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Factoring Generalized Repunits

JOHN H. JAROMA

Abstract. Twenty-five years ago, W. M. Snyder extended
the notion of a repunit Rn to one in which for some positive

integer b, Rn(b) has a b-adic expansion consisting of only
ones. He then applied algebraic number theory in order to

determine the pairs of integers under which Rn(b) has a prime

divisor congruent to 1 modulo n. In this paper, we show how
Snyder’s theorem follows from existing theory pertaining to
the Lucas sequences.

1. Introduction

A repunit Rn is any integer written in decimal form as a string
of 1’s. The numbers 1, 11, 111, 1111, 11111, etc., are examples of
repunits. In [7], S. Yates alludes to a letter dated June, 1970 that he
received from A. H. Beiler in which Beiler claims to have invented the
term years earlier. An interesting characteristic regarding repunits
is the apparent scarcity of primes among them. Letting Rn denote
the nth repunit, only R2, R19, R23, R317, and R1031 have thus far
been identified as prime. In fact, they are the only repunit primes for
n ≤ 16000. Although it is necessary for n to be prime in order for Rn

to be prime, this is not a sufficient condition as R5 = 11111 = 41·271
is composite.

In [6], W. M. Snyder extended the notion of a repunit to one in
which for some integer b > 1, Rn(b) has a b-adic expansion consisting
of only ones. In other words, Rn(b) = Σn−1

i=0 bi = (bn − 1)/(b − 1),
where n > 0. Examples of these “generalized repunits” include the
Mersenne numbers, Mn = 2n−1 = 1+21+22+ . . .+2n−1, for n ≥ 2.
Snyder’s admitted objective was to apply algebraic number theory
in cyclotomic fields in order to determine the pairs of integers n and
b under which Rn(b) has a prime divisor congruent to 1 modulo n.
To this purpose, Snyder demonstrated the following proposition.
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Theorem 1 (Snyder). Rn(b) has a prime divisor congruent to 1
(mod n) if and only if n 6= 2, or n = 2 and b 6= 2e − 1, for all
integers e greater than 1.

In this paper, we illustrate how Theorem 1 may be derived from
the existing theory of the Lucas sequences, upon which, we then
introduce a primality test for base-10 repunits.

2. The Lucas Sequences

Let P and Q be any pair of relatively prime integers. We define the
Lucas and companion Lucas sequences, respectively, as

Un+2(P,Q) = PUn+1 −QUn, U0 = 0, U1 = 1, n ∈ {0, 1, . . .} (1)

Vn+2(P,Q) = PVn+1 −QVn, V0 = 2, U1 = P, n ∈ {0, 1, . . .}. (2)

Now, (1) and (2) are linear, and hence, solvable. Letting D =
P 2−4Q be the discriminant of X2−PX+Q = 0, the roots of the said
characteristic equation are θ = (P +

√
D)/2 and φ = (P −

√
D)/2.

Thus, the Lucas and companion Lucas sequences are given explicitly
by

Un(P,Q) =
θn − φn

θ − φ
, n ∈ {0, 1, . . .}

Vn(P,Q) = θn + φn, n ∈ {0, 1, . . .}.
(3)

The rank of apparition of a prime is the index of the first term in
the sequence with nonnegative index in which N occurs as a divisor.
We let ω(p) denote the rank of apparition of p in {Un} and λ(p) the
corresponding rank of apparition of p in {Vn}. Also, we say that
p is a primitive prime factor of the term in which it has rank of
apparition. The next lemma contains results that are found in [5].

Lemma 1. Let p be an odd prime.

(1) If p - P , p - Q, and p | D, then p | Uk exactly when p | k.
(2) If p - PQD, then p | Up−(D/p), where (D/p) denotes the

Legendre symbol.
(3) p | Un if and only if n = kω, for some positive integer k.
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3. Generalized Repunits by the Lucas Sequences

Now, we show that for any base b > 1, {Rn(b)} is a Lucas sequence.

Theorem 2. Let b be any integer > 1. Then,

Un(b + 1, b) = (bn − 1)/(b− 1).

Proof. Let P = b + 1 and Q = b. Since b and b + 1 are relatively
prime, then by (3),

Un =

(
P+
√

D
2

)n
−

(
P−
√

D
2

)n(
P+
√

D
2

)
−

(
P−
√

D
2

) =

(
b+1+(b−1)

2

)n
−

(
b+1−(b−1)

2

)n

b− 1
=

bn − 1

b− 1
.

�

4. An Elementary Proof of Theorem 1

In this section, we shall demonstrate Snyder’s Theorem 1 by first es-
tablishing that every term of the Lucas sequence {Rn(b)} = {Un(b+
1, b)} has a primitive prime factor. The latter result rests upon
Carmichael’s generalization of K. Zsigmondy’s theorem for numbers
of the form an ± bn to the family of Lucas sequences [3]. We also
point out that Zsigmondy’s result given in [8] is an extension of a
theorem of A. S. Bang, who in 1886, proved the special case b = 1 [1].
A further discussion of these results is found in [5]. The following is
Carmichael’s result, which will lead us to Lemma 3.

Lemma 2 (Carmichael). Let {Un(P,Q)} be a Lucas sequence and
D = P 2 − 4Q.

(1) Let D > 0. Then, for all n 6= 1, 2, 6, Un has a primitive
prime factor, unless n = 12, P = ±1, and Q = −1.

(2) Let D be a square. Then, for all n, Un has a primitive prime
factor unless n = 6, P = ±3, and Q = 2.

Lemma 3. Every term of {Rn(b)} ={Un(b + 1, b)}, with the excep-
tion of b = 2 and n = 6 has a primitive prime factor.

Proof. Since P = b + 1, Q = b, and D = P 2 − 4Q = (b + 1)2 − 4b =
(b − 1)2, it follows by Lemma 2 that Rn(b) has a primitive prime
factor unless b = 2 and n = 6. �

Remark. If n is odd, say 2k + 1 (k ≥ 1), then

Rn = b2k + b2k−1 + . . . + b + 1
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is odd. On the other hand, if n is even, say 2k (k ≥ 2), then

Rn = (b2k − 1)/(b− 1) = [(bk + 1)(bk − 1)]/(b− 1)

= (bk + 1)(bk−1 + bk−2 + . . . + 1).

Hence, for k ≥ 2, we have bk + 1 6= 2α for all integral values of α.
Thus, if n ≥ 3 then there exists at least one odd prime factor of
Rn regardless of the parity of n. It is also without loss of generality
we assume that b = 2 and n = 6 do not simultaneously hold for
otherwise, R6(2) = 63 has the prime factor 7 congruent to 1 (mod 6).
Under this stipulation, it then follows that every term of {Rn} has
a primitive prime factor. Moreover, for generalized repunits, we
further extend the reach of Lemma 3 to include the existence of an
odd primitive prime factor. This is so, because if k = 2 then 2 | R4.
Hence, if b is odd then R2 = b+1 and ω(2) = 2 and if b is even then
the odd factor b2 + 1 necessarily contains an odd prime factor that
divides neither R2 = b + 1 nor R3 = (b + 1)2 − b.

We now give our alternative demonstration of Theorem 1.

Proof of Theorem 1. Let’s assume that either n 6= 2, or n = 2 and
b 6= 2e−1 is not true for all integers e > 1. Then, n = 2 and b = 2e−1
for some e > 1. Therefore, R2(b) = R2(2e − 1) = 2e, which has no
prime divisors congruent to 1 (mod 2). To prove necessity, we may
assume that n > 1. Otherwise, every prime is trivially congruent to
1 (mod 1).

Case 1: Let n = 2. Then, Rn = R2 = b + 1. Hence, if b = 2e− 1
then Rn = 2e, which does not have a prime factor congruent to 1
(mod n).

Now, assume that n ≥ 3. By the previous remark, we let p be an
odd primitive prime factor of Rn. In turn, this implies that ω(p) = n.

Case 2: Let p - PQD. Since D = P 2 − 4Q = (b− 1)2, it follows
that (D/p) = 1. So, by the second statement of Lemma 1, p | Up−1,
from which it follows from the third conclusion of the same lemma
that ω(p) | p − 1. Therefore, ω(p)k = p − 1, for some integer k. In
other words, p = ω(p)k + 1.

Case 3: Let p | P = b+1. Then, U2 = b+1 and ω(p) = 2, which
is impossible, as p is a primitive prime factor of Rn (n ≥ 3).

Case 4: Let p | Q = b. But this implies that p | Rn = bn−1 +
bn−2 + . . . + b + 1, which is also impossible, as p 6= 1.
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Case 5: Let p - PQ and p | D = P 2 − 4Q. By (1) of Lemma 1,
p | Rn exactly when p | n. As Rn+1 > Rn and R3 = P 2 −Q, it then
follows that ω(p) < 3, which under our assumptions cannot happen.

�

5. Testing the Primality of Base-10 Repunits

A corollary to Fermat’s Little Theorem tells us that for any integer a,
an ≡ a (mod n) if n is a prime. Thus, if we can identify an integer a
for which this congruence does not hold, then we may conclude that
n is composite. For example, by taking a = 3 and n = 8, we see
that 38 ≡ 1 (mod 8). This proves that 8 is composite. So, Fermat’s
Theorem is a way to determine if a number n is composite without
having to first extract a factor. Nonetheless, for large values of n the
number of computations involved is prohibitively large.

A method that is sometimes used for making an educated guess
as to the prime or composite character of an integer n is the Miller–
Rabin test. The idea of this algorithm is to write n = 2hm+1, where
m is odd. Then, for a particular base a : 1 < a < n− 1, we consider
the sequence of terms am, a2m, a4m, . . . , a2hm = an−1 modulo n. The
number n is said to “pass the test” if the first occurrence of 1 is either
the first term or −1 precedes it. An odd prime will pass this test
for all bases. To help us decide if n is prime or composite, we may
randomly select k integers, say, ai, 1 ≤ i ≤ k. If n fails the Miller–
Rabin test for any one of these bases, we immediately conclude that
n is composite. On the other hand, if n passes the test for all ai, then
n is dubbed a probable prime. Although we can never be certain that
n is prime after conducting the Miller–Rabin test, the probability of
a composite number surviving k applications of the algorithm is at
most (1/4)k [2]. In 1999, Harvey Dubner announced that R49081 is
a probable repunit prime [4] and in 2000, Lew Baxter added R86453

to the short list.
We now arrive at our final objective—to construct a definitive

Lucas-type test for deciding the primality of any base-10 repunit.
To this purpose, we introduce the Legendre symbols σ = (P 2/p),
ε = (D/p), and τ = (Q/p). The following lemmas will be alluded to
and may be found in [5].

Lemma 4. The gcd(Un, Vn) is 1 or 2.
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Lemma 5. Suppose that ω is odd. Then, Vn(
√

R,Q) is not divisible
by p for any value of n. If n is even, say 2k, then V(2n+1)k(

√
R,Q) is

divisible by p for every n but no other term of the sequence contains
p as a factor.

Lemma 6. U(p−σε)/2(P,Q) ≡ 0 (mod p) if and only if σ = τ .

Lemma 7. If N ±1 is the rank of apparition of N then N is prime.

Base-10 repunits are generated by the Lucas sequence {Un(11, 10)}.
Thus, celebrated properties of the Lucas sequences such as the neces-
sity of the index being prime in order for Un to be prime, Um | Un if
m | n, and if d | Um and d | Un then d | Um+n are also attributable to
base-10 repunits. Furthermore, we point out that 10 | Rn − 1. This
enables us to state and prove the following necessary and sufficient
condition for the primality of an arbitrary Rn, bearing in mind that
Rn is prime only if n is prime. We remark that although there are
infinitely many Lucas sequences that can be used for this purpose,
we have opted to use the Fibonacci numbers {Un(1,−1)}.

Theorem 3. Let p be any prime and 2·5pα1
1 ·pα2

2 · · · pαk

k be the prime
factorization of Rp−1. Let Rp -

∏k
i=1 U(10p

α1
1 ·pα2

2 ···pαk
k )/pi

(1,−1).
Then, Rp is prime if and only if Rp | V5p

α1
1 ·pα2

2 ···pαk
k

(1,−1).

Proof. (⇒) Assume that Rp is prime. Since P = 1 and Q = −1, we
have σ =

(
P 2/Rp

)
= (1/Rp) = 1 and τ = (Q/Rp) = ((−1)/Rp) ≡

(−1)((10
p−10)/9)/2 ≡ (−1)(5(10

p−1−1))/9 (mod Rp) = −1. By Gauss’s
Reciprocity Law, (5/Rp)(Rp/5) = (−1)Rp−1 = 1. Hence, (5/Rp) =
(Rp/5). Hence, ε = (D/Rp) = (5/Rp) = (Rp/5) ≡ R2

p (mod 5) =
1. Furthermore, since D = 1, it follows from the second part of
Lemma 1 that U10p

α1
1 ·pα2

2 ···pαk
k

≡ 0 (mod Rp). However, as σ 6= τ ,
by Lemma 6, Rp - U5p

α1
1 ·pα2

2 ···pαk
k

. Thus, ω(Rp) is either equal to
10pα1

1 · pα2
2 · · · pαk

k or must divide exactly one of U(10p
α1
1 ·pα2

2 ···pαk
k )/pi

.
But, by hypothesis, the latter is impossible. Therefore, ω(Rp) =
10pα1

1 · pα2
2 · · · pαk

k , and by Lemma 4, Rp | V5p
α1
1 ·pα2

2 ···pαk
k

.
(⇐) We now suppose that Rp | V5p

α1
1 ·pα2

2 ···pαk
k

. By the identity
U2n = UnVn and Lemma 5, we have Rp | U10p

α1
1 ·pα2

2 ···pαk
k

but Rp -
U5p

α1
1 ·pα2

2 ···pαk
k

. As Rp -
∏k

i=1 U(10p
α1
1 ·pα2

2 ···pαk
k )/pi

, it follows that
ω(Rp) = 10pα1

1 ·pα2
2 · · · pαk

k . Therefore, by Lemma 7, Rp is prime. �
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In conclusion, it may be argued that the factorization of Rp−1 is
difficult to obtain due to the large size of the number. Indeed, this
is true. Nevertheless, if we are able to factor p − 1, then it follows
from the theory of Lucas that Rk | Rp−1, for all factors k of p− 1.
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