On the Quadratic Irrationals, Quadratic Ideals and Indefinite Quadratic Forms

AHMET TEKCAN AND HACER ÖZDEN

Abstract. Let P and Q be two rational integers, $D \neq 1$ be a positive non-square integer, and let $\delta = \sqrt{D}$ or $1+\sqrt{D}$ be a real quadratic irrational with trace $t = \delta + \overline{\delta}$ and norm $n = \delta \overline{\delta}$. Given any quadratic irrational $\gamma = \frac{P + \delta}{Q}$, there exist a quadratic ideal $I_\gamma = [Q, \delta + P]$ and an indefinite quadratic form $F_\gamma(x, y) = Qx^2 - (t+2P)xy + \left(\frac{n + tP + P^2}{Q}\right)y^2$ of discriminant $\Delta = t^2 - 4n$ which correspond to γ. In this paper, we obtain some properties of quadratic irrationals γ, quadratic ideals I_γ and indefinite quadratic forms F_γ.

1. Introduction

A real quadratic form (or just a form) F is a polynomial in two variables x, y of the type

$$F = F(x, y) = ax^2 + bxy + cy^2$$

with real coefficients a, b, c. The discriminant of F is defined by the formula $b^2 - 4ac$ and is denoted by Δ. Moreover F is an integral form iff $a, b, c \in \mathbb{Z}$ and F is indefinite iff $\Delta > 0$.

Let Γ be the modular group $\text{PSL}(2, \mathbb{Z})$, i.e., the set of the transformations

$$z \mapsto \frac{rz + s}{tz + u}, \quad r, s, t, u \in \mathbb{Z}, \quad ru - st = 1.$$

Γ is generated by the transformations $T(z) = \frac{-1}{z}$ and $V(z) = z + 1$. Let $U = T \cdot V$. Then $U(z) = \frac{1}{z+1}$. Then Γ has a representation

2000 Mathematics Subject Classification. 11E15, 11A55, 11J70.

Key words and phrases. Quadratic irrationals, quadratic ideals, indefinite quadratic forms, extended modular group.
\[\Gamma = \langle T, U : T^2 = U^3 = I \rangle. \] Note that
\[\Gamma = \left\{ g = \begin{pmatrix} r & s \\ t & u \end{pmatrix} : r, s, t, u \in \mathbb{Z} \text{ and } ru - st = 1 \right\}. \]
We denote the symmetry with respect to the imaginary axis with \(R \), that is \(R(z) = -\overline{z} \). Then the group \(\overline{\Gamma} = \Gamma \cup R\Gamma \) is generated by the transformations \(R, T, U \) and has a representation \(\overline{\Gamma} = \langle R, T, U : R^2 = T^2 = U^3 = I \rangle \), and is called the extended modular group. Similarly,
\[\overline{\Gamma} = \left\{ g = \begin{pmatrix} r & s \\ t & u \end{pmatrix} : r, s, t, u \in \mathbb{Z} \text{ and } ru - st = \pm 1 \right\}. \]
There is a strong connection between the extended modular group and binary quadratic forms (for further details see [5]). Most properties of binary quadratic forms can be given by the aid of the extended modular group. The most is equivalence of forms which is given by Gauss as follows: Let \(F = (a, b, c) \) be a quadratic form and let \(g = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \in \Gamma \). Then the form \(gF \) is defined by
\[
gF(x, y) = \left(ar^2 + brs + cs^2\right)x^2 + (2art + bru + bts + 2csu)xy + \left(at^2 + btu + cu^2\right)y^2. \tag{1.1}
\]
This definition of \(gF \) is a group action of \(\Gamma \) on the set of binary quadratic forms. Two forms \(F \) and \(G \) are said to be equivalent iff there exists a \(g \in \Gamma \) such that \(gF = G \). If \(\det g = 1 \), then \(F \) and \(G \) are called properly equivalent. If \(\det g = -1 \), then \(F \) and \(G \) are called improperly equivalent. A quadratic form \(F \) is said to be ambiguous if it is improperly equivalent to itself.
An indefinite quadratic form \(F \) of discriminant \(\Delta \) is said to be reduced if
\[
\left| \sqrt{\Delta} - 2|a| \right| < b < \sqrt{\Delta}. \tag{1.2}
\]
Mollin considers the arithmetic of ideals in his book (see [1]). Let \(D \neq 1 \) be a square free integer and let \(\Delta = \frac{4D}{r^2} \), where
\[
r = \begin{cases} 2 & D \equiv 1 \pmod{4} \\ 1 & \text{otherwise} \end{cases} \tag{1.3}
\]
If we set \(\mathbb{K} = \mathbb{Q}(\sqrt{D}) \), then \(\mathbb{K} \) is called a quadratic number field of discriminant \(\Delta = \frac{4D}{r^2} \). A complex number is an algebraic integer
On the Quadratic Irrationals

71

if it is the root of a monic polynomial with coefficients in \(\mathbb{Z} \). The set of all algebraic integers in the complex field \(\mathbb{C} \) is a ring which we denote by \(A \). Therefore \(A \cap \mathbb{K} = O_\Delta \) is the ring of integers of the quadratic field \(\mathbb{K} \) of discriminant \(\Delta \). Set \(w_\Delta = \frac{r - 1 + \sqrt{D}}{2} \) for \(r \) defined in (1.3). Then \(w_\Delta \) is called principal surd. We restate the ring of integers of \(\mathbb{K} \) as \(O_\Delta = \mathbb{Z}[w_\Delta] \). In this case \(\{1, w_\Delta\} \) is called an integral basis for \(\mathbb{K} \).

\(I = \mathbb{Z}[a, b + cw_\Delta] \) is a non-zero (quadratic) ideal of \(O_\Delta \) if and only if \(c | a, c | b \) and \(ac | N(b + cw_\Delta) \).

(1.4)

Furthermore for a given ideal \(I \) the integers \(a \) and \(c \) are unique and \(a \) is the least positive rational integer in \(I \) which we will denote as \(L(I) \). The norm of an ideal \(I \) is defined as \(N(I) = |ac| \). If \(I \) is an ideal of \(O_\Delta \) with \(L(I) = N(I) \), i.e., \(c = 1 \), then \(I \) is called primitive which means that \(I \) has no rational integer factors other than \(\pm 1 \).

Every primitive ideal can be uniquely given by \(I = \mathbb{Z}[a, b + cw_\Delta] \). The conjugate of an ideal \(I = \mathbb{Z}[a, b + cw_\Delta] \) is defined as \(\overline{I} = \mathbb{Z}[a, b + cw_\Delta] \).

If \(I = \overline{I} \), then \(I \) is called ambiguous (see also [4], [2] and [3]).

Let \(\delta \) denotes a real quadratic irrational integer with trace \(t = \delta + \overline{\delta} \) and norm \(n = \delta \overline{\delta} \). Thus \(\overline{\delta} \) denotes its algebraic conjugate. Evidently given a real quadratic irrational \(\gamma \in \mathbb{Q}(\delta) \), there are rational integers \(P \) and \(Q \) such that \(\gamma = \frac{P + \delta}{Q} \) with \(\overline{Q}(\delta + P)(\overline{\delta} + P) \). Hence for each \(\gamma = \frac{P + \delta}{Q} \) there is a corresponding \(\mathbb{Z} \)-module \(I_\gamma = \mathbb{Z}[Q, P + \delta] \). In fact this module is an ideal by (1.4).

Two real numbers \(\alpha \) and \(\beta \) are said to be equivalent if there exists a \(g = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \in \Gamma \) such that \(g \alpha = \beta \), that is

\[
\frac{r \alpha + s}{t \alpha + u} = \beta.
\]

(1.5)

Given any quadratic irrational \(\gamma = \frac{P + \delta}{Q} \), there exists an indefinite quadratic form

\[
F_\gamma(x, y) = Q(x - \delta y)(x - \overline{\delta} y)
\]

\[
= Qx^2 - (t + 2P)xy + \left(\frac{n + Pt + P^2}{Q} \right) y^2
\]

(1.6)

of discriminant \(\Delta = t^2 - 4n \). Hence one associates with \(\gamma \) an indefinite quadratic form \(F_\gamma \) defined as above. Therefore if \(\delta = \sqrt{D} \), then \(t = 0 \) and \(n = -D \). So \(\Delta = 4D \), and if \(\delta = \frac{1 + \sqrt{D}}{2} \), then \(t = 1 \) and
$n = \frac{1-D}{4}$. So $\Delta = D$. The connection among γ, I_γ and F_γ is given by the following diagram:

$$\begin{align*}
\gamma = \frac{P+\delta}{Q} \quad \rightarrow \quad I_\gamma &= [Q, P + \delta] \\
F_\gamma(x, y) &= Q(x - \delta y)(x - \bar{\delta} y)
\end{align*}$$

The opposite of F_γ defined in (1.6) is

$$F_\gamma(x, y) = Qx^2 + (t + 2P)xy + \left(\frac{n + Pt + P^2}{Q}\right)y^2 \quad (1.7)$$

of discriminant Δ.

We know that a quadratic form F is said to be ambiguous if it is improperly equivalent to itself. Of course the surprising equivalence must interchange the numbers $\gamma = \frac{\delta + P}{Q}$ and its conjugate $\bar{\gamma} = \frac{\bar{\delta} + P}{Q}$. Thus if all is well the form F_γ is ambiguous iff the number γ is equivalent to its conjugate $\bar{\gamma}$. Therefore one sees that an ideal I_γ is ambiguous if it is equal to its conjugate $I_{\bar{\gamma}}$. Hence the ideal I_γ is ambiguous iff it contains both $\frac{\delta + P}{Q}$ and $\frac{\bar{\delta} + P}{Q}$ that is so iff

$$\frac{\delta + P}{Q} + \frac{\bar{\delta} + P}{Q} = \frac{t + 2P}{Q} \in \mathbb{Z}. \quad (1.8)$$

Therefore the condition $Q|(t + 2P)$ is the condition for a form F_γ to be properly equivalent to its opposite $\overline{F_\gamma}$.

2. Quadratic Irrationals, Quadratic Ideals and Indefinite Quadratic Forms

In this section we obtain some properties of quadratic irrationals $\gamma = \frac{\delta + P}{Q}$, quadratic ideals $I_\gamma = [Q, \delta + P]$ and indefinite quadratic forms $F_\gamma(x, y) = Qx^2 - (t + 2P)xy + \left(\frac{n + tP + P^2}{Q}\right)y^2$ which are obtained from γ. We consider the problem in two cases: $\delta = \sqrt{D}$ and $\delta = \frac{1+\sqrt{D}}{2}$ for a positive non-square integer D.

First let assume that $\delta = \sqrt{D}$ and $Q = 1$. Then $t = 0$ and $n = -D$. Set $P = \frac{\sqrt{D}}{2}$ for prime p such that $p \equiv 1, 3 \pmod{4}$. Then

$$\gamma_1 = \frac{\delta + P}{Q} = \frac{\sqrt{D} + \frac{\sqrt{D}}{2}}{1} = \sqrt{D} - \frac{p}{2}$$
and hence
\[I_{\gamma_1} = \left[1, \sqrt{D} - \frac{p}{2} \right] \]
\[F_{\gamma_1}(x, y) = x^2 + pxy + \left(\frac{p^2 - 4D}{4} \right) y^2. \]

Now we can give some properties of \(\gamma_1, I_{\gamma_1}, \) and \(F_{\gamma_1} \) by the following theorems.

Theorem 2.1. \(\gamma_1 \) is equivalent to its conjugate \(\overline{\gamma_1} \) for every prime \(p \equiv 1, 3 \pmod{4} \).

Proof. Recall that \(\gamma_1 = \sqrt{D} - \frac{p}{2} \). Then the conjugate of \(\gamma_1 \) is \(\overline{\gamma_1} = -\sqrt{D} - \frac{p}{2} \). A straightforward calculation shows that
\[
g_{\gamma_1} = \frac{-1}{0} \begin{pmatrix} -\sqrt{D} - \frac{p}{2} & (p) \\ \sqrt{D} - \frac{p}{2} & 1 \end{pmatrix} = \gamma_1
\]
for \(g = \begin{pmatrix} -1 & -p \\ 0 & 1 \end{pmatrix} \in \Gamma \). Therefore by definition \(\gamma_1 \) is equivalent to its conjugate \(\overline{\gamma_1} \). \(\square \)

Theorem 2.2. \(I_{\gamma_1} \) is ambiguous for every prime \(p \equiv 1, 3 \pmod{4} \).

Proof. We know that an ideal \(I_{\gamma} \) is ambiguous if it is equal to its conjugate \(I_{\overline{\gamma}} \), or in other words iff \(\delta P_Q + \overline{\delta} P_Q = \frac{t}{Q} + 2P_Q \in \mathbb{Z} \). For \(\delta = \sqrt{D} \) we have \(t = 0 \), and hence \(\frac{t}{Q} + 2P_Q = \frac{2(-p/2)}{1} = -p \in \mathbb{Z} \). Therefore \(I_{\gamma_1} \) is ambiguous. \(\square \)

From Theorems 2.1 and 2.2 we can give the following result.

Corollary 2.3. \(F_{\gamma_1} \) is properly equivalent to its opposite \(F_{\overline{\gamma_1}} \), and is ambiguous for every prime \(p \equiv 1, 3 \pmod{4} \).

Proof. It is clear that \(F_{\gamma_1} \) is properly equivalent to its opposite \(F_{\overline{\gamma_1}} \) by (1.8) since \(\frac{t}{Q} + 2P_Q = -p \in \mathbb{Z} \). We know as above that an indefinite quadratic form \(F_{\gamma} \) is ambiguous iff the quadratic irrational \(\gamma \) is equivalent to its conjugate \(\overline{\gamma} \). Therefore \(F_{\gamma_1} \) is ambiguous since \(\gamma_1 \) is equivalent to its conjugate \(\overline{\gamma_1} \) by Theorem 2.1. \(\square \)

Now let \(p \equiv 1, 3 \pmod{4} \), i.e., \(p = 1+4k \) or \(p = 3+4k \) for a positive integer \(k \), respectively. Then we have the following theorem.
Theorem 2.4. If \(F_{\gamma_1} \) is reduced, then
\[
D \in [4k^2 + 2k + 1, 4k^2 + 6k + 2] - \{4k^2 + 4k + 1\}
\]
for \(p \equiv 1 \pmod{4} \), and if \(F_{\gamma_1} \) is reduced, then
\[
D \in [4k^2 + 6k + 3, 4k^2 + 10k + 6] - \{4k^2 + 8k + 4\}
\]
for \(p \equiv 3 \pmod{4} \). In both cases the number of these reduced forms is \(p \).

Proof. Let \(F_{\gamma_1}(x, y) = x^2 + pxy + \left(\frac{p^2 - 4D}{4}\right)y^2 \) be reduced and let \(p \equiv 1 \pmod{4} \). Then by definition, we have from (1.2)
\[
\sqrt{\Delta} - 2|a| < b < \sqrt{\Delta}
\]
\[
\iff \quad \sqrt{\Delta} - 2|a| < p < \sqrt{\Delta} \iff 2|\sqrt{\Delta} - 1| < p < 2\sqrt{\Delta}.
\]
Hence we get
\[
D > \frac{p^2}{4} = \frac{(1 + 4k)^2}{4} = \frac{1 + 8k + 16k^2}{4} = \frac{1}{4} + 2k + 4k^2
\]
and
\[
D < \frac{(p + 2)^2}{4} = \frac{(3 + 4k)^2}{4} = \frac{9 + 24k + 16k^2}{4} = \frac{9}{4} + 6k + 4k^2.
\]
Consequently we have
\[
4k^2 + 2k + 1 \leq D \leq 4k^2 + 6k + 2.
\]
Note that there exist \(p + 1 \) indefinite reduced quadratic forms \(F_{\gamma_1} \), since
\[
4k^2 + 6k + 2 - (4k^2 + 2k + 1) + 1 = 2 + 4k = p + 1.
\]
But \(D = 4k^2 + 4k + 1 = \left(\frac{p + 1}{2}\right)^2 \in [4k^2 + 2k + 1, 4k^2 + 6k + 2] \) is a square. So we have to omit it (\(D \) must be a square-free positive integer). Therefore there exist \(p \) indefinite reduced quadratic forms \(F_{\gamma_1} \) for \(D \in [4k^2 + 2k + 1, 4k^2 + 6k + 2] - \{4k^2 + 4k + 1\} \).

Similarly, let \(F_{\gamma_1}(x, y) = x^2 + pxy + \left(\frac{p^2 - 4D}{4}\right)y^2 \) be reduced and let \(p \equiv 3 \pmod{4} \). Then by definition, we have from (1.2)
\[
\sqrt{\Delta} - 2|a| < b < \sqrt{\Delta}
\]
\[
\iff \quad \sqrt{\Delta} - 2|a| < p < \sqrt{\Delta} \iff 2|\sqrt{\Delta} - 1| < p < 2\sqrt{\Delta}.
\]
Hence we get \(D \geq 4k^2 + 6k + 3 \), since
\[
D > \frac{p^2}{4} = \frac{(3 + 4k)^2}{4} = \frac{9 + 24k + 16k^2}{4} = \frac{9}{4} + 6k + 4k^2
\]
and \(D \leq 4k^2 + 10k + 6 \), since
\[
D < \frac{(p + 2)^2}{4} = \frac{(5 + 4k)^2}{4} = \frac{25 + 16k^2}{4} + 1 = \frac{25}{4} + 10k + 4k^2.
\]
Consequently we have
\[
4k^2 + 6k + 3 \leq D \leq 4k^2 + 10k + 6.
\]
Note that there exist \(p + 1 \) indefinite reduced quadratic forms \(F_{\gamma_1} \), since
\[
4k^2 + 10k + 6 - (4k^2 + 6k + 3) + 1 = 4k + 4 = p + 1.
\]
But \(D = 4k^2 + 8k + 4 = \left(\frac{p + 1}{2}\right)^2 \in [4k^2 + 6k + 3, 4k^2 + 10k + 6] \) is a square. So we have to omit it. Therefore there exist \(p \) indefinite reduced quadratic forms \(F_{\gamma_1} \) for \(D \in [4k^2 + 6k + 3, 4k^2 + 10k + 6] \) \(-\{4k^2 + 8k + 4\}\).

Example 2.1. Let \(p = 29 \equiv 1 \pmod{4} \). Then \(\gamma_1 = \sqrt{D} - \frac{29}{2} \) is equivalent to its conjugate \(\overline{\gamma}_1 \) for \(g = \begin{pmatrix} -1 & -29 \\ 0 & 1 \end{pmatrix} \in \Gamma \). Also
\[
I_{\gamma_1} = \left[1, \sqrt{D} - \frac{29}{2} \right]
\]
is ambiguous, and
\[
F_{\gamma_1}(x, y) = x^2 + 29xy + \left(\frac{841 - 4D}{4} \right) y^2
\]
is reduced for \(D \in [211, 240] \). But \(D = 225 = 15^2 \in [211, 240] \) is a square. Therefore \(F_{\gamma_1} \) is reduced for \(D \in [211, 240] \) \(-\{225\}\). The number of these reduced forms is 29. Further \(F_{\gamma_1} \) is properly equivalent to its opposite \(\overline{F}_{\gamma_1} \) and is ambiguous.

Example 2.2. Let \(p = 43 \equiv 3 \pmod{4} \). Then \(\gamma_1 = \sqrt{D} - \frac{43}{2} \) is equivalent to its conjugate \(\overline{\gamma}_1 \) for \(g = \begin{pmatrix} -1 & -43 \\ 0 & 1 \end{pmatrix} \in \Gamma \). Also
\[
I_{\gamma_1} = \left[1, \sqrt{D} - \frac{43}{2} \right]
\]
is ambiguous, and
\[
F_{\gamma_1}(x, y) = x^2 + 43xy + \left(\frac{1849 - 4D}{4} \right) y^2
\]
is reduced for \(D \in [421, 462] \). But \(D = 441 = 21^2 \in [421, 462] \) is a square. Therefore \(F_{\gamma_1} \) is reduced for \(D \in [421, 462] \) \(-\{441\}\).
The number of these reduced forms is 43. Further \(F_{\gamma_1} \) is properly equivalent to its opposite \(\bar{F}_{\gamma_1} \) and is ambiguous.

Now we consider the case \(\delta = \frac{1 + \sqrt{D}}{2} \) and \(Q = 1 \). Then \(t = 1 \) and \(n = \frac{1 - D}{4} \). Set \(P = -\frac{(p+1)}{2} \) for prime \(p \) such that \(p \equiv 1, 3 \) (mod 4). Then
\[
\gamma_2 = \frac{P + \delta}{Q} = \frac{-\frac{(p+1)}{2} + \frac{1 + \sqrt{D}}{2}}{1} = -\frac{p + \sqrt{D}}{2}
\]
and hence
\[
I_{\gamma_2} = \left[1, -\frac{p + \sqrt{D}}{2} \right]
\]
\[
F_{\gamma_2}(x, y) = x^2 + pxy + \left(\frac{p^2 - D}{4} \right)y^2.
\]

Theorem 2.5. \(\gamma_2 \) is equivalent to its conjugate \(\bar{\gamma}_2 \) for every prime \(p \equiv 1, 3 \) (mod 4).

Proof. Recall that \(\gamma_2 = -\frac{p + \sqrt{D}}{2} \). The conjugate of \(\gamma_2 \) is \(\bar{\gamma}_2 = -\frac{p - \sqrt{D}}{2} \). Applying (1.5), we get
\[
g_{\bar{\gamma}_2} = -1 \left(\frac{-p - \sqrt{D}}{2} \right) + (-p) \frac{0}{1} = \frac{-p + \sqrt{D}}{2} = \gamma_2
\]
for \(g = \begin{pmatrix} -1 & -p \\ 0 & 1 \end{pmatrix} \in \Gamma \). Therefore by definition \(\gamma_2 \) is equivalent to its conjugate \(\bar{\gamma}_2 \). \(\square \)

Theorem 2.6. \(I_{\gamma_2} \) is ambiguous for every prime \(p \equiv 1, 3 \) (mod 4).

Proof. We know that an ideal \(I_\gamma \) is ambiguous if it is equal to its conjugate \(\bar{I}_\gamma \), or in other words iff \(\frac{\delta + P}{Q} + \frac{\bar{\delta} + P}{Q} = \frac{1 + 2P}{Q} \in \mathbb{Z} \). For \(\delta = \frac{1 + \sqrt{D}}{2} \) we have \(t = 1 \), and hence \(\frac{1 + 2P}{Q} = \frac{1 + 2((-p-1)/2)}{4} = -p \in \mathbb{Z} \). Therefore \(I_{\gamma_2} \) is ambiguous. \(\square \)

From Theorems 2.5 and 2.6 we can give the following corollary.

Corollary 2.7. \(F_{\gamma_2} \) is properly equivalent to its opposite \(\bar{F}_{\gamma_2} \) and is ambiguous for every prime \(p \equiv 1, 3 \) (mod 4).
Proof. It is clear that F_{γ_2} is properly equivalent to its opposite \overline{F}_{γ_2} by (1.8) since $\frac{\pm 2 \sqrt{D}}{q} = -p \in \mathbb{Z}$, and is ambiguous since γ_2 is equivalent to its conjugate $\overline{\gamma_2}$ by Theorem 2.5.

\[\square \]

Theorem 2.8. If F_{γ_2} is reduced, then

$$D \in [16k^2 + 8k + 2, 16k^2 + 24k + 8] - \{16k^2 + 16k + 4\}$$

for $p \equiv 1 \pmod{4}$, and if F_{γ_2} is reduced, then

$$D \in [16k^2 + 24k + 10, 16k^2 + 40k + 24] - \{16k^2 + 32k + 16\}$$

for $p \equiv 3 \pmod{4}$. In both cases the number of these forms is $4p + 2$.

Proof. Let $F_{\gamma_2}(x, y) = x^2 + pxy + \left(\frac{p^2 - D}{4}\right)y^2$ be reduced and let $p \equiv 1 \pmod{4}$. Then by definition we have from (1.2),

$$\sqrt{\Delta} - 2|a| < b < \sqrt{\Delta}$$

$$\iff |\sqrt{D} - 2|1| < p < \sqrt{D} \iff |\sqrt{D} - 2| < p < \sqrt{D}.$$

Hence we get $D \geq 16k^2 + 8k + 2$, since

$$D > p^2 = (1 + 4k)^2 = 1 + 8k + 16k^2$$

and $D \leq 16k^2 + 24k + 8$, since

$$D < (p + 2)^2 = (3 + 4k)^2 = 9 + 24k + 16k^2.$$

Consequently we have

$$16k^2 + 8k + 2 \leq D \leq 16k^2 + 24k + 8.$$

Note that there exist $4p + 3$ indefinite reduced quadratic forms F_{γ_2}, since

$$16k^2 + 24k + 8 - (16k^2 + 8k + 2) + 1 = 16k + 7 = 4(1 + 4k) + 3 = 4p + 3.$$

But $D = 16k^2 + 16k + 4 = (p + 1)^2 \in [16k^2 + 8k + 2, 16k^2 + 24k + 8]$ is a square. So we have to omit it. Therefore there exist $4p + 2$ indefinite reduced quadratic forms F_{γ_2} for $D \in [16k^2 + 8k + 2, 16k^2 + 24k + 8] - \{16k^2 + 16k + 4\}$.

Similarly, let $F_{\gamma_2}(x, y) = x^2 + pxy + \left(\frac{p^2 - D}{4}\right)y^2$ be reduced and let $p \equiv 3 \pmod{4}$. Then by definition we have from (1.2),

$$|\sqrt{\Delta} - 2|a| < b < \sqrt{\Delta}$$

$$\iff |\sqrt{D} - 2|1| < p < \sqrt{D} \iff |\sqrt{D} - 2| < p < \sqrt{D}.$$
Hence we get $D \geq 16k^2 + 24k + 10$, since
$$D > p^2 = (3 + 4k)^2 = 9 + 24k + 16k^2$$
and $D \leq 16k^2 + 40k + 24$, since
$$D < (p + 2)^2 = (5 + 4k)^2 = 25 + 40k + 16k^2.$$ Consequently, we have
$$16k^2 + 24k + 10 \leq D \leq 16k^2 + 40k + 24.$$ Note that there exist $4p + 3$ indefinite reduced quadratic forms F_{γ_2}, since
$$16k^2 + 40k + 24 - (16k^2 + 24k + 10) + 1 = 16k + 15 = 4(3 + 4k) + 3 = 4p + 3.$$ But $D = 16k^2 + 32k + 16 = (p + 1)^2 \in [16k^2 + 24k + 10, 16k^2 + 40k + 24]$ is a square. So we have to omit it. Therefore there exist $4p + 2$ indefinite reduced quadratic forms F_{γ_2} for $D \in [16k^2 + 24k + 10, 16k^2 + 40k + 24] - \{16k^2 + 32k + 16\}$. □

Example 2.3. Let $p = 73 \equiv 1 \pmod{4}$. Then $\gamma_2 = \frac{-73+\sqrt{D}}{2}$ is equivalent to its conjugate $\overline{\gamma}_2$ for $g = \begin{pmatrix} -1 & -73 \\ 0 & 1 \end{pmatrix} \in \Gamma$. Also $I_{\gamma_2} = \begin{bmatrix} 1, \frac{-73+\sqrt{D}}{2} \end{bmatrix}$ is ambiguous, and
$$F_{\gamma_2}(x, y) = x^2 + 73xy + \left(\frac{5329 - D}{4}\right)y^2$$
is reduced for $D \in [5330, 5624]$. But $D = 5476 = 74^2 \in [5330, 5624]$ is a square. Therefore F_{γ_2} is reduced for $D \in [5330, 5624] - \{5476\}$. The number of these reduced forms is 294. Further F_{γ_2} is properly equivalent to its opposite $F_{\overline{\gamma}_2}$ and is ambiguous.

Example 2.4. Let $p = 83 \equiv 3 \pmod{4}$. Then $\gamma_2 = \frac{-83+\sqrt{D}}{2}$ is equivalent to its conjugate $\overline{\gamma}_2$ for $g = \begin{pmatrix} -1 & -83 \\ 0 & 1 \end{pmatrix} \in \Gamma$. Also $I_{\gamma_2} = \begin{bmatrix} 1, \frac{-83+\sqrt{D}}{2} \end{bmatrix}$ is ambiguous, and
$$F_{\gamma_2}(x, y) = x^2 + 83xy + \left(\frac{6889 - D}{4}\right)y^2$$
is reduced for $D \in [6890, 7224]$. But $D = 7056 = 84^2 \in [6890, 7224]$ is a square. Therefore F_{γ_2} is reduced for $D \in [6890, 7224] - \{7056\}$.

The number of these reduced forms is 334. Further F_{γ_2} is properly equivalent to its opposite F_{γ_2} and is ambiguous.

References

Ahmet Tekcan and Hacer Özden,
Department of Mathematics,
Faculty of Science,
Uludag University,
Görükle 16059,
Bursa, Turkey
tekcan@uludag.edu.tr; hozden@uludag.edu.tr

Received on 9 March 2006 and in revised form on 1 September 2006.