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The Centre of Unitary Isotopes of JB*-Algebras

AKHLAQ A. SIDDIQUI

Abstract. We identify the centre of unitary isotopes of a
JB∗-algebra. We show that the centres of any two uni-

tary isotopes of a JB∗-algebra are isometrically Jordan *-iso-
morphic to each other. However, there need be no inclusion
between centres of the two unitary isotopes.

1. Basics

We begin by recalling (from [3], for instance) the following concepts
of homotope and isotope of Jordan algebras.

Let J be a Jordan algebra, cf. [3], and x ∈ J . The x-homotope
of J , denoted by J[x] , is the Jordan algebra consisting of the same
elements and linear algebra structure as J but a different product,
denoted by “ .x”, defined by

a.xb = {axb}

for all a, b in J[x] . By {pqr} we will always denote the Jordan
triple product of p, q, r defined in the Jordan algebra J as below:

{pqr} = (p ◦ q) ◦ r − (p ◦ r) ◦ q + (q ◦ r) ◦ p ,

where ◦ stands for the original Jordan product in J . An element
x of a Jordan algebra J with unit e is said to be invertible if there
exists x−1 ∈ J , called the inverse of x , such that x ◦ x−1 = e
and x2 ◦ x−1 = x. The set of all invertible elements of J will be
denoted by Jinv. In this case, x acts as the unit for the homotope
J[x−1] of J .

If J is a unital Jordan algebra and x ∈ Jinv then by x-isotope
of J , denoted by J [x], we mean the x−1-homotope J[x−1] of J .
We denote the multiplication “ .x−1” of J [x] by “ ◦x”.

The following lemma gives the invariance of the set of invertible
elements in a unital Jordan algebra on passage to any of its isotopes.
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Lemma 1.1. For any invertible element a in a unital Jordan algebra
J , Jinv = J [a]

inv .

Proof. See Lemma 1.5 of [8]. �

Let J be a Jordan algebra and let a, b ∈ J . The operators Tb

and Ua,b are defined on J by Tb(x) = b◦x and Ua,b(x) = {axb}.
We shall denote Ua,a simply by Ua. The elements a and b are said
to operator commute if Ta commute with Tb.

Let J be a complex unital Banach Jordan algebra and let x ∈ J .
As usual, the spectrum of x in J , denoted by σJ (x), is defined
by

σJ (x) = {λ /∈ C : x− λe is not invertible in J } .

A Jordan algebra J with product ◦ is called a Banach Jordan
algebra if there is a norm ‖.‖ on J such that (J , ‖.‖) is a
Banach space and ‖a ◦ b‖ ≤ ‖a‖ ‖b‖ . If, in addition, J has a unit
e with ‖e‖ = 1 then J is called a unital Banach Jordan alge-
bra. In the sequel, we will only be considering unital Banach Jordan
algebras; the norm closure of the Jordan subalgebra J(x1, . . . , xr)
generated by x1, . . . , xr of Banach Jordan algebra J will be denoted
by J (x1, . . . , xr).

The following elementary properties of Banach Jordan algebras
are similar to those of Banach algebras and their proofs are a fairly
routine modifications of these [1, 2, 7, 9].

Lemma 1.2. Let J be a Banach Jordan algebra with unit e and
x1, . . . , xr ∈ J .

(i) If J(x1, . . . , xr) is an associative subalgebra of J , then
J (x1, . . . , xr) is a commutative Banach algebra.

(ii) Tx1 and Ux1,x2 are continuous with ‖Tx1‖ ≤ ‖x1‖ and
‖Ux1,x2‖ ≤ 3‖x1‖ ‖x2‖.

(iii) J (x1, . . . , xr) is a closed subalgebra of J .
(iv) If J is unital then J (e, x1) is a commutative Banach

algebra .
(v) If x ∈ J and ‖x‖ < 1 then e−x is invertible and (e−x)−1 =∑∞

n=0 x
n ∈ J (e, x).

(vi) If K is a closed Jordan subalgebra of J containing e and
x ∈ K such that C \ σJ (x) is connected then σJ (x) =
σK(x).
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We are interested in a special class of Banach Jordan algebras ,
called JB∗-algebras. These include all C∗-algebras as a proper sub-
class (see [10, 13]).

A complex Banach Jordan algebra J with isometric involution *
(see [6], for instance) is called a JB∗-algebra if ‖{xx∗x}‖ = ‖x‖3
for all x ∈ J .

The class of JB∗-algebras was introduced by Kaplansky in 1976
(see [10]) around the same time when a related class called JB-
algebras was being studied by Alfsen, Shultz and Størmer (see [1]).

A real Banach Jordan algebra J is called a JB-algebra if ‖x‖2 =
‖x2‖ ≤ ‖x2 + y2‖ for all x, y ∈ J .

These two classes of algebras are linked as follows (see [10, 13]).

Theorem 1.3. (a) If A is a JB∗-algebra then the set of self-adjoint
elements of A is a JB-algebra.
(b) If B is a JB-algebra then under a suitable norm the complexi-
fication CB of B is a JB∗-algebra.

There is an easier subclass of these algebras. Let H be a complex
Hilbert space and let B(H) denote the full algebra of bounded linear
operators on H.

(a) Any closed self-adjoint complex Jordan subalgebra of B(H)
is called a JC∗-algebra.

(b) Any closed real Jordan subalgebra of self-adjoint operators of
B(H) is called a JC-algebra.

Any JB∗-algebra isometrically *-isomorphic to a JC∗-algebra is
also called a JC∗-algebra ; similarly, any JB-algebra isometrically
isomorphic to a JC-algebra is also called a JC-algebra.

It is easy to verify that a JC∗-algebra is a JB∗-algebra and a
JC-algebra is a JB-algebra. It might be expected, conversely, that
every JB-algebra is a JC-algebra (with a corresponding statement
for JB∗-algebras and JC∗-algebras) but unfortunately this is not
true (for details see [1]).

2. Unitary Isotopes of a JB∗-algebra

In [8], we presented a study of unitary isotopes of JB∗-algebras. In
this section, we recall some facts from [8] which are needed for the
sequel.

Let J be a JB∗-algebra. The element u ∈ J is called unitary
if u∗ = u−1 , the inverse of u. The set of all unitary elements of J
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will be denoted by U(J ). If u is a unitary element of JB∗-algebra
J then the isotope J [u] is called a unitary isotope of J .

Theorem 2.1. Let u be a unitary element of the JB∗-algebra J .
Then the isotope J [u] is a JB∗-algebra having u as its unit with
respect to the original norm and the involution ∗u defined by x∗u =
{ux∗u}.

Proof. See Theorem 2.4 of [8]. �

Recall (from [3], for instance) that a Jordan algebra is said to be
special if it is isomorphic to a Jordan subalgebra of some associative
algebra. We require the following fact.

Lemma 2.2. If J is a special Jordan algebra and a ∈ J , then
J[a] is a special Jordan algebra.

Proof. See Lemma 1.3 in [8] . �

Theorem 2.3. The unitary isotope of a JC∗-algebra is again a JC∗-
algebra.

Proof. This follows from Theorem 2.1 and Lemma 2.2 (also see [8,
Theorem 2.12]). �

We close this section by noting following facts.

Lemma 2.4. Let J be a JB∗-algebra with unit e . Then u ∈
U(J ) =⇒ e ∈ U(J [u]). Moreover J [u][e]

= J .

Proof. See Lemma 2.7 of [8]. �

Next theorem establishes the invariance of unitaries on passage to
unitary isotopes of a JB∗-algebra.

Theorem 2.5. For any unitary element u in the JB∗-algebra J ,
U(J ) = U(J [u]) .

Proof. See Theorem 2.8 of [8]. �

Corollary 2.6. Let J be a JB∗-algebra with unit e and let u, v ∈
U(J ). Then

(i) J [u][v]
= J [v].

(ii) The relation of being unitary isotope is an equivalence rela-
tion in the class of unital JB∗-algebras.

Proof. See Corollary 2.9 of [8]. �
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3. Centre of Unitary Isotopes

In this section, we identify the centre of unitary isotopes in terms
of the centre of the original JB∗-algebra. We recall the following
definition from [14].

Definition 3.1. Let J be a unital JB∗-algebra and let

C(J ) = {x ∈ Jsa : x operator commutes with every y ∈ Jsa} .
Then the centre of J , denoted by Z(J ) , is defined by

Z(J ) = C(J ) + iC(J ) .

Remark 3.2. It is known from [14] that Z(J ) is a C∗-algebra , and
if J is a JC∗-algebra with J ⊆ B(H) for some Hilbert space H
then

Z(J ) = {x ∈ J : xy = yx ∀y ∈ J } .

To investigate further properties of the centre we need the follow-
ing lemma.

Lemma 3.3. Let J be a JB∗-algebra and let x ∈ Z(J ). Then for
all y ∈ J ,

(i) TxTy = TyTx ;
(ii) TxUy = UyTx ;
(iii) UxUy = UyUx ;
(iv) if u ∈ J is unitary then (x ◦ u∗) ◦ u = x.

Proof. Let x = a + ib and y = c + id with a, b ∈ C(J ) and
c, d ∈ Jsa . Then

TxTy = (Ta + iTb)(Tc + iTd) = TaTc + iTaTd + iTbTc − TbTd

= TcTa + iTdTa + iTcTb − TdTb = TyTx

as a, b ∈ C(J ) which proves (i).
(ii). Since Uy = 2T 2

y − Ty2 , we have

TxUy = Tx(2T 2
y − Ty2) = 2TxT

2
y − TxTy2 = (2T 2

y − Ty2)Tx = UyTx

by part (i) (note that the associativity of B(J ) is used here).
(iii). Since x ∈ Z(J ) , x2 ∈ Z(J ) by Remark 3.2 . Hence by
part (ii),

UxUy = (2T 2
x − Tx2)Uy = 2T 2

xUy − Tx2Uy

= 2UyT
2
x − UyTx2 = UyUx.

(iv). By part (i), (x ◦ u∗) ◦ u = TuTxu
∗ = TxTuu

∗ = Txe = x. �
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Theorem 3.4. Let J be a JB∗-algebra with unit e and let b ∈
Z(J ) . Then for any unitary u ∈ U(J ) and for any x ∈ J we have

(i) (u∗ ◦ x) ◦ u = u∗ ◦ (x ◦ u) ;
(ii) {(b ◦ u)u∗x} = b ◦ x.

Proof. (i). If J is special then

(u∗ ◦ x) ◦ u =
1
4
(u(u∗x+ xu∗) + (u∗x+ xu∗)u)

=
1
4
(2x+ uxu∗ + u∗xu)

=
1
4
(u∗(ux+ xu) + (ux+ xu)u∗) = u∗ ◦ (x ◦ u).

Hence, by the Shirshov–Cohn theorem with inverses [5], we have in
the general case (u∗ ◦ x) ◦ u = u∗ ◦ (x ◦ u) .
(ii). Since b ∈ Z(J ) and u ∈ U(J ) , we get by Lemma 3.3 (iv) that

(b ◦ u) ◦ u∗ = b. (1)

Again by Lemma 3.3 (i),

(u∗ ◦ x) ◦ (b ◦ u) = T(u∗◦x)Tbu = TbT(u∗◦x)u = b ◦ (u ◦ (x ◦ u∗)) ,

and

u∗ ◦ ((b ◦ u) ◦ x) = Tu∗TxTbu = TbTu∗Txu = b ◦ (u∗ ◦ (x ◦ u)) ,

so by part (i)

(u∗ ◦ x) ◦ (b ◦ u) = u∗ ◦ ((b ◦ u) ◦ x). (2)

Thus by (1) and (2),

{(b ◦ u)u∗x} = ((b ◦ u) ◦ u∗) ◦ x+(u∗ ◦ x) ◦ (b ◦ u)−((b ◦ u) ◦ x) ◦ u∗

= b ◦ x .
�

We now need a characterisation of the centre in terms of Hermitian
operators. These are defined in terms of the numerical range of
operators as follows (see [14], for example).

Definition 3.5. If J is a complex unital Banach Jordan algebra
with unit e and D(J ) = {f ∈ J ∗ : f(e) = ‖f‖ = 1} then, for
a ∈ J , the numerical range of a, denoted by W (a), is defined by
W (a) = {f(a) : f ∈ D(J )}. The element a is called Hermitian if
W (a) ⊆ R. The set of all Hermitian elements of J is denoted by
HerJ .
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The Hermitian elements in a unital JB∗-algebra are exactly the
self-adjoint elements (see [13]) but we shall need the following char-
acterisation of the Hermitian operators on a JB∗-algebra, given in
[14].

Theorem 3.6. Let J be a JB∗-algebra with unit e . Then S ∈
HerB(J ) if and only if S = Ta + δ where δ is a *-derivation and
a = S(e) is self-adjoint .

We can now give a characterisation of the centre of a unitary
isotope.

Theorem 3.7. Let J be a JB∗-algebra with unit e and let u ∈
U(J ) . Let A be a JC∗-subalgebra of B(H) for some Hilbert space
H with unit eA and let w ∈ U(A) .

(i) If x ∈ Z(J ) then u ◦ x ∈ Z(J [u]) .

(ii) If a ∈ Z(A[w]) then (a ◦ w∗) ◦ w = a .

(iii) If z ∈ Z(J [u]) then u ◦ (u∗ ◦ z) = z .

(iv) Define ψ : Z(J ) → Z(J [u]) by ψ(x) = u ◦ x . Then ψ is
an isometric *-isomorphism of Z(J ) onto Z(J [u]) .

Proof. (i). Let x = a + ib where a, b ∈ Z(J )sa . Let S = Ta ∈
HerB(J ) . Then

S(e) = Ta(e) = a ◦ e = a and S(u) = u ◦ a .

As S ∈ HerB(J ) , S(u) ∈ (J [u])sa by Theorem 3.6. By Theo-
rem 3.4 (ii),

S(y) = Ta(y) = a ◦ y = {(a ◦ u)u∗y} = (a ◦ u) ◦u y

for all y ∈ J . Therefore, S(y) = L
[u]
S(u)(y) for all y ∈ J , where

operator L[u]
S(u) stands for the multiplication by S(u) in J [u] . More-

over, as a ∈ Z(J ) we get by [14, Theorem 14] that S2 ∈ HerB(J ) =
HerB(J [u]) because B(J [u]) = B(J ) (see Theorem 2.1). So again
by [14, Theorem 14], S(u) ∈ Z(J [u]) as S = L

[u]
S(u) . There-

fore, u ◦ a ∈ Z(J [u])sa . Similarly, u ◦ b ∈ Z(J [u])sa . Hence
u ◦ x = u ◦ a+ iu ◦ b ∈ Z(J [u]) .
(ii). By Remark 3.2,

Z(A) = {x ∈ A : xy = yx}. (3)
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By Theorem 2.3, the isotope A[w] is a JC∗-algebra and

Z(A[w]) = {x ∈ A : xw∗y = yw∗x}. (4)

Now, if a ∈ Z(A[w]) then (by (4)) aw∗y = yw∗a for all y ∈ A.
In particular,

aw∗ = w∗a. (5)

By part (i), a ◦ w∗ = eA ◦w a ∈ Z(A[w][eA]
) = Z(A) . So we have

by (4) that

(a ◦ w∗) ◦ w = (a ◦ w∗)w =
1
2
(aw∗ + w∗a)w

hence by (5)

(a ◦ w∗) ◦ w = (aw∗)w = a(w∗w) = a ,

as required .
(iii) Now, let v be any unitary in Z(J [u]) (the centre of the unitary
isotope J [u] of the JB∗-algebra J ). Then v is a unitary in J by
Theorem 2.5. By [8, Corollary 1.14], J (e, u, u∗, v, v∗) is a JC∗-
algebra and v ∈ Z((J (e, u, u∗, v, v∗))[u]). Hence, by (ii),

u ◦ (u∗ ◦ v) = v. (6)

If z ∈ Z(J [u]) , then by the Russo–Dye Theorem (cf. [11]) for C∗-
algebras there exist unitaries vj ∈ Z(J [u]) and scalars 0 ≤ λj ≤ 1
with

∑n
j=1 λj = 1 for some n ∈ N such that z

‖z‖+1 =
∑n

j=1 λjvj

because ‖ z
‖z‖+1‖ < 1 (recall that Z(J [u]) is a C∗-algebra) . Hence,

by (6),

u ◦ (u∗ ◦ z) = u ◦ (u∗ ◦ (‖z‖+ 1)
n∑

j=1

λjvj )

= (‖z‖+ 1)
n∑

j=1

λj(u ◦ (u∗ ◦ vj))

= (‖z‖+ 1)
n∑

j=1

λjvj = z.

(iv). As ψ = Tu |Z(J ) , ψ is linear and continuous by Lemma 1.2 (i).
Let z ∈ Z(J [u]) . Applying part (i) to J [u] we get e ◦u z ∈
Z(J [u][e]

) . But J [u][e]
= J by Lemma 2.4 and e ◦u z = {eu∗z} =

u∗ ◦ z . Hence u∗ ◦ z ∈ Z(J ) . Moreover, ψ(u∗ ◦ z) = u◦ (u∗ ◦ z) = z
by part (iii). Thus ψ maps Z(J ) onto Z(J [u]).
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Further, ‖ψ(x)‖ ≤ ‖u‖ ‖x‖ while, by Lemmas 3.3 (i) and 1.2 (ii),

‖x‖ = ‖TxTu∗u‖ = ‖Tu∗Txu‖ ≤ ‖x ◦ u‖ = ‖ψ(x)‖ .

Thus ψ is an isometry.
Finally, as ψ(e) = u and u is the unit of J [u] it follows from

[12, Theorem 6] that ψ is an isometric *-isomorphism. �

Corollary 3.8. Let J be a unital JB∗-algebra . Then, for all u, v ∈
U(J ) , Z(J [u]) is isometrically Jordan *-isomorphic to Z(J [v]).

Proof. By Theorem 2.5, v ∈ U(J ) . Hence, by Theorem 3.7, Z(J [u])
is isometrically *-isomorphic to Z(J [u][v]

) . However, by Corollary
2.6 (i), J [u][v]

= J [v] . This gives the required result. �

An alternative proof of above Corollary 3.8 can be obtained by
noting that Z(J [u]) is isometrically *-isommorphic to Z(J ) and
Z(J ) is isometrically *-isomorphic to Z(J [v]) by Theorem 3.7 (ap-
plied twice). As the next example shows there need be no inclusion
between the centre of a unital JB∗-algebra and the centre of its
isotopes . In the following discussion M2(C) denotes the standard
complexification of the real Jordan algebra of all 2 × 2 symmetric
matrices.

Example 3.9. If u ∈ U(M2(C)) \ Z(M2(C)) then the unit e 6∈
Z(M2(C)[u]) .

Indeed, M2(C)[u] is a 4-dimensional C∗-algebra by Theorem 2.3
with 1-dimensional centre by the above Theorem 3.7. As u does not
belong to Z(M2(C)) , u 6∈ Sp(e) where Sp(e) denotes the linear
span of e , and hence e 6∈ Sp(u) . This gives that e 6∈ Z(M2(C)[u]).

As a final point on the relationships between the centres it should
be noted in the proof of Theorem 3.7 (i) that if a ∈ Z(J ) and S =
Ta then S is left multiplication in any unitary isotope. In order to
study the *-derivations it might be hoped that if T ∈ HerB(J ) then
there exists a unitary isotope J [u] such that T is left multiplication
operator in HerB(J [u]) since as linear spaces B(J ) = B(J [u])
so HerB(J ) = HerB(J [u]) . Unfortunately, this fails even when
J = M2(C) . As all *-derivations are inner in this case, it follows
that T ∈ HerB(M2(C)) if and only if T = la + rb where a, b ∈
(M2(C))sa and la(x) = ax and rb(x) = xb.
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Corollary 3.10. If a, b ∈ M2(C) are given by a =
(

1 0
0 2

)
,

b =
(

6 0
0 23

)
and T ∈ HerB(M2(C)) is defined by T = la + rb ,

then T is not left multiplication in any unitary isotope.

Proof. It was noted in Example 3.9 that if u ∈ U(M2(C)) then
M2(C)[u] is a four-dimensional C∗-algebra with a one-dimensional
centre so is isomorphic to M2(C) . By [4, Theorem 10], σ(T ) =
σ(a) + σ(b) = {7, 8, 24, 25} .

On the other hand, if L[u]
c ∈ HerB(M2(C)) with say σM2(C)(c) =

{λ1, λ2} then σ(L[u]
c ) = {λ1,

λ1+λ2
2 , λ2} again by [4, Theorem 10],

so σ(L[u]
c ) contains only three points. Hence σ(T ) 6= σ(L[u]

c ) for
any unitary u ∈ U(M2(C)) . �
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