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On Hamilton’s Characteristic Functions for
Reflection

BRENDAN GUILFOYLE AND WILHELM KLINGENBERG

Abstract. We review the complex differential geometry of
the space of oriented affine lines in R3 and give a descrip-
tion of Hamilton’s characteristic functions for reflection in
an oriented C1 surface in terms of this geometry.

1. Introduction

In a series of classic papers [5], [6], [7], Hamilton presented his system
of geometric optics whereby the evolution of systems of rays undergo-
ing reflection and refraction at interfaces of homogenous media was
described, both in general terms and in specific cases. In particular,
Hamilton introduced three characteristic functions for an optical sys-
tem by which he could give algebraic expressions for reflection and
refraction of a given system of rays off simple geometric surfaces,
such as spheres or other surfaces of revolution. This he carried out
in closed form for some systems and in approximation for others.
For a beautiful exposition of this work, see Synge’s book [9].

The purpose of this paper is to review the complex differential
geometry of the space of oriented affine lines in R3 and to give a
description of Hamilton’s characteristic functions for reflection in
an oriented C1 surface in terms of this geometry. This formalism,
developed in [1], has proven useful in the scattering of waves off
surfaces [2], as well as the computation of caustics [3] and approxi-
mations of the Casimir force [4].

In the following section we explain the background of this for-
malism. Section 3 introduces and describes the three characteristic
functions for reflection in an arbitrary surface in terms of the com-
plex geometry on the space of lines (Theorems 3 to 5).
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2. The Complex Geometry of Reflection

2.1. The Space of Oriented Lines. The fundamental building
block of geometric optics in a homogeneous isotropic medium is a ray,
or oriented straight line, along which light is postulated to propagate.
The set L of all such oriented lines in Euclidean R3 is a 4-dimensional
manifold that can be identified with the total space of the tangent
bundle to the 2-sphere [8]. To see this, recall that an oriented line
is uniquely determined by a pair of vectors: its direction vector ~V

and the vector ~U from the origin to the point on the line closest
to the origin. The former can be taken to be a unit vector and is
perpendicular to the latter. Thus

L ∼= { (~U, ~V ) ∈ R3 × R3 | |~V | = 1 ~U · ~V = 0 },
which is clearly homeomorphic to the tangent bundle to the 2-sphere.

Our approach to geometric optics is to study optical systems as
submanifolds of the space L. In order to describe this algebraically
we now introduce a local coordinate atlas on L.

Let ξ be the local complex coordinate on the unit 2-sphere in R3

obtained by stereographic projection from the south pole. In terms
of the standard spherical polar angles (θ, φ) about the north pole,
we have ξ = tan( θ

2 )eiφ.
This can be extended to complex coordinates (ξ, η) on L minus

the tangent space over the south pole, as follows. Note that a tan-
gent vector ~X to the 2-sphere can always be expressed as a linear
combination:

~X = η
∂

∂ξ
+ η̄

∂

∂ξ̄
,

for a complex number η. We can thus identify the real tangent vector
~X on the 2-sphere (and hence the ray in R3) with the two complex
numbers (ξ, η). Loosely speaking, ξ determines the direction of the
ray, and η determines its perpendicular distance vector to the origin.

The coordinates (ξ, η) do not cover all of L—they omit all of the
lines pointing directly downwards. However, the construction can
also be carried out using stereographic projection from the north
pole, yielding a coordinate system that covers all of L except for the
lines pointing directly upwards. The whole of the space of oriented
lines is covered by these two coordinate patches and the transition
functions between them are holomorphic. In what follows we work
in the patch that omits the south direction.
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Definition 1. The canonical bundle map π : L → P1 is given by
mapping an oriented line to its direction. Here, and throughout, we
write P1 for S2 with the standard complex structure, and denote the
composition of projections L× R→ L→ P1 by π1.

One of the key relationships between L and R3 is the mapping
Φ: L× R→ R3.

Definition 2. The map Φ takes ((ξ, η), r) ∈ L× R to the point on
the oriented line (ξ, η) in R3 that lies an affine parameter distance r
from the point on (ξ, η) closest to the origin.

If Φ((ξ, η), r) = (z(ξ, η, r), t(ξ, η, r)), where z = x1 + ix2, t = x3

and (x1, x2, x3) are Euclidean coordinates in R3, then we have the
following coordinate expressions [1]:

z =
2(η − ηξ2) + 2ξ(1 + ξξ)r

(1 + ξξ)2
, t =

−2(ηξ + ηξ) + (1− ξ2ξ
2
)r

(1 + ξξ)2
.

(2.1)
This map is of crucial importance when describing surfaces in R3, as
we explain below. It is also useful to invert these relationships:

η = 1
2

(
z − 2tξ − z̄ξ2

)
, r =

ξz̄ + ξ̄z + (1− ξξ̄)t
1 + ξξ̄

. (2.2)

These give the perpendicular distance vector from the origin and
the distance r for a line through the point (z, t) ∈ R3 with direction
ξ ∈ P1.

For later use we introduce the following definition:

Definition 3. For a subset K ⊂ R3, the subset UK ⊂ L is defined
to be the set of oriented lines that intersect K:

UK ≡ { γ ∈ L | Φ(γ, ·) ∩K 6= ∅ } .

Example 1. For p ∈ R3 the set Up is the set of oriented lines
through p, which is a sphere in L. In terms of the coordinates above,
if p is (z,t), then

U(z,t) ≡ { (ξ, η) ∈ L | η = 1
2

(
z − 2tξ − z̄ξ2

) }.
Example 2. For a C1 surface S ⊂ R3, US is a 4-dimensional subset
of L whose boundary is

∂US = { γ ∈ L | Φ(γ, ·) tangent to S }.
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In its simplest form, an optical system is a 2-parameter family of
rays. We refer to a 2-parameter family of oriented lines in R3 as a
line congruence, which, from our perspective, is a surface Σ in L.
For example, a point source corresponds to the 2-parameter family
of oriented lines that contain the source point, which thus defines a
2-sphere in L—the sphere in Example 1.

For computational purposes, we now give explicit local param-
eterizations of the line congruence. In practice, this will be given
locally by a map C → L : µ 7→ (ξ(µ, µ̄), η(µ, µ̄)). A convenient
choice of parametrization will often depend upon the specifics of the
situation, but our formalism holds for arbitrary parameterisations.

We now describe how to construct surfaces in R3 using line congru-
ences. Given a line congruence Σ ⊂ L, a map r : Σ → R determines
a map Σ → R3 by (ξ, η) 7→ Φ((ξ, η), r(ξ, η)) for (ξ, η) ∈ Σ. With a lo-
cal parametrization µ of Σ, composition with the above map yields a
map C→ R3 which comes from substituting ξ = ξ(µ, µ̄), η = η(µ, µ̄)
and r = r(µ, µ̄) in equations (2.1). In other words, we choose one
point on each line of the congruence, thus forming a surface.

O

r=r(µ,µ)S
p

Definition 4. An oriented C1 surface S in R3 gives rise to the map
Φ−1

S : S → L× R which takes a point p ∈ S to the oriented normal
line to S crossed with the distance of p to the point on the normal
lying closest to the origin.

The dual picture of light propagation is to consider the wavefronts,
or surfaces that are orthogonal to a given set of rays. However, not
every line congruence has such orthogonal surfaces—indeed, most
don’t. We refer to line congruences for which orthogonal surfaces
exist as normal congruences.

Theorem 1. [1] A parameterised line congruence (ξ(µ, µ̄), η(µ, µ̄))
is orthogonal to a surface in R3 iff there exists a real function r(µ, µ̄)
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satisfying:

∂r =
2η̄∂ξ + 2η∂ξ̄

(1 + ξξ̄)2
, (2.3)

where ∂ = ∂
∂µ .

If there exists one solution, there exists a 1-parameter family gen-
erated by the real constant of integration. An explicit parametriza-
tion of these surfaces in R3 is given by inserting (ξ(µ, µ̄), η(µ, µ̄))
and r = r(µ, µ̄) in (2.1).

Given a surface S with coordinates ξ = ξ0(µ, µ̄), η = η0(µ, µ̄) and
r = r0(µ, µ̄), the set US is [2]:

US =
{

(ξ, η) ∈ L
∣∣∣ η = (1+ξ̄0ξ)2

(1+ξ0ξ̄0)2
η0 − (ξ0−ξ)2

(1+ξ0ξ̄0)2
η̄0 + (ξ0−ξ)(1+ξ̄0ξ)

1+ξ0ξ̄0
r0

}
.

(2.4)

2.2. Reflection. Given an oriented C1 surface S in R3, reflection
in S determines a map RS : US → US .

(z0,t0)

Incoming ray

Normal

Outgoing ray

η
0

η
1η

2

ξ
1 ξ

0 ξ
2

r2

r0

0

S

r1

The algebraic expression for this map is:

Theorem 2. [2] Let S be an oriented C1 surface S in R3 with pa-
rameterised normal line congruence ξ = ξ0(µ, µ̄), η = η0(µ, µ̄) and
r = r0(µ, µ̄) satisfying (2.3). Then RS : US → US takes (ξ1, η1) to
RS(ξ1, η1) = (ξ2, η2) :

ξ2 =
2ξ0ξ̄1 + 1− ξ0ξ̄0

(1− ξ0ξ̄0)ξ̄1 − 2ξ̄0
, (2.5)
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η2 = (ξ̄0−ξ̄1)
2

((1−ξ0ξ̄0)ξ̄1−2ξ̄0)2
η0 − (1+ξ0ξ̄1)

2

((1−ξ0ξ̄0)ξ̄1−2ξ̄0)2
η̄0

+ (ξ̄0−ξ̄1)(1+ξ0ξ̄1)(1+ξ0ξ̄0)

((1−ξ0ξ̄0)ξ̄1−2ξ̄0)2
r0,

(2.6)

where (ξ0, η0, r0) ∈ Φ−1
S (S).

If r1 and r2 are the distances of the point of reflection from the
point closest to the origin on the incoming and reflected rays, respec-
tively, then

r2 = r1 +
2(|ξ0 − ξ1|2 − |1 + ξ̄0ξ1|2)

(1 + ξ0ξ̄0)(1 + ξ1ξ̄1)
r0. (2.7)

3. Hamilton’s Characteristic Functions For Reflection
in a Surface

Consider a ray (ξ1, η1) entering an optical instrument and emerging,
after a number of reflections and refractions, as the ray (ξ2, η2). Let
p1 and p2 be arbitrary points on the incoming and outgoing rays,
q1 and q2 be the points on the incoming and outgoing rays that lie
closest to the origin (respectively).

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

Incoming ray

Outgoing rayη
1

η
2

ξ
1

ξ
2

0

p1

p2

optical
instrument

q1

q2

Hamilton defined three different functions, which he termed char-
acteristic functions and denoted T , V and W .

Definition 5. The function T , which is referred to as the angle
characteristic function, takes the directions ξ1 and ξ2 to the distance
along the rays between q1 and q2.
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Definition 6. The function W , which is referred to as the mixed
characteristic function, takes the point p1 and the direction ξ2 to the
distance along the rays between p1 and q2.

Definition 7. The function V , which is referred to as the point
characteristic function, takes the points p1 and p2 to the distance
along the rays between p1 and p2.

The function V is, of course, commonly called the Hamiltonian of
the optical system.

In the above, while the points qi are on the initial or final rays,
they may be on the opposite side of the initial or final interface and
so lie at points which the light may never physically pass through.
However, as long as the associated distances are counted negatively,
the functions are well defined and have all of the formal properties
required for our purposes.

The exact domain of definition of these functions will depend upon
the optical instrument under consideration. In addition, the charac-
teristic functions may be multivalued, since there may be more than
one sequence of rays with the properties required.

The domain of T is obviously a subset of P1×P1, while the domain
of V is a subset of R3×P1 and the domain of W is a subset of R3×R3.
More specifically, for reflection in a surface:

Proposition 1. Let S be an oriented C1 immersed surface in R3,
then for reflection in S:

Dom T =
{
(ξ1, ξ2) ∈ P1 × P1

∣∣ RS

(
π−1(ξ1) ∩ US

) ∩ π−1(ξ2) 6= ∅}
,

Dom W =
{
(p1, ξ2) ∈ R3 × P1

∣∣ RS (Up1 ∩ US) ∩ π−1(ξ2) 6= ∅}
,

Dom V =
{
(p1, p2) ∈ R3 × R3 | RS (Up1 ∩ US) ∩ Up2 6= ∅}

.

Proof. A pair of directions ξ1, ξ2 ∈ P1 lie in the domain of T iff
there exists a line with direction ξ1 which, when reflected in S, has
direction ξ2. Now π−1(ξ1) is the set of oriented lines with direction
ξ1, while π−1(ξ1) ∩ US is the set of oriented lines with direction ξ1

that intersect S. Thus, reflecting this set gives RS

(
π−1(ξ1) ∩ US

)
and, for (ξ1, ξ2) to be in the domain of T , the reflected set must
contain a line with direction ξ2. In other words, RS

(
π−1(ξ1) ∩ US

)∩
π−1(ξ2) 6= ∅, as claimed.

For W , (p1, ξ2) ∈ R3 × P1 is in the domain of W iff there ex-
ists a line through p1 whose reflection in S has direction ξ2. The
oriented lines through p1 that intersect S are Up1 ∩ US . Thus,



36 Brendan Guilfoyle and Wilhelm Klingenberg

for (p1, ξ2) to be in the domain of W , the reflection of this set,
RS (Up1 ∩ US) must contain a line with direction ξ2. That is, we
must have RS (Up1 ∩ US) ∩ π−1(ξ2) 6= ∅, as claimed.

Finally, the set of oriented lines through p1 that intersect S is
Up1 ∩US . Thus, for (p1, p2) to be in the domain of V , the reflection
of this set must contain an oriented line that passes through p2. That
is, RS (Up1 ∩ US) ∩ Up2 6= ∅. ¤

The following propositions describe the domains of the charac-
teristic functions in terms of our coordinates. We assume that the
oriented C1 surface S has normal congruence parameterised by µ 7→
(ξ0(µ, µ̄), η0(µ, µ̄)) and r = r0(µ, µ̄).

Proposition 2. Given ξ1, ξ2 ∈ P1, define ξ0 ∈ P1 by

ξ0 =
ξ1ξ̄1 − ξ2ξ̄2 + |ξ1 − ξ2| [(1 + ξ1ξ̄1)(1 + ξ2ξ̄2)]

1
2

ξ̄1(1 + ξ2ξ̄2)− ξ̄2(1 + ξ1ξ̄1)
. (3.1)

Then the domain of T is given by:

Dom T =
{

(ξ1, ξ2) ∈ P1 × P1
∣∣ ξ0 ∈ π1 ◦ Φ−1

S (S)
}

. (3.2)

Proof. Given two directions ξ1, ξ2 ∈ P1, the direction ξ0 through
which ξ1 must be reflected to obtain ξ2 (or vice versa) is found by
solving equation (2.5) for ξ0. The result is (3.1), and the question
then reduces to whether the normal to S has direction ξ0 at any
point. Now, the map π1 ◦Φ−1

S : S → P1 takes a point on an oriented
C1 surface S to the direction of the normal at the point (i.e. the
classical Gauss map of S). Thus, for (ξ1, ξ2) to be in the domain
of T we must have ξ0 ∈ π1 ◦ Φ−1

S (S). ¤

Proposition 3. The domain of W is obtained as follows. Given
p1 = (z1, t1) ∈ R3 and ξ2 ∈ P1, solve (if possible) the single complex
equation for µ:

z1[(1− ξ0ξ̄0)ξ̄2 − 2ξ̄0]2 − 2t1[(1− ξ0ξ̄0)ξ̄2 − 2ξ̄0][2ξ0ξ̄2 + 1− ξ0ξ̄0]

− z̄1[2ξ0ξ̄2 + 1− ξ0ξ̄0]2

= 2(1 + ξ0ξ̄0)
(
(ξ̄0 − ξ̄2)2η0 − (1 + ξ0ξ̄2)2η̄0

+(ξ̄0 − ξ̄2)(1 + ξ0ξ̄2)(1 + ξ0ξ̄0)r0

)
.

(3.3)

Then (p1, ξ2) is in the domain of W iff ξ0(µ, µ̄) ∈ π1 ◦ Φ−1
S (S).
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Proof. An oriented line (ξ1, η1) passes through the point (z1, t1) iff
(cf. equation (2.2))

η1 = 1
2

(
z1 − 2t1ξ1 − z̄1ξ

2
1

)
,

while inverting the reflection law (2.5) gives

ξ1 =
2ξ0ξ̄2 + 1− ξ0ξ̄0

(1− ξ0ξ̄0)ξ̄2 − 2ξ̄0
.

For the incoming ray to intersect the surface S we must have (cf. (2.4))

η1 = (1+ξ̄0ξ1)
2

(1+ξ0ξ̄0)2
η0 − (ξ0−ξ1)

2

(1+ξ0ξ̄0)2
η̄0 + (ξ0−ξ1)(1+ξ̄0ξ1)

1+ξ0ξ̄0
r0.

Thus, for an oriented line through p1 to have reflected direction ξ2,
the equation to be solved is obtained by substituting the first two
equations above in the last one. The result is as claimed. ¤

Proposition 4. The domain of V is determined as follows. Given
two points p1 = (z1, t1) and p2 = (z2, t2) ∈ R3, solve (if possible) the
following two complex equations for µ and ξ1:

z2[(1− ξ0ξ̄0)ξ̄1 − 2ξ̄0]2 − 2t2[(1− ξ0ξ̄0)ξ̄1 − 2ξ̄0][2ξ0ξ̄1 + 1− ξ0ξ̄0]

+ z̄2[2ξ0ξ̄1 + 1− ξ0ξ̄0]2

=−(1 + ξ0ξ̄0)2(z̄1−2t1ξ̄1 − z1ξ̄
2
1) + 4(ξ̄0 − ξ̄1)(1 + ξ0ξ̄1)(1 + ξ0ξ̄0)r0

(3.4)

and

(1 + ξ0ξ̄0)2
(
z1 − 2t1ξ1 + z̄1ξ

2
1

)
= 2(1 + ξ̄0ξ1)2η0 − 2(ξ0 − ξ1)2η̄0

− 2(1 + ξ̄0ξ1)(ξ0 − ξ1)(1 + ξ0ξ̄0)r0.
(3.5)

Then (p1, p2) is in the domain of V iff ξ0(µ, µ̄) ∈ π1 ◦ Φ−1
S (S).

Proof. As in the previous proposition, we must have

ηi = 1
2

(
zi − 2tiξi − z̄iξ

2
i

)
,

this time for i = 1, 2. Substituting these into equations (2.4) and
(2.6), with the aid of (2.5), yields the two equations in the proposi-
tion. ¤

We now compute the characteristic functions for reflection in an
oriented C1 surface S. Assume that the normal line congruence to
S is parameterized by ξ = ξ0(µ, µ̄), η = η0(µ, µ̄) and r = r0(µ, µ̄).
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The angle characteristic function for reflection in a surface S is
given by:

Theorem 3. Hamilton’s angle characteristic function for reflection
in S is

T (ξ1, ξ2) = ± 2|ξ1 − ξ2|[
(1 + ξ1ξ̄1)(1 + ξ2ξ̄2)

] 1
2
r0,

where ξ0 is given by (3.1) and (ξ0, η0, r0) ∈ Φ−1
S (S).

Proof. Given ξ1 and ξ2, from the reflection law (2.5) we solve for ξ0

and get the direction ξ0 of the normal to the surface at the point of
reflection—equation (3.1). It is possible that the surface S never has
this normal direction, in which case the function T is not defined at
(ξ1,ξ2). On the other hand, there may be more than one point on the
surface with normal direction ξ0, in which case T will be multivalued.
Assume that it is defined and that the point of reflection is (z0, t0)
which lies at r = r0 along the normal ray (ξ0,η0).

As before, let r1 and r2 be the distances of the point of reflection
from the point closest to the origin on the incoming and reflected
rays, respectively. Then T (ξ1, ξ2) = ±|r1 − r2| and by (2.7)

T = ±2(|1 + ξ̄0ξ1|2 − |ξ0 − ξ1|2)
(1 + ξ0ξ̄0)(1 + ξ1ξ̄1)

r0.

Substituting equation (3.1) in this yields the result after some
simplification. ¤

On the other hand the mixed characteristic function for reflection
is determined by:

Theorem 4. Hamilton’s mixed characteristic function for reflection
in S is:

W ((z1, t1), ξ2) = ±
∣∣∣∣∣

ξ̄1z1 + ξ1z̄1 + (1− ξ1ξ̄1)t1
1 + ξ1ξ̄1

+
2|ξ1 − ξ2|[

(1 + ξ1ξ̄1)(1 + ξ2ξ̄2)
] 1

2
r0

∣∣∣∣∣,

where

ξ1 =
2ξ0ξ̄2 + 1− ξ0ξ̄0

(1− ξ0ξ̄0)ξ̄2 − 2ξ̄0
, (3.6)

and ξ0 ∈ π1 ◦ Φ−1
S (S) is a solution of (3.3).
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Proof. From Proposition 3, (z1, t1), ξ2) is in the domain of W iff
there exists a direction ξ0 ∈ π1 ◦ Φ−1

S (S) that solves equation (3.3).
Assuming that such exists, equation (3.6) follows from inverting the
reflection law (2.5).

It is clear that

W ((z1, t1), ξ2) = ±|s1 + r1 − r2|,
where s1 is the distance from p1 to q1. From the second equation of
(2.2), we have that

s1 =
ξ̄1z1 + ξ1z̄1 + (1− ξ1ξ̄1)t1

1 + ξ1ξ̄1
,

while from the proof of the previous theorem, we have that

r1 − r2 =
2|ξ1 − ξ2|[

(1 + ξ1ξ̄1)(1 + ξ2ξ̄2)
] 1

2
r0.

The result follows. ¤

Finally, the point characteristic function for reflection can be com-
puted using:

Theorem 5. Hamilton’s point characteristic function for reflection
in S is:

V ((z1, t1), (z2, t2)) = ±
∣∣∣∣∣∣
s1 − s2 +

2|ξ1 − ξ2|[
(1 + ξ1ξ̄1)(1 + ξ2ξ̄2)

] 1
2
r0

∣∣∣∣∣∣
,

where

si =
ξ̄izi + ξiz̄i + (1− ξiξ̄i)ti

1 + ξiξ̄i
, (3.7)

for i = 1, 2,

ξ2 =
2ξ0ξ̄1 + 1− ξ0ξ̄0

(1− ξ0ξ̄0)ξ̄1 − 2ξ̄0
, (3.8)

and ξ0 and ξ1 solve equations (3.4) and (3.5), and ξ0 ∈ π1 ◦Φ−1
S (S).

Proof. From Proposition 4, (z1, t1), (z2, t2)) is in the domain of V iff
there exist directions ξ0 and ξ1 that solve equations (3.4) and (3.5),
and ξ0 ∈ π1 ◦ Φ−1

S (S). Assuming that such exists, equation (3.8 is
just the reflection law (2.5), and

V ((z1, t1), (z2, t2)) = ± |s1 − s2 + r1 − r2| .
Finally, the distance from pi to qi is given by (3.7). ¤
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