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Algebraic Properties of the Index of Invariant
Subspaces of Operators on Banach Spaces

GEORGE CHAILOS

Abstract. For an operator S on a Banach space X, let
Lat (S, X) be the collection of all its invariant subspaces. We

consider the index function on Lat (S, X) and establish vari-

ous algebraic properties of it. Amongst others we show that
if S is a bounded below operator, then

ind M + ind N ≥ ind(M ∩N) + ind(M ∨N).

If, in addition, ind M = ind N = 1 and M ∩ N 6= {0} then

ind(M ∨N) = 1.

1. Introduction

If S is an operator on a Banach space X, then a closed subspace M of
X is called invariant for S if SM ⊂ M . The collection of invariant
subspaces of an operator S is denoted by Lat (S, X). It forms a
complete lattice with respect to intersections and closed spans. One
of the important notions in the general theory of operators, such as
bounded below operators, is the index of an element in Lat (S, X),
which is defined as follows. (This definition is taken from [1].)

Definition 1.1. The map

ind : Lat (S, X) −→ {0} ∪ N ∪ {∞}
is defined as ind M = dim (M/SM) and ind M = 0 if and only if
M = {0}. We say that M has index n if ind M = n.

The index function plays an essential role in the study of invariant
subspaces of Banach spaces. (For example, see an extensive study
in [5] of index 1 invariant subspaces in Banach spaces of analytic
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functions.) In this article we give various algebraic properties of
the index function. Amongst others, and as a corollary to our main
result, we show that if M, N ∈ Lat(S, X), ind M = ind N = 1 and
M ∩N 6= {0} then ind(M ∨N) = 1, where M ∨N denotes the closed
span of M and N . (Equivalently, M ∨N is the closure of M + N).
This result, but in not such a general setting as the one presented
here, was proved by Richter ([5], Corollary 3.12), using operator
theoretical tools and results from analysis. Here we prove it using
only algebraic tools and a rather standard result from functional
analysis.

2. Algebraic Properties of the Index Function

Theorem 2.1. Let R be a commutative ring with identity and let
A, A′, B′ be free unitary R-modules such that A′ and B′ are free
submodules of A. Then

rank(A/A′)+rank(A/B′) = rank(A/(A′∩B′))+rank(A/(A′+B′)).

Proof. Consider the following sequence

0 −→ A/(A′ ∩B′)
f−→ A/A′ ⊕A/B′ g−→ A/(A′ + B′) −→ 0,

where f([y]) = ([y], [y]), g([x], [y]) = [x − y] and [·] denotes the
equivalence class in the appropriate quotient module. We claim that
the sequence above is exact.

To prove the claim we first show that f and g are well-defined
homomorphisms. Letting [y] ∈ A/(A′ ∩ B′) and x ∈ A′ ∩ B′, we
obtain that f([y + x]) = ([y + x], [y + x]) = ([y], [y]). Hence, f is well
defined. Moreover, f is a homomorphism, since

f([y] + [z]) = ([y] + [z], [y] + [z]) = ([y], [y]) + ([z], [z])

f(r[y]) = (r[y], r[y]) = r([y], [y]), r ∈ R.

Similarly, if ([x], [y]) ∈ A/A′ ⊕A/B′, and x1 ∈ A′, x2 ∈ B′, then

g([x + x1], [y + y1]) = [(x + x1)− (y + y1)]

= [(x− y) + (x1 − y1)] = [x− y],

since x1 − y1 ∈ A′ + B′. Thus, g is well defined.
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Moreover, g is a homomorphism, since

g(([x], [y]) + ([x′], [y′])) = g([x] + [x′], [y] + [y′])

= g([x + x′], [y + y′])

= [(x + x′)− (y + y′)] = [x− y + x′ − y′]

= [x− y] + [x′ − y′]

and g(r([x], [y])) = g([rx], [ry]) = [rx− ry] = r[x− y], r ∈ R.

It remains to show that ker g = im f . For this let ([x], [y]) ∈
A/A′⊕A/B′ be such that g([x], ][y]) = 0. Then [x−y] = 0, and thus
x − y ∈ A′ + B′. This implies that x + A′ = y + B′, i.e., [x]A/A′ =
[y]A/B′ wherefore ([x]A/A′ , [y]A/B′) ∈ im f , and hence ker g ⊂ im f .

Conversely, if ([x], [y]) ∈ im f then x + A′ = y + B′ and hence
x + A′ + B′ = y + A′ + B′. It follows that g([x], [y]) = [x− y] = 0 so
that im f ⊂ ker g. The proof of the claim is complete.

Since A/(A′ + B′) is a free module, it is in particular projective,
and hence the above exact sequence splits (see [4]). Therefore

A/A′ ⊕A/B′ = A/(A′ ∩B′)⊕A/(A′ + B′).

This immediately implies that

rank(A/A′)+rank(A/B′) = rank(A/(A′∩B′))+rank(A/(A′ +B′))

concluding the proof of the theorem. �

As every vector space is free over its ground field, the following is
an immediate consequence of the above theorem.

Corollary 2.2. If X is a Banach space and S an operator on X,
for all M, N ∈ Lat(S, X)

ind M + ind N = ind(M ∩N) + ind(M + N).

In then case when S is a bounded below operator, like the shift
operator on Banach spaces of analytic functions, the following holds.

Lemma 2.3. Suppose M, N ∈ Lat(S, X), where S is a bounded
below operator on a Banach space X. Then

ind(M ∨N) ≤ ind(M + N) ≤ ind M + ind N.
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Proof. If either ind M or ind N is infinite, then there is nothing
to prove. So we may assume that ind M < ∞ and ind N < ∞.
Thus there are finite-dimensional subspaces M1 and N1 of M and
N , respectively, such that M = SM + M1, N = SN + N1, where
dim M1 = ind M and dim N1 = ind N . We find that

M + N = SM + M1 + SN + N1

= S(M + N) + M1 + N1

⊆ S(M ∨N) + (M1 + N1)
⊆M ∨N.

Since S is a bounded below operator, its range is closed (see, e.g., [2],
Proposition 6.4, chapter VII), and hence the second to last expression
is the sum of a closed and a finite-dimensional subspace, hence it is
closed. Since M + N is dense in M ∨ N we obtain that the last
inclusion in above is actually an equality. From this it follows that

ind(M ∨N) ≤ dim(M1 + N1) = ind(M + N) ≤ ind M + ind N.

�

The next theorem, which is our main result, follows immediately
from Corollary 2.2 and Lemma 2.3.

Theorem 2.4. If X is a Banach space and S a bounded below op-
erator on X then, for all M,N ∈ Lat(S, X),

ind M + ind N ≥ ind(M ∩N) + ind(M ∨N).

Corollary 2.5. Suppose that M1, M2 ∈ Lat(S, X) are such that
ind M1 = ind M2 = 1, where S, X are as in the previous theorem.
If M1 ∩M2 6= {0} then ind (M1 ∨M2) = 1.

Proof. If M1∩M2 6= {0} then ind(M1∩M2) ≥ 1. As ind(M1∨M2) ≥
1, Theorem 2.4 implies that ind (M1 ∨M2) = 1. �

Example 2.6. In [5], Proposition (2.16 b), Richter considered the
case where S is the shift operator on any Banach space B of analytic
functions on an open and connected subset of the complex plane.
He showed that if m ≥ 2 and there is a space in Lat(S,B) of index
m, and furthermore if n1, n2 ∈ N ∪ {∞}, n1 + n2 = m, then there
are invariant subspaces N1, N2 such that ind Ni = ni, i = 1, 2 and
ind(N1 ∨N2) = indN1 + indN2. In these cases, Theorem 2.4 implies
that ind(N1 ∩N2) = 0 and hence N1 ∩N2 = {0}. Thus, N1 ∨N2 =
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N1 ⊕ N2. (For example, it is well known ([3], Corollary 6.5) that
when S is the shift operator on a weighted Bergman space on the
unit disk, then for all 1 ≤ m ≤ ∞ there are invariant subspaces of
index m.)
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