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Minimizing Oblique Errors for Robust Estimating

DIARMUID O’DRISCOLL, DONALD E. RAMIREZ,

AND REBECCA SCHMITZ

Abstract. The slope of the best fit line from minimizing
the sum of the squared oblique errors is shown to be the

root of a polynomial of degree four. We introduce a median

estimator for the slope and, using a case study, we show that
the median estimator is robust.

1. Introduction

With ordinary least squares (OLS) regression, we have data

{(x1, Y1|X = x1), . . . , (xn, Yn|X = xn)}

and we minimize the sum of the squared vertical errors to find the
best-fit line y = h(x) = β0 + β1x. With OLS it is assumed that the
independent or causal variable is measured without error.

J. L. Gill [2] states that “some regression prediction or estimation
must be made in a direction opposite to the natural causality of
one variable by another.” This is found from the inverse function
h−1(y0) = x0 = y0/β1−β0/β1. He adds “Geometric mean regression
could be more valid than either direct or inverse regression if both
variables are subject to substantial measurement error.”

For inverse prediction we will want both h(x) and h−1(y) to model
the data. To accomplish this, we try to determine a fit so that the
squared vertical and the squared horizontal errors will both be small.
The vertical errors are the squared distances from (x, y) to (x, h(x))
and the horizontal errors are the squared distances from (x, y) to
(h−1(y), y). As a compromise, we will consider the errors at the me-
dian or midpoint to the predicted vertical and predicted horizontal
values. All of the estimated regression models we consider (includ-
ing the geometric mean and perpendicular methods) are contained
in the parametrization (with 0 ≤ λ ≤ 1) of the line from (x, h(x))
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to (h−1(y), y). For the squared vertical errors, set λ = 1 and cor-
respondingly, for the horizontal errors, set λ = 0. Our Maple codes
and the data set for our case study can be found here:

people.virginia.edu/∼der/pdf/oblique errors

Our paper first introduces the Oblique Error Method in Section 2.
In Section 3, we show how the Geometric Mean and Perpendicular
Methods are included in our parametrization. In Section 4, we in-
clude a weighted regression procedure and Section 5 contains a small
case study showing the robustness of the proposed median slope es-
timator.

2. Minimizing Squared Oblique Errors

From the data point (xi, yi) to the fitted line y = h(x) = β0 + β1x
the vertical length is ai = |yi − β0 − β1xi| , the horizontal length is
bi = |xi − (yi − β0)/β1| = |(β1xi − yi + β0)/β1| = |ai/β1| and the

perpendicular length is hi = ai/
√

1 + β2
i . With standard notation,

Sxx =
n∑

i=1

(xi − x)2, Syy =
n∑

i=1

(yi − y)2, Sxy =
n∑

i=1

(xi − x)(yi − y)

with the correlation ρ = Sxy/
√

SxxSyy. A basic fact is −1 ≤ ρ ≤ 1
or equivalently 0 ≤ S2

xy ≤ SxxSyy.
For the oblique length from (xi, yi) to (h−1(yi)+λ(xi−h−1(yi)),yi+

λ(h(xi)− yi)), the horizontal length is (1− λ)bi = (1− λ)ai/β1 and
the vertical length is λai. Since SSEh(β0, β1, λ) =

(∑n
i=1 a2

i

)
/β2

1

and SSEv(β0, β1, λ) =
∑n

i=1 a2
i , we have

SSEo(β0, β1, λ) = (1− λ)2SSEh + λ2SSEv

=
n∑

i=1

{
(1− λ)2a2

i

β2
1

+ λ2a2
i

}
=

(1− λ)2 + λ2β2
1

β2
1

n∑
i=1

a2
i .

Setting ∂SSEo/∂β0 = 0, then β0 = y − β1x and
n∑

i=1

a2
i =

n∑
i=1

{(yi − y)− β1(xi − x)}2

= Syy − 2β1Sxy + β2
1Sxx.

Hence

SSEo = ((1− λ)2β−2
1 + λ2)

(
Syy − 2β1Sxy + β2

1Sxx

)
(1)
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with

∂SSEo

∂β1

= −2(1−λ)2β−3
1 Syy+2(1−λ)2β−2

1 Sxy−2λ2Sxy+2λ2β1Sxx.

Thus the oblique estimator is a root of the fourth degree polynomial
in β1, namely

P4(β1) = λ2

√
Sxx

Syy
β4

1 − λ2ρβ3
1 + (1− λ)2ρβ1 − (1− λ)2

√
Syy

Sxx
. (2)

We claim that P4(β1) has exactly two real roots, one positive and
one negative. By inspection, since the leading coefficient of P4(β1) is
positive and the constant coefficient is negative, P4(β1) necessarily
has at least one positive and one negative root. That these are the
only real roots will be important in establishing the global minimum
value for SSEo.

The Complete Discrimination System {D1, . . . , Dn} of Yang [4] is
a set of explicit expressions that determine the number (and multi-
plicity) of roots of a polynomial. In the case of a fourth degree poly-
nomial, the polynomial has exactly two real roots, each with multi-
plicity one, provided D4 < 0; where D4 = 256a3

0a
3
4+...+144a2

0a2a4a
2
3.

The expression for D4 has 16 terms involving the five coefficients
{a0, . . . , a4} of the polynomial and it is of order 6.

For the polynomial P4(β1) (with some manipulations),

D4 = λ6(1− λ)6(−256 + 192ρ2 + 6ρ4 + 4ρ6)

−27λ4(1− λ)4ρ4

(
Sxx

Syy
(1− λ)4 + λ4 Syy

Sxx

)
.

Since |ρ| ≤ 1, it follows that D4 < 0. And thus P4(β1) has exactly
one positive and one negative root.

Evaluating ∂SSEo/∂β1 at β1 = Sxy/Sxx and using the inequality
0 ≤ S2

xy ≤ SxxSyy and the equality SxxSyy − S2
xy = (1− ρ2)SxxSyy,

∂SSEo

∂β1

=
−2(1− λ)2

β2
1

{
Syy

Sxy/Sxx
− Sxy

}
+ 2λ2

{
−Sxy +

Sxy

Sxx
Sxx

}
=
−2(1− λ)2

β2
1

1
Sxy

SxxSyy(1− ρ2)
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which has the sign of −Sxy. Similarly evaluating ∂SSEo/∂β1 at
β1 = Syy/Sxy

∂SSEo

∂β1

= 2λ2 1
Sxy

SyySxx(1− ρ2)

which has the sign of Sxy.
We use the Intermediate Value Theorem to assert that (1) If

Sxy > 0, then 0 < Sxy/Sxx ≤ β1 ≤ Syy/Sxy; (2) If Sxy < 0,
then Syy/Sxy ≤ β1 ≤ Sxy/Sxx < 0; and (3) If Sxy = 0, β1 =

±
(
((1− λ)2Syy)/(λ2Sxx)

)1/4
.

The Second Derivative Test assures that a root of P4(β1) is a local
minimum of SSEo by

∂2SSEo

∂β2
1

=
6(1− λ)2Syy

β4
1

− 4(1− λ)2Sxy

β3
1

+ 2λ2Sxx

=
2(1− λ)2

β4
1

[3Syy − 2β1Sxy] + 2λ2Sxx,

with 3Syy − 2β1Sxy = 3Syy − 2|β1Sxy| ≥ 3Syy − 2Syy = Syy > 0.
Suppose Sxy > 0. Note from Equation (1) that SSEo(|β1|) <

SSEo(−|β1|). Let β+
1 be the positive root of P4(β1) and let β−1

be the negative root of P4(β1). Then SSEo(β+
1 ) ≤ SSEo(|β−1 |) <

SSEo(β−1 ). This assures that the positive root gives the global min-
imum for SSE0(β1). A similar result holds when Sxy < 0.

3. Minimizing Squared Perpendicular and Squared
Geometric Mean Errors

The perpendicular error model dates back to Adcock [1] who intro-
duced it as a procedure for fitting a straight line model to data with
error measured in both the x and y directions.

For squared perpendicular errors we minimize SSEp(β0, β1) =∑n
i=1 a2

i /(1 + β2
1) with solutions βp

0 = y − βp
1x and

βp
1 =

(Syy − Sxx)±
√

(Syy − Sxx)2 + 4S2
xy

2Sxy
, (3)

(provided Sxy 6= 0).
Note with Sxy 6= 0 and Sxx = Syy, then βp

1 = ±1 showing that
under standardization this method is functionally independent of the
correlation between x and y!



Minimizing Oblique Errors 75

For squared geometric mean errors, we minimize SSEg(β0, β1)

=
∑n

i=1

(√
|aibi|

)2

=
∑n

i=1 a2
i /|β1| with solutions βg

0 = y−βg
1x and

βg
1 = ±

√
Syy/Sxx. Note that βg

1 is always functionally independent
of the correlation between x and y and also under standardization
bg
1 = ±1 as in the perpendicular model.

The solutions to the above equations for both βp
1 and βg

1 are also
roots of P4(β1) for particular values of λ which can be seen from
the geometry of the model. See [3] and [2] for applications of the
perpendicular and geometric mean estimators.

4. Minimizing Squared Weighted Average Errors

If the user wishes to incorporate the effect of different variances in
x and y, this can be achieved by using a weighed average of the
squared vertical and squared horizontal errors with (0 ≤ α ≤ 1)
and SSEw = αSSEv +(1−α)SSEh. A typical value for α might be
α = σ2

y/(σ2
x+σ2

y) to standardize the data. Recall from Section 2 that
SSEo = λ2SSEv+(1−λ)2SSEh. On setting (1−λ)2/λ2 = (1−α)/α,
we get the quadratic equation (2α− 1)λ2 − 2αλ + α = 0, which has
root

λ =


α−

√
α(1− α)

(2α− 1)
α 6= 1

2

1
2

α =
1
2
.

(4)

5. Case Study

In this section, we introduce the median estimator βm
1 using P4(β1)

with λ = 1/2. Our small case study reveals the desirable robust-
ness inherent in the median estimator. The data set is from [2]
with n = 40. The case study shows that the perpendicular esti-
mator is highly influenced by outliers in the data, with the verti-
cal and horizontal estimators also being significantly influenced by
outliers. The geometric mean estimator, as expected, is more ro-
bust; and our median estimator, introduced in this paper, being the
most robust in this case study. For the Weighted Average proce-
dure, α = Syy/(Syy + Sxx) = 0.671 which from Equation 4 yields
λ = 0.588.
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The first table below gives the values for the slope β1, y -intercept
β0, λ, and SSE. To study the effect of outliers, we pick a row from
the data set and perturb the values by some factor.

The second table contains the basic values and, in addition, the
square of the shifts in the slope and y-intercept caused by perturbing
the x-data by a factor of 7.5 for the data point for case k = 5. Note
that the median estimator has the smallest squared shift distance.
The third table shows similar values by perturbing the y-data by a
factor of 0.5 for case k = 5. Note that the perpendicular model has
been greatly influenced by this one outlier.

Vert Horiz Perp Geom Median Wt Avg
β1 1.28 1.59 1.48 1.43 1.38 1.35
β0 136 104 115 121 126 130
λ 1.00 0.00 0.312 0.412 0.500 0.588
SSE 12565 6163 4330 4494 4908 5581

Table 1. Gill Data for Vertical (Vert), Horizontal (Horiz),
Perpendicular (Perp), Geometric Mean (Geom), Median and

Weighted Average (Wt Avg) Procedures

Vert Horiz Perp Geom Median
β1 0.0937 2.33 0.118 0.467 0.654
β0 259 −4.39 256 215 193
SSE 62007 284364 61327 95987 129360
(β∗1 − β1)2 1.41 0.541 1.87 0.923 0.531
(β∗0 − β0)2 15040 11723 19855 8818 4506

Table 2. Gill Data perturbed with x∗[5] = 7.5 x[5]

Vert Horiz Perp Geom Median
β1 0.875 1.99 1.51 1.32 1.23
β0 174 57.2 107 127 137
SSE 30977 17770 13339 13841 14521
(β∗1 − β1)2 0.165 0.161 0.000717 0.0116 0.0228
(β∗0 − β0)2 1410 4875 3446 2789 2312

Table 3. Gill Data perturbed with y∗[4] = 0.5 y[4]
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We replicated the above perturbation procedure for each of the
n = 40 cases and record in Table 4 and Table 5 the average squared
change in slope and the average squared change in the y-intercept
denoted {E(β∗1 − β1)2, E(β∗0 − β0)2} by perturbing the original x-
data and y-data values by a factor of {7.5, 0.5} respectively. Table 6
records the average squared changes where the data has been jointly
perturbed for (x[k], y[k]) by the factors {7.5, 0.5} respectively.

Vert Horiz Perp Geom Median
E(β∗1 − β1)2 1.41 4.01 1.87 1.07 0.656
E(β∗0 − β0)2 14966 57192 19820 10358 5649

Table 4. Gill Data perturbed with x∗[k] = 7.5 x[k]

Vert Horiz Perp Geom Median
E(β∗1 − β1)2 0.0163 0.201 0.0968 0.0333 0.0143
E(β∗0 − β0)2 165 2509 1276 488 229

Table 5. Gill Data perturbed with y∗[k] = 0.5 y[k]

Vert Horiz Perp Geom Median
E(β∗1 − β1)2 1.90 20.6 2.59 0.975 0.487
E(β∗0 − β0)2 20175 258272 27880 8611 3364

Table 6. Gill Data perturbed with {x∗[k] = 7.5 x[k], y∗[k] = 0.5 y[k]}

The results in Table 4 with an outlier in the x-data show the sen-
sitivity with the vertical, horizontal and perpendicular procedures.
The results in Table 5 with an outlier in the y-data show the sen-
sitivity with the horizontal and perpendicular procedures. Table 6,
with (x, y) both perturbed, shows the robustness of the geometric
and median procedures with the median estimators uniformly su-
perior to the geometric estimators in this small case study. These
preliminary results commend the method for further investigation.
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