, equivalently, they are equal on the intersection of
their domains. Notice that the intersection of two order dense order
ideals in L is obviously again an order dense order ideal in L. The
set of all equivalence classes of extended orthomorphisms of L is de-
noted by Orth∞ (L). With respect to the pointwise addition, scalar
multiplication, and ordering, Orth∞ (L) is an Archimedean vector
lattice. The lattice operations in the vector lattice Orth∞ (L) are
given pointwise. It turns out that the vector lattice Orth∞ (L) is an
f -algebra under the composition as multiplication. Moreover, since
extended orthomorphisms are order continuous, the set Orth (L) of
all orthomorphisms of L can be embedded naturally in Orth∞ (L)
as an f -subalgebra. Obviously, the identity operator IL of L serves
as a multiplicative unity in Orth∞ (L). All these facts can be found
in the fundamental papers [40] by Luxemburg and Schep and [49] by
de Pagter.

As previously pointed out, this section gives a look at concrete
situations presented in Section 3 from a ‘purely algebraic’ point of
view. In this prospect, some extra observations are needed. Let X
be a realcompact space and Y be a Tychonoff space. It is shown in
Theorem 3.2 that if T is an order bounded disjointness preserving
operator from C (X) into C (Y ) then there exist w ∈ C (Y ) and a
function τ of Y into X which is continuous on coz (w) such that
T (f) (y) = w (y) f (τ (y)) for all f ∈ C (X) and y ∈ Y . The ob-
servation to make here is that if f is in C (X) then the real-valued
function S (f) defined on Y by S (f) (y) = f (τ (y)) for all y ∈ Y need
not be in C (Y ). However, it is readily verified that S (f) is contin-
uous on some dense open set in Y . In other words, S (f) belongs to
Orth∞ (C (Y )). Indeed, Orth∞ (C (Y )) is essentially the algebra of
all continuous functions defined on some dense open set of Y (see
[29] by Hager, [49] by de Pagter, and [57] by Wickstead). Accord-
ingly, the mapping S defined from C (X) into RY by S (f) = f ◦τ for
all f ∈ C (X) is actually a lattice and algebra homomorphism from
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C (X) into Orth∞ (C (Y )). Summarizing, Theorem 3.2 can be stated
algebraically as follows. A mapping T from C (X) into C (Y ) is an
order bounded disjointness preserving operator if and only if there
exist w ∈ C (Y ) and a lattice and algebra homomorphism S from
C (X) into Orth∞ (C (Y )) such that T (f) (y) = w (y) (S (f)) (y) for
all f ∈ C (X) and y ∈ Y . It seems to be natural therefore to ask
whether this ‘algebraic’ version of Theorem 3.2 can be extended to
the more general setting of f -algebras. From now on, A and B stand
for Archimedean semiprime f-algebras with B uniformly complete.

Theorem 4.1. Assume A to have a multiplicative unity and let T
be a mapping from A into B. Then the following are equivalent.

(i) T is an order bounded disjointness preserving operator.
(ii) There exist w ∈ B and a lattice and algebra homomorphism

from A into Orth∞ (B) such that T (f) = wS (f) for all
f ∈ A.

Next, we focus on Theorem 3.3 in which we have seen that if X
and Y are locally compact spaces and T is an order bounded dis-
jointness preserving operator from C0 (X) into C0 (Y ), then there
exist a real-valued function w on Y which is continuous on coz (w)
and a continuous function τ of coz (w) to X such that, if f ∈ C0 (X),
then T (f) (y) = w (y) f (τ (y)) if y ∈ coz (w), and T (f) (y) = 0 if
y /∈ coz (w). In [17], it shown that Cb (Y ) and Orth (C0 (Y )) are
isomorphic as f -algebras. Also, the f -algebras Orth∞ (Cb (Y )) and
Orth∞ (C (Y )) are isomorphic (see again [29, 49, 57]). Hence, the
above result can be stated as follows. A mapping T from C0 (X)
into C0 (Y ) is an order bounded disjointness preserving operator if
and only if there exist w ∈ Orth∞ (Cb (Y )) and a lattice and al-
gebra homomorphism S from C (X) into Orth∞ (Cb (Y )) such that
T (f) (y) = w (y) (S (f)) (y) for all f ∈ C0 (X) and y ∈ Y . This result
holds in f -algebras as we shall see next. First of all, the f -algebra
A is said to be nth-root closed for some nonzero natural number n
if for every g ∈ A+ there exists f ∈ A+ such that fn = g (such an
f is unique since A is assumed to be semiprime). The proof of the
following theorem can be found in the recent survey [23].

Theorem 4.2. Assume that A is nth-root closed for some positive
integer and let T be a mapping from A into B. Then the following
are equivalent.

(i) T is an order bounded disjointness preserving operator.
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(ii) There exist w ∈ Orth∞ (Orth (B)) and a lattice and algebra
homomorphism S from A into Orth∞ (Orth (B)) such that
T (f) = wS (f) for all f ∈ A.

The proof of Theorem 4.2 presented in [23] is based upon a beau-
tiful theorem by Hart [30], namely, if L and M are Archimedean
vector lattices and T is an order bounded disjointness preserving
operator T from L into M , then there exists a lattice and alge-
bra homomorphism T̃ from Orth (L) into Orth (R (T (L))) (where
R (T (L)) is the vector sublattice of M generated by T (L)) such
that T̃ (S) (T (f)) = T (S (f)) for all T ∈ Orth (L) and f ∈ L.We
end this section with an example (see [23]) showing that the condi-
tion imposed on A in Theorem 4.2 cannot be deleted.

Example 4.3. Let A be the f -algebra of the piecewise polynomial
functions on [0, 1] that are 0 at 0. Then the real-valued lattice ho-
momorphism T on A that assigns to a function its right derivative at
0 is not representable as in the main theorem above. Indeed, denote
the identity function on [0, 1] by f . Suppose that T has a represen-
tation as above with S a lattice and algebra homomorphism from
A onto R and α a nonzero real number such that T = αS. Then
S(f) 6= 0, hence S(f2) 6= 0, but T (f2) = 0, a contradiction.

5. A Global Point of View

In this section, we look at disjointness preserving operators from a
certain ‘global’ point of view. Indeed, we focus on the lattice struc-
ture of certain sets of operators preserving disjointness rather that
the behavior of the disjointness preserving operators themselves. We
start our investigation by introducing the notion of disjointness pre-
serving sets. A nonvoid subset D of Lb (L, M) is called a disjointness
preserving set in Lb (L,M) if |S (f)| ∧ |T (g)| = 0 for all S, T ∈ D
and f, g ∈ L with |f | ∧ |g| = 0. Several elementary properties follow
straightforwardly from the definition. Let us single out a few as par-
ticularly worthy. For instance, an order bounded operator T from
L into M preserve disjointness if and only if {T} is a disjointness
preserving set in Lb (L,M). Therefore, any element in a disjoint-
ness preserving set in Lb (L, M) is an order bounded disjointness
preserving operator. Moreover, the non-void subset D of Lb (L,M)
is a disjointness preserving set in Lb (L,M) if and only if each pair
{S, T} of elements of D is a disjointness preserving set in Lb (L,M).
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Thus, if D is a disjointness preserving set in Lb (L,M) then so is
any nonvoid subset of D. However, the next property of disjointness
preserving sets is not so visible at first sight. Indeed, it turns out
that each pair in a disjointness preserving set in Lb (L,M) has a
supremum and an infimum in L (L,M). More details are given in
the following.

Lemma 5.1. Let D be a disjointness preserving set in Lb (L,M).
Then each pair {S, T} of elements of D has a supremum S ∨ T and
a infimum S ∧ T in L (L,M) such that

(S ∨ T ) (f) = S (f) ∨ T (f) and (S ∧ T ) (f) = S (f) ∧ T (f)

for all f ∈ L+.

Proof. Let S, T ∈ D and f, g ∈ L such that |f | ∧ |g| = 0. Since D
is a disjointness preserving set in Lb (L,M), the sets {S (f) , T (f)}
and {S (g) , T (g)} are disjoint. Hence,

0 ≤ |S (f)− T (f)| ∧ |S (g)− T (g)| = 0

So, the difference S − T is an order bounded disjointness preserving
operator from L into M . By Theorem 2.2, S − T has an absolute
value |S − T | in the ordered vector space L (L, M) such that

|S − T | (f) = |S (f)− T (f)| for all f ∈ L+.

This yields quickly that the pair {S, T} has a least upper bound
S ∨ T and a great lower bound S ∧ T in L (L,M) given by

S ∨ T =
1
2

(S + T + |S − T |) and S ∧ T =
1
2

(S + T − |S − T |) .

Now, we prove that these supremum and infimum are given point-
wise. On the other hand, if f ∈ L+ then

(S ∨ T ) (f) =
(

1
2

(S + T + |S − T |)
)

(f)

=
1
2

(S (f) + T (f) + |S − T | (f))

=
1
2

(S (f) + T (f) + |S (f)− T (f)|) = S (f) ∨ T (f) .

The formula

(S ∧ T ) (f) = S (f) ∧ T (f) for all f ∈ L+

is obtained in the same way completing the proof of the lemma. �
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Now, let S, T be order bounded disjointness preserving operators
from L into M . A short’s moment thought (see the first lines of the
previous proof) reveals that if {S, T} is a disjointness preserving set
in Lb (L,M) then the sum S+T preserves disjointness. The question
wether this implication is reversible is discussed next.

Lemma 5.2. Let S, T be order bounded disjointness preserving op-
erators from L into M . Then the following are equivalent.

(i) S + T preserves disjointness
(ii) The pair {S, T} is a disjointness preserving set in Lb (L,M).

Proof. Only necessity is proved. So, assume S +T to be disjointness
preserving. By Theorem 2.2, the absolute value |S + T | exists in the
ordered vector space L (L,M). Furthermore, if f ∈ L+ then

0≤ |(|S| − |T |) (f)|= |S (f)|−|T (f)| ≤ |S (f) + T (f)|= |S + T | (f) .

It follows readily that |S| − |T | preserves disjointness. So, the ab-
solute value ||S| − |T || of |S| − |T | exists in L (L,M) and if f ∈ L+

then

||S| − |T || (f) = ||S| (f)− |T | (f)| = ||S (f)| − |T (f)|| .
As in the proof of Lemma 5.1, the pair {|S| , |T |} has a supremum
|S| ∨ |T | and a infimum |S| ∧ |T | in L (L,M). Moreover, if f ∈ L+

then

(|S| ∨ |T |) (f) = |S (f)|∨|T (f)| and (|S| ∧ |T |) (f) = |S (f)|∧|T (f)|.
At this point, let f, g ∈ L such that |f | ∧ |g| = 0. Since |S| and |T |
are lattice homomorphisms from L into M , we can write

(|S| ∨ |T |) (|f |) + (|S| ∨ |T |) (|g|) = (|S| ∨ |T |) (|f |+ |g|)
= (|S| ∨ |T |) (|f | ∨ |g|)
= (|S| (|f | ∨ |g|)) ∨ (|T | (|f | ∨ |g|))
= |S |f || ∨ |S |g|| ∨ |T |f || ∨ |T |g||
= |S |f || ∨ |T |f || ∨ |S |g|| ∨ |T |g||
= (|S| ∨ |T |) (|f |) ∨ (|S| ∨ |T |) (|g|) .

Thus,

0 ≤ |S (f)| ∧ |T (g)|
= ||S| (f)| ∧ ||T | (g)| = |S (f)| ∧ |T (g)|
≤ (|S| ∨ |T |) (|f |) ∧ (|S| ∨ |T |) (|g|) = 0.
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We derive that {S, T} is a disjointness preserving set and we are
done. �

In [13], Bernau, Huijsmans, and de Pagter studied sums of order
bounded disjointness preserving operators and gave various proper-
ties of such sums. More recently in [50], de Pagter in collaboration
with Schep furnished several necessary and sufficient conditions for a
sum of two order bounded disjointness preserving operators in order
to be again preserving disjointness. Lemma 5.2 above can be seen
as a modest contribution to this study.

Now, recall that the set Orth (M) of all orthomorphisms on M
is a generalized vector sublattice of L (M) the lattice operations of
which are given pointwise. Actually, this nice property of Orth (M)
has something to do with the fact that Orth (M) is a particular
disjointness preserving set in Lb (M). Let us say some additional
words in order to explain our point of view. Assume that D is a dis-
jointness preserving set in Lb (M) that contains Orth (M). Hence,
IM ∈ D and {IM , T} is a disjointness preserving set in Lb (M) for
all T ∈ D. It follows that T is an orthomorphism on M , that is,
D = Orth (M). In other words, Orth (M) is a maximal element
in the set of all disjointness preserving sets in Lb (M) with respect
to the inclusion ordering. Surprisingly, it turns out that any max-
imal disjointness preserving set in Lb (L,M) is a generalized vector
sublattice of L (L,M). To see this, let us define a disjointness pre-
serving set M in Lb (L,M) to be maximal if there is no strictly large
disjointness preserving set in Lb (L,M). We are in position now to
prove the central theorem of this section.

Theorem 5.3. Let M be a maximal disjointness preserving set in
Lb (L,M). Then M is a generalized vector sublattice of L (L,M).
Moreover, if S, T ∈M then

(S ∨ T ) (f) = S (f) ∨ T (f) and (S ∧ T ) (f) = S (f) ∧ T (f)

for all f ∈ L+.

Proof. Let S, T ∈ M and a be a real number. Since {S, T} is a
disjointness preserving set in Lb (L, M), Lemma 5.2 yields that the
sum S +T preserves disjointness. Now, let R ∈M and f, g ∈ L such
that |f | ∧ |g| = 0. Hence, {R,S, T} is a disjointness preserving set
in Lb (L,M) so

|R (f)| ∧ |S (g)| = |R (f)| ∧ |T (g)| = 0
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We derive that

0 ≤ |R (f)| ∧ |(S + T ) (g)| ≤ |R (f)| ∧ (|S (g)|+ |T (g)|) = 0.

Thus, {R,S + T} is a disjointness preserving set in Lb (L,M). It
follows easily that M∪ {S + T} is again a disjointness preserving
set in Lb (L,M). Since M is maximal, S + T ∈ M. Analogously, it
is readily checked that M∪ {aT} is a disjointness preserving set in
Lb (L, M) and then, by maximality, aT ∈ M. This implies that M
is a vector subspace of L (L,M).

At this point, let T ∈M. Since T is an order bounded disjointness
preserving operator from L into M , the absolute value |T | of T in
L (L,M) exists (where we use Theorem 2.2). Let S ∈M and f, g ∈ L
such that |f | ∧ |g| = 0. Theorem 2.2 together with the fact that M
is a disjointness preserving set in Lb (L,M) leads to

|R (f)| ∧ ||T | (g)| = |R (f)| ∧ |T (g)| = 0.

We derive thatM∪{|T |} is a disjointness preserving set in Lb (L,M).
Since M is maximal as a disjointness preserving set in Lb (L,M), we
get M = M∪ {|T |} so |T | ∈ M. It follows that M is a generalized
vector sublattice of L (L,M) and we are done. �

Alternative aspects of maximal disjointness preserving sets can be
found in the recent works [10, 11]. For instance, this concept is used
in [11] to give an elementary proof of the existence of the modulus
of complex order bounded disjointness preserving operators between
two arbitrary complex vector lattices. This fact was first proved
via Zorn’s Lemma by Meyer in [42] for uniformly complete com-
plex vector lattices. More recently, Grobler and Huijsmans obtained
the Meyer result constructively [28]. In [11], the result was proved
without assuming the complex vector lattices under consideration to
be uniformly complete. Another property of maximal disjointness
preserving set in Lb (L, M) is discussed next.

Wickstead proved in [56] if L in addition is Dedekind complete,
then Orth (L) is a band of the vector lattice Lb (L). This result
is extended in what follows to more general setting of maximal
disjointness preserving sets. We should recall here that if M is
Dedekind complete, then the ordered vector space Lb (L,M) is a
Dedekind complete vector lattice. The following proposition follows
from Proposition 2.2 in [10] .
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Proposition 5.4. If M is Dedekind complete, then any maximal
disjointness preserving set in Lb (L, M) is a band of Lb (L,M).

Now, assume that L has a strong order unit e > 0 (that is, the
inequality |f | ≤ a |e| holds for all f ∈ L and some real number a)
and let M be a order ideal of Lb (L,M). Define the positive operator
Πe from M into M by

Πe (T ) = T (e) for all T ∈M.

The following result is a direct inference of Theorem 3.3 in [10].

Theorem 5.5. Assume L to have a strong order unit e and M to
be Dedekind complete. If M is an order ideal of Lb (L,M) then the
following are equivalent.

(i) M is a maximal disjointness preserving set in Lb (L,M).
(ii) Πe is a lattice isomorphism.
(iii) Πe is bijective.

In particular, if L has a strong order unit e and M is Dedekind
complete, then Lb (L,M) has a unique (up to a lattice isomorphism)
maximal disjointness preserving set, which is a vector lattice copy
of M . This fact turns out to be an extension of a classical fact
due to Zaanen in [58], namely, if M is a Dedekind complete vector
lattice with a strong order unit, then Orth (M) and M are isomorphic
as vector lattices. Actually, Zaanen proved a stronger result, viz.,
Orth (M) and M are isomorphic as vector lattices as soon as M
is uniformly complete and has a strong order unit. It seems to be
natural therefore to ask the following question.

Problem 5.6. Do the equivalences in Theorem 5.5 hold if M is only
uniformly complete?

The next paragraph deals with maximal disjointness preserving
sets on certain C (X)-spaces. First of all, let X and Y be topological
spaces and let τ be a function of Y to X. For every w ∈ C (Y ), let
Cω,τ indicate the mapping from C (X) into RY defined by

Cw,τ (f) (y) = w (f) f (τ (y)) for all f ∈ C (X) and y ∈ Y.

Moreover, put

Ωτ = {w ∈ C (Y ) : Cω,τ (f) ∈ C (Y ) for all f ∈ C (X)}
and

Oτ = ∪w∈Ωτ coz (w) .
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Obviously, Oτ is an open set in Y . In [9], Benamor observes that τ
is continuous on Oτ and defines τ to be maximal if there is no large
open set in Y on which τ is continuous. A sleight modification of the
proof of Corollary 1 in [9] yields directly to the following character-
ization of maximal disjointness preserving sets in Lb (C (X) , C (Y ))
when X in addition is compact.

Theorem 5.7. Assume that X is a compact space and let M be a
non-void set of Lb (C (X) , C (Y )). Then the following are equivalent.

(i) M is a maximal disjointness preserving set.
(ii) There exists a maximal function τ from Y into X such that

M = {Cw,τ : w ∈ Ωτ}.

At last, a careful examination of Theorem 5.7 leads naturally to
the following open problem.

Problem 5.8. Let T be a lattice homomorphism from L into M and
put

D (T ) = {S ◦ T : T ∈ Orth (M)} .

It is not hard to see thatD is a disjointness preserving set in Lb(L,M).
Under what conditions is D maximal? Conversely, if such conditions
are satisfied and D is an arbitrary maximal disjointness preserving
set in Lb (L,M). Does there exist a lattice homomorphism T from
L into M such that D = D (T )?

6. Algebraic Disjointness Preserving Operators

Consider a square matrix T for which on every row there is at most
one nonzero entry. Let n be the degree of its minimal polynomial
and let m be its valuation, that is, the multiplicity of 0 as a root of
that minimal polynomial. Then Tn! is diagonal, when restricted to
the range of Tm. The latter looks surprising and one suspects that
the result is known, but we have not been able to locate a reference
for it. In this section we offer a wide ranging generalization of this
matrix result. The condition above simply states that the matrix
represents an operator that preserves disjointness in the pointwise
ordering. The question arises naturally, as to whether general oper-
ators on vector lattices that preserve disjointness behave in a similar
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fashion. For obvious reasons, when leaving the domain of finite di-
mensional vector spaces, some form or another of continuity is rea-
sonably imposed on the operators considered. Thus we consider or-
der bounded disjointness preserving operators on Archimedean vec-
tor lattices. Fortunately, there is a concept of diagonal in vector
lattices such that, surprisingly, order bounded disjointness preserv-
ing operators that satisfy a polynomial equation do behave like the
matrix case. Indeed, the algebraic orthomorphisms serve the role of
diagonals. This brings us to the main topic of the present section,
algebraic order bounded disjointness preserving operators. Let us
recall some of the relevant notions.

First, we recall the reader that L is an Archimedean vector lattice.
As usual, R [X] indicates the ring of all polynomials with coefficients
in the real field R. An operator T on L is said to be algebraic if
Π (T ) = 0 for some nonzero polynomial Π ∈ R [X]. Hence, T ∈ L (L)
is algebraic if and only if the ring ideal

I (T ) = {Π ∈ R [X] : Π (T ) = 0}
is not equal to {0}. Let T ∈ L (T ) be an algebraic operator. Since
the ring R [X] is principal, the ring ideal I (T ) is generated by a
unique monic polynomial ΠT , usually called the minimal polynomial
of T . In particular, if Π ∈ R [X] then Π (T ) = 0 if and only if ΠT

divides Π. The notion of algebraic operators has been introduced by
Kaplansky [37] for operators on Banach spaces.

Now, we say that an operator T on L is strongly diagonal if there
exist pairwise disjoint components P1, P2, ..., Pm of the identity op-
erator II and real numbers α1, α2, ..., αn such that

T = α1P1 + α2P2 + · · ·+ αmPm.

Recall here that by a component of IL we mean a positive ortho-
morphism P such that the equality P ∧ (IL − P ) = 0 holds in the
vector lattice Orth (L) of all orthomorphisms on L. Strongly diago-
nal operators are usually called IL-step functions [6, 59]. Clearly, a
strongly diagonal operator on L is an orthomorphism. It turns out
that the converse holds if the orthomorphism under consideration is
algebraic (see Theorem 3.3 in [21]).

Proposition 6.1. Let T an operator on L. Then the following are
equivalent.

(i) T is a strongly diagonal
(ii) T is an algebraic orthomorphism.
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The proof of the main result of this section is based upon the clas-
sical Kakutani–Bohnenblust–Krein representation theorem [1] and
the representation of order bounded disjointness preserving operators
on C (X)-spaces as weighted composition operators (see Section 3).
However, the proof also uses the following lemma dealing with the
existence of invariant principal order ideals, which is of independent
interest (see Lemma 5.2 in [21]). First, recall that if T ∈ L (L) then
a subset D of L is T -invariant if T sends D to D. Also, recall that
an order ideal of L which is generated by one element is said to be
principal.

Lemma 6.2. Let T be an algebraic order bounded disjointness pre-
serving operator on L. For every f ∈ L there exists a T -invariant
principal order ideal of L containing f .

We are in position now to state the central result of this section.
The details can be found in Theorem 5.3 in [21].

Theorem 6.3. Let T be an order bounded disjointness preserving
operator on L. Then the following are equivalent.

(i) T is algebraic.
(ii) There exist natural numbers m and n with n > m such that

the restriction of Tn! to the vector sublattice of L generated
by the range Tm (L) of Tm is strongly diagonal.

Furthermore, when T is algebraic, n (respectively, m) can be chosen
as the the degree (respectively, the valuation) of the minimal polyno-
mial of T .

Once we observe that |Tn| = |T |n for all natural number n and
each order bounded disjointness preserving operator T on L, it fol-
lows quickly from Theorem 6.3 that the absolute value of an algebraic
order bounded disjointness preserving operator is algebraic as well.
This seems far from obvious without the representation in Theorem
6.3 and contrasts with the fact that the absolute value of a finite
rank operator need not be a finite rank operator (see [1]). On the
other hand, in the above theorem we really need both n and m, that
is to say, it is possible that Tn is not an orthomorphism on L for
any n. The following simple example illustrates that fact, whereas
special cases where one can take m = 0 will be discussed next.

Example 6.4. Let L be the Archimedean vector lattice R2 with co-
ordinatewise addition, scalar multiplication, and ordering and define
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T ∈ L (L) by T (x, y) = (x, x) for all (x, y) ∈ R2. Clearly, T is an or-
der bounded disjointness preserving which is not an orthomorphism.
Now, observe that Tn = T for all n ∈ N.

In [18], it is shown that if T is an algebraic operator on a vector
space, then T is injective if and only if T is surjective. Combining
this fact with Theorem 6.3 we get easily the following.

Corollary 6.5. Let T be a surjective (or injective) order bounded
disjointness preserving operator from L into M . Then the following
are equivalent.

(i) T is algebraic.
(ii) There exists a natural number n such that Tn! is a strongly

diagonal.

Furthermore, n can be chosen to be the degree the minimal polyno-
mial of T .

At this point, we turn our attention to locally algebraic disjoint-
ness preserving operators. First of all, recall that the operator T on
the vector space L is said to be locally algebraic if for every f ∈ L
there exists a nonzero polynomial Π ∈ R [X] (depending on f) such
that Π (T ) f = 0 (see again [37] by Kaplansky). Obviously, any
algebraic operator is locally algebraic. Next, we present a character-
ization of locally algebraic orthomorphism (see [21] for the proof).

Proposition 6.6. Let T an orthomorphism on L. Then the follow-
ing are equivalent.

(i) T is locally algebraic.
(ii) The restriction of T to each principal band of L is algebraic

(or strongly diagonal).

On the other hand, recently in [21], the notion of Kaplansky com-
plete vector lattice was introduced as follows. The vector lattice L is
said to be Kaplansky complete if for every infinite countable subset
D of L there exists f ∈ L and an infinite subset G of D such that
f ∧ g = 0 for all g ∈ G. For instance, Banach lattices and vector
lattices with weak order units are Kaplansky complete. This con-
cept turns out to be crucial for understanding when every locally
algebraic orthomorphism is strongly diagonal. For details, we refer
to [21].
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Theorem 6.7. The following are equivalent.
(i) L is Kaplansky complete.
(ii) Every locally algebraic orthomorphism on L is algebraic (and

then a strongly diagonal operator).

As a consequence, we conclude that, for σ-Dedekind complete
vector lattices, the condition that every orthomorphism is strongly
diagonal is very strong as we can see next (see [21] for the proof).

Corollary 6.8. If L is σ-Dedekind complete, then the following are
equivalent.

(i) Every orthomorphism on L is a strongly diagonal operator.
(ii) L is finite dimensional.

The condition of Dedekind σ-completeness is not superfluous as
it can be seen via the next Zaanen’s example [58].

Example 6.9. Let L be the Archimedean vector lattice of all real-
valued continuous functions on [0, 1] which are piecewise linear. So,
L is not σ-Dedekind complete and Orth (L) = {aIL : a ∈ R} .

Finally, it seems to be natural now to ask for the correspond-
ing versions of Proposition 6.6 and Theorem 6.7 for order bounded
disjointness preserving operators on the vector lattice L.

Problem 6.10. As for locally algebraic orthomorphisms, can a charac-
terization of locally algebraic order bounded disjointness preserving
operators be obtained in terms of algebraic operators?

Problem 6.11. What could be a necessary and sufficient condition
on L for locally algebraic order bounded disjointness preserving op-
erators on L to be algebraic?
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