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Lipschitz Character of Solutions to the Inner
Obstacle Problems

S LAWOMIR JAGODZIŃSKI, ANNA OLEK AND KUBA SZCZEPANIAK

Abstract. In our paper we consider the inner problem with

l ∈ N impediments from below, the inner problem with m ∈
N impediments from above and the double inner problem

with l + m impediments. Assuming the Lipschitz character

of the obstacles we show that the corresponding solutions
are also Lipschitz. We extend here the result given in [SV],

where the author considered the inner obstacle problem with

a single impediment from below. Our work is based on the
ideas introduced by J. Jordanov from 1982 who investigated

H1,p(Ω) regularity of solutions to inner obstacle problems.

1. Introduction

In many physical processes “obstacles” appear in a natural way hav-
ing strong influence on the character of the examined problem. A
simple example of such a situation is the study of contrast between
a vibrating membrane and a vibrating membrane set between obsta-
cles.

In the 1970’s there was considerable interest in the analysis of
obstacle problems. This was connected with the development of
research on variational inequalities and has been studied by many
authors (see [BC], [BS], [T] and references therein). The majority of
results concentrated on, natural from a mathematical point of view,
problems of existence and uniqueness of the solutions. However, in
case of variational inequalities corresponding to obstacle problems
additional questions regarding, e.g., the coincidence set (cf. [DS1],
[DS2]) or regularity of the solutions (cf. [BS]) can be posed. These
problems seem to be interesting due to possible applications.
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The fundamental result where regularity of solutions with regard
to regularity of obstacles is studied in case of global obstacle prob-
lems can be found in [KS].

Recently the interest in the analysis of the obstacle problems has
increased. This is due to appearance of works on the inner problems
(see [BSz], [JOS], [Ro] and references therein). Among other things
examination of regularity of solutions to the inner obstacle problems
is a matter of significant importance.

A study of the Lipschitz character of the solutions to the obstacle
problems was initiated in [SV]. The authors showed that the solution
of the global problem and the inner problem with one obstacle from
below is Lipschitz continuous assuming that the impediments are
Lipschitz. Later on the papers [Ch1], [Ch2] appeared where one can
find theorems concerning the Lipschitz continuity of the solutions to
the global inverse and double global problems.

In our work we aim at transferring results concerning Lipschitz
character of solutions of global obstacle problems to the case of inner
ones. It is worth mentioning that the construction presented in our
paper enables us to identify each inner problem with the correspond-
ing global one. This fact makes it possible to carry out the complete
analysis of the inner problems with the help of methods available for
the global ones.

We offer a comprehensive study of the Lipschitz regularity of so-
lutions of the inner obstacle problems. The present paper is a part
of the research program on free boundary problems.

2. Notation and Basic Definitions

Throughout the paper we assume that Ω ⊂ Rn is an open, bounded
set with the smooth boundary ∂Ω. The functions aij : Ω̄ → R for
1 ≤ i, j ≤ n belong to C1(Ω) and satisfy the ellipticity condition,
i.e., there exist γ, µ > 0 such that

µ|ξ|2 ≥ aij(x)ξiξj ≥ γ|ξ|2 for x ∈ Ω and ξ ∈ Rn, (1)

where the summation convention is adopted. We also introduce the
second order elliptic operator

L = −∂xi

(
aij(x)∂xj

)
. (2)

Remark 2.1. The operator L defined by (2) considered as the map-
ping L : H1

0 (Ω) → H−1(Ω) defines (see [KS]) a bilinear, continuous
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and coercive form on H1
0 (Ω) as follows:

a(u, v) = 〈Lu, v〉 =
∫

Ω

aij(x)uxi(x)vxj (x) dx (u, v ∈ H1
0 (Ω)). (3)

Now we pass to the precise definitions of fundamental concepts
of this work. Let us consider l ∈ N functions Ψi ∈ H1(Ei) where
Ei ⊂ Ω are compact sets such that ∂Ei is smooth, Ei ∩ Ej = ∅ for
i, j = 1, . . . , l and i 6= j. Next we take m ∈ N functions Φi ∈ H1(Fi)
where Fi ⊂ Ω are compact sets such that ∂Fi is smooth, Fi ∩Fj = ∅
for i, j = 1, . . . ,m and i 6= j. Moreover, we assume that:

Ψi ≤ Φj on Ei ∩ Fj for i = 1, . . . , l and j = 1, . . . ,m. (4)

We denote by Kl, Km and Km
l the following admissible sets:

Kl = {v ∈ H1
0 (Ω) : v ≥ Ψi on Ei for 1 ≤ i ≤ l}, (5)

Km = {v ∈ H1
0 (Ω) : v ≤ Φi on Fi for 1 ≤ i ≤ m}, (6)

Km
l = {v ∈ H1

0 (Ω) : v ≥ Ψi on Ei ∧ v ≤ Φj on Fj , (7)
for 1 ≤ i ≤ l, 1 ≤ j ≤ m}.

Definition 2.2. Let l be a fixed natural number. For the form
defined by (3) and f ∈ H−1(Ω) the problem:
Find ul ∈ Kl such that

a(ul, v − ul) ≥ 〈f, v − ul〉 for any v ∈ Kl, (8)

where Kl is defined by (5) is called an l−inner obstacle problem with
the impediments Ψi (i = 1, . . . , l).

We shall use the notation l − IP to denote the l−inner obstacle
problem.

Definition 2.3. Let m be a fixed natural number. For the form
defined by (3) and f ∈ H−1(Ω) the problem:
Find um ∈ Km such that

a(um, v − um) ≥ 〈f, v − um〉 for any v ∈ Km, (9)

where Km is defined by (6) is called an m−inner inverse obstacle
problem with the impediments Φi (i = 1, . . . ,m).

We shall use the notation m−IIP to denote the m−inner inverse
obstacle problem.

Definition 2.4. Let l, m be fixed natural numbers. For the form
defined by (3) and f ∈ H−1(Ω) the problem:
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Find um
l ∈ Km

l such that

a(um
l , v − um

l ) ≥ 〈f, v − um
l 〉 for any v ∈ Km

l , (10)

where Km
l is defined by (7) is called an l,m−double inner obsta-

cle problem with the impediments Ψi (i = 1, . . . , l) and Φj (j =
1, . . . ,m).

We shall use the notation l,m−DIP to denote the l,m−double
inner obstacle problem.

Remark 2.5. If we put l = 1, take E1 = Ω and assume that Ψ1 = Ψ
satisfies Ψ

∣∣
∂Ω
≤ 0 then Definition 2.2 in fact is identical with the

definition of the global obstacle problem with the impediment Ψ.
The admissible set K̃1 will be defined by

K̃1 = {v ∈ H1
0 (Ω) : v ≥ Ψ on Ω}. (11)

We shall use the notation GP to denote the global obstacle problem.

Remark 2.6. If we put m = 1, take F1 = Ω and assume that
Φ1 = Φ satisfies Φ

∣∣
∂Ω
≥ 0 then Definition 2.3 gives the definition

of the inverse global obstacle problem with the impediment Φ.The
admissible set K̃1 will be defined by

K̃1 = {v ∈ H1
0 (Ω) : v ≤ Φi on Ω}. (12)

We shall use the notation GIP to denote the inverse global obstacle
problem.

Remark 2.7. If we put l = m = 1, take E1 = F1 = Ω and assume
that Ψ1 = Ψ and Φ1 = Φ are such that Ψ

∣∣
∂Ω
≤ 0, Φ

∣∣
∂Ω
≥ 0 and

Ψ ≥ Φ then Definition 2.4 gives the definition of the double global
obstacle problem with the impediments Ψ and Φ. The admissible
set K̃1

1 will be defined by

K̃1
1 = {v ∈ H1

0 (Ω) : Ψ ≤ v ≤ Φ on Ω}. (13)

We shall use the notation DGP to denote the double global obstacle
problem.

The existence and uniqueness theorems for GP , GIP , DGP can
be found in [KS].
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3. Lipschitz Regularity

In this section we present the main results of our paper, i.e., the
Lipschitz regularity of the solutions in the case of the inner obsta-
cle problems. Since our approach is based on identification of the
inner problem with the corresponding global one, we now recall the
following lemma (see [SV], [Ch1], [Ch2]).

Lemma 3.1. The solutions: ũ1 — of GP with the impediment Ψ
and f = 0, ũ1 — of GIP with the impediment Φ and f = 0, ũ1

1 —
of DGP with the impediments Ψ, Φ and f = 0 are Lipschitz (ũ1, ũ1,
ũ1

1 ∈ H1,∞(Ω)) provided Ψ, Φ ∈ H1,∞(Ω).

We start with presenting the result for l − IP (for l ≥ 1). The
following theorem is a generalisation of the one included in [SV]
where l = 1.

Theorem 3.2. If Ψi ∈ H1,∞(Ei) then there exists a unique solution
ul to l − IP with the impediments Ψi (i = 1, . . . , l). Moreover, if
f = 0 this solution is Lipschitz continuous.

Proof. Let us construct for each i = 1, . . . , l the functions Ψ̃i : Ω→
R in the following way

Ψ̃i =
{
wi in Ω\Ei

Ψi in Ei,
(14)

where wi ∈ H1(Ω\Ei) solves the following problem Lwi = 0 in Ω\Ei

wi = Ψi in ∂Ei

wi = 0 in ∂Ω.
(15)

Next we put
Ψ = max{Ψ̃1, . . . , Ψ̃l}.

It is well known (see [KS]) that in order to show existence and unique-
ness of the solution ul of l− IP it is enough to show non-emptiness
of the set Kl. It is easy to see that Ψ ∈ Kl which yields the desired
conclusion.

On the other hand, we observe that Ψ̃i (i = 1, . . . , l) and conse-
quently Ψ are Lipschitz continuous. Then we notice that ul satisfies
Lul ≥ 0 in Ω. Indeed, for arbitrary v ∈ H1

0 (Ω) such that v ≥ 0 in Ω
we have ul + v ∈ Kl. Thus we can write

a(ul, ul + v − ul) ≥ 0.
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The above inequality gives that a(ul, v) ≥ 0 for arbitrary v ∈ H1
0 (Ω)

such that v ≥ 0 in Ω.
We have Ψ̃i = Ψi in Ei, LΨ̃i = 0 in Ω\Ei, Ψ̃i

∣∣
∂Ω

= 0 and Lul ≥ 0
in Ω\Ei. Therefore using the maximum principle we derive that
ul ≥ Ψ̃i in Ω.

Moreover, we have that ul ≥ Ψ in Ω. It is true due to the fact
that ul ≥ Ψ̃i in Ω for i = 1, . . . , l. This together with ul ∈ H1

0 (Ω)
implies that ul ∈ K̃1 where K̃1 is defined in (11).

Let us denote by ũ1 the solution to GP with the impediment Ψ
and f being equal to zero. Since ul ∈ K̃1 we can state that

a(ũ1, ul − ũ1) ≥ 0.

On the other hand, K̃1 ⊂ Kl since if v ∈ K̃1 then v ∈ H1
0 (Ω) and

v ≥ Ψ ≥ Ψi on Ei for i = 1, . . . , l. Hence we can write

a(ul, ũ1 − ul) ≥ 0,

because ul ∈ Kl solves the variational inequality (8) with f = 0.
Having added the last two inequalities we shall obtain (using the
coercivity of the form a(·, ·) in H1

0 (Ω)) that there exists ν > 0 such
that

ν ‖ ũ1 − ul ‖2≤ a(ũ1 − ul, ũ1 − ul) ≤ 0,

which implies that ũ1 = ul in Ω. Lipschitz continuity of ũ1 (see
Lemma 3.1) completes the proof. �

The result similar to the one presented in Theorem 3.2 can be
obtained for m− IIP (m ≥ 1).

Theorem 3.3. If Φi ∈ H1,∞(Fi) then there exists a unique solution
um to m− IIP with the impediments Φi (i = 1, . . . ,m). Moreover,
if f = 0 this solution is Lipschitz continuous.

The proof of Theorem 3.3 is almost identical to the previous one,
so we omit it.

In the third theorem we consider 1, 1 − DIP . In this case we
extend the result given in [SV] by adding one impediments from
above.

Theorem 3.4. If the functions Ψ1 ∈ H1,∞(E1), Φ1 ∈ H1,∞(F1)
satisfy

Ψ1 ≤ Φ1 in E1 ∩ F1, (16)
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then there exists a unique solution u1
1 to 1, 1 − DIP with the im-

pediments Ψ1, Φ1. Moreover, if f = 0 this solution is Lipschitz
continuous.

Proof. Firstly, applying the ideas presented in the proof of Theorem
3.2 (see (14)) we construct the Lipschitz extensions of Ψ1 and Φ1

onto the whole domain Ω. In order to reduce the complexity of
notations those extensions we still call Ψ1 and Φ1. Then we observe
that max{Ψ1, 0}+ min{Φ1, 0} ∈ K1

1 which gives us existence of the
unique solution u1

1 ∈ K1
1 to the 1, 1−DIP .

In the proof we shall construct two Lipschitz functions Ψ and Φ
such that the solution ũ1

1 of DGP with the impediments Ψ and Φ
and f being equal to zero will coincide with u1

1 – the solution of
1, 1−DIP .

Let us consider the coincidence set I[u1
1] for 1, 1−DIP . Obviously

it is contained in E1 ∪ F1 (as (16) holds). We denote by IF [u1
1] that

part of I[u1
1] which is contained in F1 ∩ (Ω\E1) where u1

1 = Φ1 and
by IE [u1

1] that part of I[u1
1] which is contained in E1∩ (Ω\F1) where

u1
1 = Ψ1. Now we define

Ψ̃1 =
{

Ψ1 in E1

min{Ψ1,Φ1} in Ω\E1,
(17)

Φ̃1 =
{

Φ1 in F1

max{Ψ1,Φ1} in Ω\F1.
(18)

Both functions Ψ̃1 and Φ̃1 are continuous. Moreover, they are both
Lipschitz.

Now let us take a Lipschitz function ξ ∈ H1,∞
0 (Ω) such that

ξ|∂(Ω\E1) = 0 and ξ < 0 in Ω\E1. Next we consider the Lipschitz
function δ ∈ H1,∞(Ω) where we put δ = Ψ̃1 + ξ. We know that

u1
1 = Φ1 = Φ̃1 in IF[u1

1]. (19)

It also satisfies
u1

1 > δ = Ψ̃1 + ξ in IF[u1
1] (20)

since Ψ̃1 + ξ = min{Ψ1,Φ1}+ ξ < Φ̃1 in IF [u1
1]. From the continuity

of u1
1, ξ and Ψ̃1 we state that there exists a neighbourhood OF of

IF [u1
1] where the inequality (20) holds.

Now we choose a set DF with the smooth boundary in the follow-
ing way:

IF [u1
1] ⊂ DF ⊂ D̄F ⊂ OF ∩ (Ω\E1).
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Let ψ be the solution of the problem:{
Lψ = 0 in (Ω\E1)\D̄F

ψ = δ in ∂((Ω\E1)\D̄F ). (21)

The function ψ is Lipschitz (see [ADN], [BC]). Next we remark that
the set D was chosen in such a way that (Ω\E1)\D̄F ⊂ Ω\I[u1

1].
Therefore using again the basic properties of the solutions to the
obstacle problems (see [KS]) we have that Lu1

1 = 0 in (Ω\E1)\D̄F .
Hence

L(u1
1 − ψ) = 0 in (Ω\E1)\D̄F.

Moreover, we have

u1
1 = ψ = Ψ1 in ∂Ω,

which follows from the definition of extension of Ψ1 and the con-
structions of Ψ̃1 and ξ,

u1
1 ≥ ψ = Ψ1 in ∂E1,

which follows from (16) and the constructions of Ψ̃1 and ξ,

u1
1 ≥ ψ in ∂DF ,

which follows from (20) and the construction of the set DF . Then
the maximum principle implies that

u1
1 ≥ ψ in (Ω\E1)\D̄F. (22)

Finally we put

Ψ =

 Ψ1 in E1

δ in D̄F

ψ in (Ω\E1)\D̄F .
(23)

Clearly the function Ψ is Lipschitz continuous in Ω. Moreover,

u1
1 ≥ Ψ in Ω (24)

since u1
1 ∈ K1

1 , (22) holds and (20) is satisfied in D ⊂ OF ∩ (Ω\E1).
Now we pass to the remaining part of the proof. We choose

a Lipschitz function η ∈ H1,∞
0 (Ω) such that η > 0 in Ω\F1 and

η|∂(Ω\F1) = 0. Next we consider the Lipschitz function σ ∈ H1,∞(Ω)
where we put σ = Φ̃1 + η. We know that u1

1 = Ψ̃1 = Ψ1 in IE [u1
1].

It also satisfies the following:

u1
1 < σ = Φ̃1 + η in IE [u1

1] (25)
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as Ψ̃1 = Ψ < Φ̃1 + η in IE [u1
1]. From the continuity of u1

1, η and Φ̃1

we state that there exists a neighbourhood OE of IE [u1
1] where the

inequality (25) holds. Acting similarly as above we can choose a set
DE with smooth boundary such that:

IE [u1
1] ⊂ DE ⊂ D̄E ⊂ OE ∩ (Ω\F1).

Denoting by φ the solution of the problem{
Lφ = 0 in (Ω\F1)\D̄E

φ = σ in ∂((Ω\F1)\D̄E), (26)

we get that φ is Lipschitz provided σ is Lipschitz. Knowing that
(Ω\F1)\D̄E ⊂ Ω\I[u1

1] and using the maximum principle we deduce
that:

u1
1 ≤ φ in (Ω\F1)\D̄E. (27)

Finally we put

Φ =

 Φ1 in F1

σ in D̄E

φ in (Ω\F1)\D̄E .
(28)

Clearly the function Φ is Lipschitz. Moreover,

u1
1 ≤ Φ in Ω (29)

as u1
1 ∈ K1

1 , (27) holds and (25) is satisfied in DE ⊂ OE ∩ Ω\F1.
Conditions (24), (29) together with u1

1 ∈ H1
0 (Ω) imply that u1

1 ∈
K̃1

1 , where K̃1
1 is defined in (12). Moreover, K̃1

1 ⊂ K1
1 . Indeed, if

v ∈ K̃1
1 then v ∈ H1

0 (Ω), v ≥ Ψ = Ψ1 in E1 and v ≤ Φ = Φ1 in F1

which gives that v ∈ K1
1 .

Let us denote by ũ1
1 the solution of the DGP with the impedi-

ments Ψ, Φ given by (23), (28), respectively and f being equal to
zero. Using coercivity of the form a(·, ·) on H1

0 (Ω) we shall deduce
that u1

1 = ũ1
1. This completes the proof (as ũ1

1 is Lipschitz — see
Lemma 3.1). �

The last theorem describes the Lipschitz continuity of the solu-
tions in the most general case, i.e., l,m−DIP .

Theorem 3.5. If the functions Ψi ∈ H1,∞(Ei) (i=1,. . . ,l), Φj ∈
H1,∞(Fj) (j=1,. . . ,m) satisfy

Ψi ≤ Φj in Ei ∩ Fj , (30)



24 S. Jagodziński, A. Olek and K. Szczepaniak

then there exists a unique solution um
l to l,m − DIP with the im-

pediments Ψi, Φj. Moreover, if f = 0 this solution is Lipschitz
continuous.

Proof. At the beginning similarly to what we did in the proof of
Theorem 3.2 (see (14)) we construct the Lipschitz extensions of Ψi

and Φj onto the whole domain Ω. Again in order to avoid too much
complexity these extensions will be still called Ψi and Φj . Then we
observe that max{Ψ1, . . . ,Ψl, 0}+ min{Φ1, . . . ,Φm, 0} ∈ Km

l which
gives us existence of the unique solution um

l ∈ Km
l to l,m−DIP .

It could be proved (see [ES]) that the following estimates for the
solutions to the inner obstacle problems are satisfied

um
1(i) ≤ u

m
l ≤ u

1(j)
l in Ω, (31)

where um
1(i) denotes the solution of 1,m − DIP with an arbitrarily

fixed impediment Ψi and m impediments Φj , u1(j)
l is the solution of

l, 1−DIP with l impediments Ψi and an arbitrarily fixed Φj .
Firstly, we examine 1,m−DIP with the fixed impediment Ψi and

m impediments Φj . Using the construction presented in the proof of
Theorem 3.4 for each pair of the obstacles (Ψi, Φj) we construct m
global obstacles Φ̃j according to (28) and next we put Φi = min

1≤j≤m
Φ̃j .

Then we consider 1, 1−DIP with the admissible set

K1
1(i) = {v ∈ H1

0 (Ω) : v ≥ Ψi on Ei ∧ v ≤ Φi on Ω}. (32)

Its solution exists and we denote it by u1
1(i).

It can be easily seen that um
1(i) ∈ K

1
1(i) since (29) is satisfied for all

j = 1, . . . ,m. On the other hand, K1
1(i) ⊂ Km

1(i). Indeed, if we take
v ∈ K1

1(i) then v ≥ Ψi on Ei and v ≤ Φi = min
1≤j≤m

Φ̃j and Φ̃j = Φj

on Fj . Using the coerciveness of the form a(·, ·) on H1
0 (Ω) we get

that um
1(i) = u1

1(i).
Having 1, 1 − DIP with the pair of obstacles (Ψi,Φi) we apply

once again the construction described in the proof of the previous
theorem and we create the function Ψ̄i according to (23). Obviously

um
1(i) ≥ Ψ̄i on Ω. (33)

Then we consider l, 1−DIP with the fixed impediment Φj . For
each pair of the obstacles (Ψi,Φj) we build l global obstacles Ψ̃i

according to (23) and next we put Ψj = max
1≤i≤l

Ψ̃i. Then we consider
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1, 1−DIP with the admissible set

K
1(j)
1 = {v ∈ H1

0 (Ω) : v ≤ Ψj on Ω ∧ v ≤ Φj on Fj}. (34)

Its solution exists and we call it u1(j)
1 .

One can observe that u1(j)
l ∈ K1(j)

1 since (24) is satisfied for all
i = 1, . . . , l. Moreover, K1(j)

1 ⊂ K
1(j)
l . Indeed, if we take v ∈ K1(j)

1

then v ≤ Φj on Fj and v ≥ Ψj = max
1≤i≤l

Ψ̃i and Ψ̃i = Ψi on Ei. Using

the coerciveness of the form a(·, ·) onH1
0 (Ω) we get that u1(j)

l = u
1(j)
1 .

Concentrating once again on 1, 1−DIP with the pair of obstacles
(Ψj ,Φj) we create using (28) the global impediment Φ̄j such that

u
1(j)
l ≤ Φ̄j on Ω. (35)

At this moment we deal with two Lipschitz function Ψ̄i, Φ̄j sat-
isfying (33), (35), respectively. Repeating for all i = 1, . . . , l and for
all j = 1, . . . ,m the constructions described above we can build l
functions Ψ̄i (i = 1, . . . , l) and m functions Φ̄j (j = 1, . . . ,m). Then
we define:

Ψ = max
i=1,...,l

Ψ̄i, Φ = min
j=1,...,m

Φ̄j .

From (31) we get the following estimates which hold for arbitrary i, j

Ψ̄i ≤ um
1(i) ≤ u

m
l ≤ u

1(j)
l ≤ Φ̄j .

Thus
Ψ ≤ um

l ≤ Φ. (36)

This together with um
l ∈ H1

0 (Ω) implies that um
l ∈ K̃1

1 , where K̃1
1 is

defined in (13). Moreover, due to definition of Ψ and Φ, it is easy to
see that K̃1

1 ⊂ Km
l .

Let us denote by ũ1
1 the solution of DGP with the impediments

Ψ and Φ. Using the coercivity of the form a(·, ·) in H1
0 (Ω) we deduce

that um
l equals ũ1

1 which is Lipschitz continuous (see Lemma 3.1).
This completes the proof. �

Remark 3.6. It is well known that in case of solutions of the global
problems one can expect their regularity up to H2,p. For the in-
ner problem the situation is much more complicated. Despite H2,p

regularity of the obstacle the same class of the solution can not be
obtained. However under certain assumptions it is possible to get
H2,p regularity of the solutions (see [BS], [JOS]).
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Remark 3.7. It is worth pointing out that it was possible to adopt
the method of identification of the inner problem with the global one
to obtain the results concerning continuous dependence on obstacle
of solutions (see [OS], [JOS]).
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