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Quadratic Diophantine Equations x2 −Dy2 = cn

RICHARD A. MOLLIN

Abstract. We consider the Diophantine equation x2−Dy2=
cn for non-square positive integers D and natural numbers n
for a given nonzero integer c. We provide continued fraction
solutions to the case where n = 1 in terms of the central norm

(as defined by the underlying infrastructure of the quadratic

field Q(
√

D)). This allows a formulation of matrix equations
to build such solutions for arbitrary n, which generalizes re-

cent results in the literature, where only the case c = 2 was

considered.

1. Introduction

The equation x2 − Dy2 = C ∈ Z, called a quadratic norm-form
equation, has a long and distinguished history, a nice rendering of
which may be found in the perennial favourite, Dickson’s volume
[1] on Diophantine analysis. Of course, study of the Pell equation
(the case C = ±1) goes back to Archimedes (see [7], for instance).
More recently, for our area of interest in this paper, in the middle of
the last century, pioneering work was done by Stolt in [11]–[13] on
x2 − Dy2 = ±4N . Also, in the latter part of the last century, work
was done on a form of the title equation with c = 2 by Tzanakis
[15], among many others. Also, work by this author and coauthors
has been accomplished in the latter part of the last century and
the beginning of this one in [2], [5]–[9], to mention a few. Also,
quite recently there is a paper by Tekcan [14], published in this
journal, for the case c = 2. In this paper, we generalize some of
the above by linking solutions of norm-form equations of the title to
continued fraction expansions of

√
D and central norms arising from

the infrastructure of the underlying real quadratic field (see equation
(2.10) below).
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2. Preliminaries

Herein, we will be concerned with the simple continued fraction ex-
pansions of

√
D, where D is an integer that is not a perfect square.

We denote this expansion by,
√

D = 〈q0; q1, q2, . . . , q`−1, 2q0〉,

where ` = `(
√

D) is the period length, q0 = b
√

Dc (the floor of
√

D),
and q1, q2, . . . , q`−1 is a palindrome.

The kth convergent of α for k ≥ 0 is given by,

Ak

Bk
= 〈q0; q1, q2, . . . , qk〉,

where
Ak = qkAk−1 + Ak−2, (2.1)

Bk = qkBk−1 + Bk−2, (2.2)

with A−2 = 0, A−1 = 1, B−2 = 1, B−1 = 0. The complete quotients
are given by, (Pk +

√
D)/Qk, where P0 = 0, Q0 = 1, and for k ≥ 1,

Pk+1 = qkQk − Pk, (2.3)

qk =

⌊
Pk +

√
D

Qk

⌋
,

and
D = P 2

k+1 + QkQk+1.

We will also need the following facts (which can be found in most
introductory texts in number theory, such as [4]. Also, see [3] for a
more advanced exposition).

AkBk−1 −Ak−1Bk = (−1)k−1. (2.4)

Also,
Ak−1 = PkBk−1 + QkBk−2, (2.5)

DBk−1 = PkAk−1 + QkAk−2, (2.6)

and
A2

k−1 −B2
k−1D = (−1)kQk. (2.7)

In particular, for any k ∈ N,

A2
k`−1 −B2

k`−1D = (−1)k`, (2.8)
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namely, if

N(A`−1 + B`−1

√
D)k) = N(Ak`−1 + Bk`−1

√
D)

= A2
k`−1 −B2

k`−1D = (−1)k`,

where N is the norm from Q(
√

D) to Q.
Also, we will need the elementary facts that for any k ≥ 1,

Q`+k = Qk, P`+k = Pk, and q`+k = qk. (2.9)

When ` is even,

P`/2 = P`/2+1 = P(2k−1)`/2+1 = P(2k−1)`/2.

Also Q`/2 = Q(2k−1)`/2, so by Equation (2.3),

Q(2k−1)`/2

∣∣ 2P(2k−1)`/2,

where Q`/2 is called the central norm, (via Equation (2.7)). Further-
more,

Q(2k−1)`/2

∣∣ 2D, (2.10)
and

q(2k−1)`/2 = 2P(2k−1)`/2/Q(2k−1)`/2. (2.11)

In the next section, we will be considering what are typically
called the standard Pell equations (2.12)–(2.13), given below. The
fundamental solution of such an equation means the (unique) least
positive integers (x, y) = (x0, y0) satisfying it. The following result
shows how all solutions of the Pell equations are determined from
continued fractions.
Theorem 2.1. Suppose that ` = `(

√
D) and k is any positive inte-

ger. Then if ` is even, all positive solutions of

x2 − y2D = 1 (2.12)

are given by
x = Ak`−1 and y = Bkl−1,

whereas there are no solutions to

x2 − y2D = −1. (2.13)

If ` is odd, then all positive solutions of Equation (2.12) are given by

x = A2k`−1 and y = B2k`−1,

whereas all positive solutions of Equation (2.13) are given by

x = A(2k−1)`−1 and y = B(2k−1)`−1.
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Proof. This appears in many introductory number theory texts pos-
sessing an in-depth section on continued fractions. For instance, see
[4, Corollary 5.3.3, p. 249]. �

From the above we see that all solutions of the Pell equations
x2−Dy2 = ±1, arise from a single class in the sense that all solutions
arise as powers of the fundamental unit A`−1 + B`−1

√
D. For more

general Pell-type equations such as the following, this is not always
the case.

x2 −Dy2 = c. (2.14)

We need more concepts to derive all solutions of such equations in
general.

Definition 2.2. If α = x+y
√

D is a solution of Equation (2.14) with
gcd(x, y) = 1, then so are certain of its associates, namely those
β ∈ Z[

√
D]. for which there is a unit u ∈ Z[

√
D], u 6= 1 with such

that β = uα. Thus, α and β are called a associated solutions of
Equation (2.14). These associated solutions form a class of solutions.
For each such class we have an α0 = x0 + y0

√
D with y0 > 0 being

the smallest value possible in its class. If −x0 + y0

√
D is also in the

class, then the class is called ambiguous, and so in order to ensure
a unique choice of α0, we assume that x0 > 0 in this case. We call
such a solution the fundamental solution of its class. Hence, all
solutions of Equation (2.14) are given by certain associates of the
fundamental solutions in these (finitely many) classes.

Remark 2.3. An easy exercise shows that two solutions of Equation
(2.14), α = x + y

√
D and α1 = x1 + y1

√
D, are in the same class if

and only if both (x1x − y1yD)/c ∈ Z and (yx1 − xy1)/c ∈ Z. With
the above being said, we are going to be concerned with certain
Diophantine equations of the type (2.14) where there is only one
class of solutions. The following will be critical in the next section.

Theorem 2.4. Suppose that D > 1 is not a perfect square, and
D > c2 > 1 where |c| is either square-free divisor of D or is a prime
divisor of 2D. Then equation (2.14) has a solution if and only if
` = `(

√
D) is even, and c = (−1)`/2Q`/2 in the simple continued

fraction expansion of
√

D, in which case the fundamental solution of
equation (2.14) is given by

x + y
√

D = A`/2−1 + B`/2−1

√
D.
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Proof. This is a consequence of both [7, Corollary 2, p. 180] and [8,
Theorem 2, p. 275]. The only fact not made explicit in either [7] or
[8] is the fact that there indeed is a fundamental solution of (2.14) in
the sense that there is only one class. We use Remark 2.3 to verify
that here.

We need only show that

A`/2−1 + B`/2−1

√
D

and

(Ak`−1 + Bk`−1

√
D)(A`/2−1 + B`/2−1

√
D)

= Ak`−1A`/2−1 + Bk`−1B`/2−1D

+(Ak`−1B`/2−1 + Bk`−1A`/2−1)
√

D

are in the same class for any k ≥ 1. Since,

A`/2−1(Ak`−1A`/2−1 + Bk`−1B`/2−1D)
Q`/2(−1)`/2

−
B`/2−1D(Ak`−1B`/2−1 + Bk`−1A`/2−1)

Q`/2(−1)`/2

=
A2

`/2−1Ak`−1 −Ak`−1B
2
`/2−1D

Q`/2(−1)`/2

=
Ak`−1(A2

`/2−1 −B2
`/2−1D)

Q`/2(−1)`/2
= Ak`−1,

given that A2
`/2−1 −B2

`/2−1D = Q`/2(−1)`/2.
Similarly, one may verify that

A`/2−1(Ak`−1B`/2−1 + Bk`−1A`/2−1)
Q`/2(−1)`/2

−
B`/2−1(Ak`−1A`/2−1 + Bk`−1B`/2−1D)

Q`/2(−1)`/2

= Bk`−1.

Hence, by Remark 2.3, there is only one class of solutions for equation
2.14, so the term fundamental, applied to

A`/2−1 + B`/2−1

√
D

is well-defined. �
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Lastly, we need the following result in the next section, the first
result of which yields a matrix-theoretic solution of equation (2.14).

Theorem 2.5. If D ∈ N is not a perfect square and ` = `(
√

D)
is even, then in the simple continued fraction expansion of

√
D, the

following both hold for all integers k ≥ 0.

(1) Q`/2A(2k+1)`−1 = A2
(2k+1)`/2−1 + B2

(2k+1)`/2−1D.
(2) Q`/2B(2k+1)`−1 = 2A(2k+1)`/2−1B(2k+1)`/2−1.

Proof. This is [7, Equations (14)–(15), p. 164]. �

3. Main Results

In what follows the Ai, Bi, ` and any other continued fraction nota-
tion from Section 1, refer to the simple continued fraction expansion
of
√

D, where D > 1 is a non-square integer.

Theorem 3.1. If D > c2 is a non-square integer, where either |c| >
1 is a square-free divisor of D, or |c| is a prime divisor of 2D. Then
equation (2.14) has a solution if and only if ` is even and c =
(−1)`/2Q`/2, in which case the fundamental solution of it is given by
(A`/2−1, B`/2−1), and all other solutions of the equation are given by
the following for k ≥ 1.(

A(2k+1)`/2−1

B(2k+1)`/2−1

)
=

(
A`/2−1 B`/2−1D
B`/2−1 A`/2−1

) (
Ak`−1

Bk`−1

)
. (3.15)

Proof. First we show that the right-hand side of equation (3.15) is
indeed a solution to equation (2.14) when c = (−1)`/2Q`/2 for even `.

(A`/2−1Ak`−1 + B`/2−1Ak`−1D)2

− (B`/2−1Ak`−1 + A`/2−1Bk`−1)2D

= A2
`/2−1A

2
k`−1 + 2A`/2−1Ak`−1B`/2−1Bk`−1D

+ B2
`/2−1A

2
k`−1D

2 −B2
`/2−1A

2
k`−1D

− 2A`/2−1Ak`−1B`/2−1Bk`−1D

−A2
`/2−1B

2
k`−1D

= A2
`/2−1(A

2
k`−1 −B2

k`−1D)

−B2
`/2−1D(A2

k`−1 −B2
k`−1D)
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= (A2
`/2−1 −B2

`/2−1D)(A2
k`−1 −B2

k`−1D)

= (−1)`/2Q`/2 = c,

where the last equality follows from Theorem 2.4, and equation (2.8),
as required. On the other hand, if (2.14) has a solution, then The-
orem 2.4 tells us that the fundamental solution is what we assert.

Now, to see that the left side equals the right side of equation
(3.15) consider the following, which follows from the results in The-
orem 2.5.

(A(2k+1)`/2−1 + B(2k+1)`/2−1

√
D)2

= Q`/2(A(2k+1)`−1 + B(2k+1)`−1

√
D)

= Q`/2(Ak`−1 + B(2k−1)`−1

√
D)2(A`−1 + B`−1

√
D)

= Q`/2(Ak`−1 + B(2k−1)`−1

√
D)2×

(A(2k−1)`/2−1 + B(2k−1)`/2−1

√
D)2/Q`/2

=
(
Ak`−1A(2k−1)`/2−1 + Bk`−1B(2k−1)`/2−1D

+ (A(2k−1)`/2−1Bk`−1 + Ak`−1B(2k−1)`/2−1)
√

D
)2

,

which, by comparing coefficients, yields that

A(2k+1)`/2−1 = Ak`−1A`/2−1 + Bk`−1B`/2−1D,

and
B(2k+1)`/2−1 = A`/2−1Bk`−1 + Ak`−1B`/2−1,

as required. Since all the continued fraction expansion of
√

D dic-
tates, via Theorem 2.4, that all solutions of equation (2.14) are given
by

A(2k+1)`/2−1 + B(2k+1)`/2−1

√
D

for all k ≥ 0, the proof is complete. �

Example 3.2. Let D = 75 and c = 6. Then `(
√

D) = ` = 4,
A`/2−1 = A1 = 9, B`/2−1 = B1 = 1, A`−1 = A3 = 26, B`−1 = B3 =
3, and (−1)`/2Q`/2 = 6, so all solutions of

x2 − 75y2 = 6

are given, for k ≥ 1, by(
A4k+1

B4k+1

)
=

(
9 75
1 9

) (
A4k−1

B4k−1

)
.
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For instance, if k = 3, then

(
A13

B13

)
=

(
9 75
1 9

) (
A11

B11

)

=
(

9 75
1 9

) (
70226
8109

)
=

(
1240209
143207

)
.

Corollary 3.3. The solutions of equation (2.14) satisfy the follow-
ing recurrence relations for k ≥ 1,

(
A(2k+1)`/2−1

B(2k+1)`/2−1

)
=

(
A`−1 B`−1D
B`−1 A`−1

) (
A(2k−1)`/2−1

B(2k−1)`/2−1

)

=

(
A`−1A(2k−1)`/2−1 + B`−1B(2k−1)`/2−1D
B`−1A(2k−1)`/2−1 + A`−1B(2k−1)`/2−1

)
.

Proof. This is verified, in a similar fashion to the proof of Theo-
rem 3.1, by observing that,

(A(2k+1)`/2−1 + B(2k+1)`/2−1

√
D)2

= Q`/2(A(2k+1)`−1 + B(2k+1)`−1

√
D)

= Q`/2(A(2k−1)`−1 + B(2k−1)`−1

√
D)(A2`−1 + B2`−1

√
D)

= (A(2k−1)`/2−1 + B(2k−1)`/2−1

√
D)2(A`−1 + B`−1

√
D)2

=
(
A`−1A(2k−1)`/2−1 + B`−1B(2k−1)`/2−1D

+ (B`−1A(2k−1)`/2−1 + A`−1B(2k−1)`/2−1)
√

D
)2

,

which, by comparing coefficients, yields the desired result. �
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Example 3.4. As an Illustration of Corollary 3.3, we look at Exam-
ple 3.2 again with k = 3.(

A13

B13

)
=

(
A`−1 B`−1D
B`−1 A`−1

) (
A9

B9

)
=

(
26 225
3 26

) (
23859
2755

)
=

(
1240209
143207

)
.

The following results are immediate from the above.

Corollary 3.5. (Tekcan [14, Theorem 2.3, p. 80]) Suppose that
(X1, Y1) = (k,m) is the fundamental solution of x2 − Dy2 = 2,
and x1 + y1

√
D is the fundamental solution of x2 − Dy2 = 1, with

xn+yn

√
D = (x1+y1

√
D)n. Then the other solutions of x2−Dy2 =

2 are (Xn, Yn), where(
Xn

Yn

)
=

(
k mD
m k

) (
xn−1

yn−1

)
,

for n ≥ 2.

Corollary 3.6. (Tekcan [14, Corollary 2.4, p. 80]) The solutions
(Xn, Yn) of x2 −Dy2 = 2 satisfy the following relations(

Xn+1

Yn+1

)
=

(
x1 y1D
y1 x1

) (
Xn

Yn

)
=

(
x1Xn + y1DYn

y1Xn + x1Yn

)
.

Corollary 3.7. (Mollin [7, Corollary 3, p. 184]) If D > 4 is not
a perfect square, then x2 − Dy2 = ±2 has a solution if and only if
` = `(

√
D) is even and (−1)`/2Q`/2 = ±2.

Remark 3.8. What is missing from [14], and similar recent papers in
Diophantine analysis, is the connection with the continued fractions
which theorem 3.1 exposes in terms of the role of the central norm.
This is important since it displays the underlying nature of the in-
frastructure of the real quadratic field via continued fractions and the
fundamental importance of that structure in achieving complete so-
lutions of certain quadratic Diophantine equations. Furthermore, in
[14], there is no mention of criteria for the solvability of x2−Dy2 = 2.
Rather solutions to it are assumed. Indeed, what underlies the so-
lutions of this special case is when the central norm in the simple
continued fraction expansion of

√
D is 2. A result we achieved in

earlier work that is related to a classical result of Lagrange speaks
directly to this fact as follows.
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Theorem 3.9. If D > 4 is a non-square integer, and ` = `(
√

D)
then the following are equivalent

(1) The Diophantine equation

x2 −Dy2 = ±2 (3.16)

has a solution.
(2) ` = `(

√
D) is even, ±2 = (−1)`/2Q`/2, and

A(2k−1)`/2−1 + B(2k−1)`/2−1

√
D

is the fundamental solution of equation (3.16).
(3) ` is even and A`−1 ≡ (−1)`/2 (mod D).

Proof. See [8, Corollary 1, p. 277] and [8, Theorem 2, p. 275]. �

Remark 3.10. The classical result of Lagrange which Theorem 3.9
generalizes is that if p is an odd prime and (x0, y0) is the fundamental
solution of

x2 − py2 = 1,

then x0 ≡ 1 (mod p) if and only if p ≡ 7 (mod 8). When p ≡ 7
(mod 8), `(

√
p) = ` is even and Q`/2 = 2. Moreover, when x0 ≡ 1

(mod p), then since x0 = A`−1, Legendre symbol consideration with
2 and p force p ≡ 7 (mod 8) and A2

`/2−1 − B2
`/2−1p = 2. All of this

fits quite nicely with what we have been discussing herein.

There is a fundamental result that yields the fundamental unit
of a real quadratic order via matrices as follows. This generalizes
the result by Tekcan [14, Theorem 2.5, p. 83] where an element of
SL2(2, R) is used for his special case where x2 − Dy2 = 2. The
following holds without restriction.

Theorem 3.11. (Fundamental Unit Theorem for Quadratic
Orders) Suppose that D > 1 is a non-square integer where

√
D =

〈
q0; q1, . . . , q`−1, 2q0

〉
, (3.17)

holds. Then
`−1∏
j=0

(
qj 1
1 0

) (
q0 1
1 0

)
=

(
DB`−1 A`−1

A`−1 B`−1

)
. (3.18)

Proof. This is proved more generally in [10, Theorem 3, p. 44]. �
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Now we show how to use the solutions of equation (2.14) to find
solutions of

u2 −Dv2 = cn (3.19)

for any n ∈ N.

Theorem 3.12. Suppose that D > c2 > 1 is a non-square integer
where either |c| is a square-free divisor of D or else is a prime divisor
of 2D, and equation (2.14) is solvable. Then for any fixed n ∈ N,
all solutions of equation (3.19) are given by (Un, Vn), where(

Un

Vn

)
=

(
A`/2−1 B`/2−1D
B`/2−1 A`/2−1

)n (
1
0

)
. (3.20)

Proof. We use induction on n. If n = 1, then the result follows from
Theorem 3.1. Assume the induction hypothesis:

U2
n−1 − V 2

n−1D = cn−1.
Since (

Un

Vn

)
=

(
A`/2−1 B`/2−1D
B`/2−1 A`/2−1

)n (
1
0

)
(

Un

Vn

)
=

(
A`/2−1 B`/2−1D
B`/2−1 A`/2−1

) (
Un−1

Vn−1

)
=

(
A`/2−1Un−1 + B`/2−1Vn−1D
B`/2−1Un−1 + A`/2−1Vn−1

)
,

we have

U2
n −DV 2

n = (A`/2−1Un−1 + B`/2−1Vn−1D)2

− (B`/2−1Un−1 + A`/2−1Vn−1)2D

= A2
`/2−1U

2
n−1 + 2A`/2−1B`/2−1Un−1Vn−1D

+ B2
`/2−1V

2
n−1D

2 −B2
`/2−1U

2
n−1D

− 2A`/2−1B`/2−1Un−1Vn−1D

−A2
`/2−1V

2
n−1D

= A2
`/2−1(U

2
n−1 − V 2

n−1D)−B2
`/2−1D(U2

n−1 − V 2
n−1D)

= (A2
`/2−1 −B2

`/2−1D)(U2
n−1 − V 2

n−1D) = c · cn−1 = cn

which secures the proof. �
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Example 3.13. To illustrate Theorem 3.12, we go to Example 3.2
again. Take n = 4, then(

U4

V4

)
=

(
9 75
1 9

)4 (
1
0

)
=

(
48636
5616

)
,

and indeed, U2
4 − 75V 2

4 = 486362 − 75 · 56162 = 1296 = 64.

The following is immediate from the above and our proofs of the
results from [14] are simpler and more revealing in general.

Corollary 3.14. (Tekcan [14, Theorem 2.7, p. 86]) Suppose that
(X1, Y1) = (k, m) is the fundamental solution of x2 −Dy2 = 2, then
all solutions of x2 − Dy2 = 2n for n ∈ N are given by (x, y) =
(Un, Vn), where (

Un

Vn

)
=

(
k mD
m k

)n (
1
0

)
.

Some special cases of the above are given as follows. Consider the
Diophantine equations,

x2 −Dy2 = 1 (3.21)

X2 −DY 2 = 2a (3.22)

Theorem 3.15. If D = a2b2 − 2a > 0 where a, b ∈ N, where a
is square-free and b > 1 then the fundamental solution of equation
(3.21) is given by

(x, y) = (a · b2 − 1, b) (3.23)

and the fundamental solution of equation (3.22) is given by (X, Y ) =
(ab, 1).

Proof. Since D is of RD-type, the fundamental unit is well-known
to be that given in (3.23) (for instance, see [3, Theorem 3.2.1 (d),
p. 78]), where A`−1 = a · b2 − 1 and B`−1 = b (since b > 1 puts
us into case (d) of that result). Moreover, the fundamental solution
to equation (3.22) is given by (X, Y ) = (ab, 1), since it is clearly a
solution and the fact that Y = 1 makes it fundamental. �

Example 3.16. Let D = 32 · 72 − 2 · 7 = 427 = a2b2 − 2a. Then the
fundamental solution of x2−427y2 = 1 is (A`−1, B`−1) = (A3, B3) =
(62, 3) = (a·b2−1, b) and the fundamental solution of x2−427y2 = 14
is (ab, 1) = (21, 1).
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Immediate from the above is the following recent result in the
literature.

Corollary 3.17. [Tekcan [14, Theorem 2.2, p. 79]] If D = b2 − 2,
b ≥ 2, then the fundamental solution of equation (3.21) is (x, y) =
(b2−1, b) and the fundamental solution of equation (3.22) is (X, Y ) =
(b, 1).

Some considerations for future work would be to replace the values
D in this paper with polynomials of the type we considered in [6] for
instance, which would generalize all of this to a higher level.
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