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The Western Front

ANTHONY G. O’FARRELL

In homage to T.T. West.

Abstract. This is an expanded version of a talk given (un-
der the title Ars Longa – Im Westen nichts Neues) at the
symposium to honour T.T. West, held in Trinity College on
19–20 December 2005. It describes some problems posed by
Trevor West, arising from his work, or related to it.

1. Introduction

Finding a friend is like winning the lottery, only better. Moolah
doesn’t make you happy, as friends do. The resemblance lies in the
rarity of the thing.

Trevor is such a colourful and luminous character that all others
seem dull and gray beside him. We shine not. We are visible, at
best, thanks to his illumination. I’m not sure what caused him to
favour me with his attention, in the first place. Perhaps it was just
that he needed a place to sleep, one evening in L.A., and picked the
nearest Irishman as his host. Whatever the reason, he certainly got
my attention, with his uniquely engaging style of conversation, and
more than earned his supper.

Thereafter, he took me under his wing, maintained a steady and
amusing correspondence, kept me informed about jobs in Ireland,
coached me about all manner of practical realities, and in due course
saw me safely established in my present chair at 28 and elected to
the Academy at 33. Basically, his method of orchestrating these
things was to slip me in quickly under their guard, before they had
a chance to realise what a big mistake they were making. He always
kept matters straight between the two of us. His letter (from Seanad
Éireann) of 1-7-1975 reads:
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Well done O’Farrell,
Remember tho’ you now really are a Professor at Maynooth

You are still a uniformly algebraic b—x.
West

His letters over the years came with a stream of questions, and I
suppose my side of the bargain may have been that I was supposed
to give these the attention they deserved. In practice, I answered
the easy ones straight away, and put the others to one side for later
study.

Looking through the file (like the Minister for Justice, I have a
file on all of you) in preparation for this meeting, I now find all these
problems looking up at me, patiently, if rather reproachfully, await-
ing their day in the light. The distressing thing about this is that
the file also has copies of some answers to the easy problems, and on
scanning these I find them barely intelligible, laced with references to
books I’ve forgotten reading, and marked by the unconscious hubris
of youth.

Plainly, I may never get to give these questions their due. My
present preoccupation with involutions and reversibility in groups of
maps looks set to keep me occupied for some time. So it seems a
good idea to ventilate some of these problems from the “Western
Front”.

As professional Mathematicians, it is our honourable and decent
occupation, and our pleasure, to identify and address problems that
are interesting and hard. When I was young I gathered questions
in the hope that one day I would get round to them myself. Later,
beginning to understand the scale of the task, I hoped to live to
see others solve them. Now, I take the view espoused by Hobson.
In his little book [4] about squaring the circle, he talks about the
remarkable patience and persistence of the mathematical community
considered as a single organism, which ground away for well over
two thousand years until it finally resolved this ancient enigma. In
feeding the following problems to the maw of Hobson’s organism,
I am confident that they will be resolved in due course, but don’t
expect that it will take quite so long, unless a new dark age intervenes
and closes off the present golden age of Mathematics.
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2. Spectral Radius Algebras

This involves a problem that I find particularly interesting.
A (complex) Banach algebra is a complete normed algebra [2] over

the field C of complex numbers. The main examples are algebras of
functions (with pointwise multiplication), algebras of linear opera-
tors (with composition as the multiplication), convolution algebras
of functions and measures on groups, and variants of these, such as
truncated convolution algebras on semigroups. The spectral radius
of an element x of a Banach algebra A is the nonnegative number
rA(x) given by

rA(x) = lim
n↑∞

‖xn‖1/n.

When A has an identity, this equals

sup{|λ| : λ ∈ σ(x)},
where σA(x) ⊂ C is the spectrum of x:

σA(x) = {λ ∈ C : λ · 1− x is not invertible in A}.
2.1. Quotient Algebras. The story begins with a study by Smyth
and West [11] on the spectral radius in quotient algebras. Let A be
a Banach algebra, and I be a closed two-sided ideal in A. For an
element x ∈ A, let r(x) denote the spectral radius rA(x) of x (with
respect to A), and r(x+ I) denote the spectral radius rA/I(x+ I) of
the coset x + I (with respect to A/I). In general,

r(x + I) ≤ inf
y∈I

r(x + y).

They called A an SR-algebra if equality holds for each closed ideal I
and each x ∈ A. They asked:

Problem 2.1. Characterise the SR algebras.

They gave interesting examples of SR-algebras and of non-SR-
algebras. See [5] for further detail and references. In the latter
paper, they gave an elegant new proof of the fact (first shown by
Pedersen in 1976) that every C∗-algebra is SR. This proof is based
on the formula they discovered:

r(x) = inf
a=a∗∈A

‖eaxe−a‖,
which is valid for each element x belonging to a unital C∗-algebra A.

Smyth and West also showed that each Riesz algebra is an SR-
algebra. The Riesz algebras A may be described as those Banach
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algebras for which the nonzero part of the spectrum of every element
forms a countable discrete set (although Smyth’s original definition
is purely algebraic). Thus they include many natural algebras of
operators.

2.2. The Commutative Case. Now consider the question for com-
mutative Banach algebras. Denoting the character space, or max-
imal ideal space of A by Σ(A), the Gelfand transform maps A ho-
momorphically onto an algebra Â of continuous functions on Σ(A),
a subalgebra of the uniform algebra C(Σ(A)), i.e. we have an exact
sequence

0 → Rad(A) → A → Â → 0.

The Gelfand map x 7→ x̂ is given by

x̂(φ) = φ(x), ∀φ ∈ Σ(A).

It is continuous, but not in general isometric, and its kernel is the
Jacobson radical, Rad(A).

The spectral radius r(x), in this context, is just the sup norm of
x̂ on Σ(A).

Smyth and West noted that if Â is a dense subset of C(Σ(A)),
then A is an SR-algebra.

What about the converse?
In particular, what about the case of uniform algebras? (For a

uniform algebra, the Gelfand transform is an isometry, i.e. A may
be identified with Â, as a Banach algebra.)

Problem 2.2. Which uniform algebras are SR algebras? If A is a
uniform SR algebra, is A = C(X), for some X compact Hausdorff?

This question connects with some very old concerns. Let’s put it
into a wider context.

2.3. Closed Restrictions. Suppose we are given a uniform algebra
A ⊂ C(X), where X is a compact Hausdorff space. We assume
that A separates points on X, that 1 ∈ A, and that A is uniformly
closed. We do not assume that X is Σ(A). We may take it, without
loss in generality, that X ⊂ Σ(A), and that X contains the Shilov
boundary Sh(A) [2]. In practice, one is usually interested in the cases
X = Σ(A) and X =Sh(A).

Associated to A, we may identify the following families of subsets
of X:
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W: The family of weak-star closed subsets of X.
C: The family of A-convex subsets of X; E ∈ C if and only if

E = {a ∈ X : |f(a)| ≤ sup
E
|f |, ∀f ∈ A}.

H: The family of (relatively) hull-kernel closed sets; E ∈ H if
and only if

E = {a ∈ X : f(a) = 0 whenever f ∈ ker(E)},
where

ker(E) = {f ∈ A : f |E = 0},
where f |E denotes the restriction of f to E.

R: The family of A-convex sets E such that the algebra A|E
of all restrictions f |E, for f ∈ A, is uniformly-closed.

R1: The family of A-convex sets E such that the quotient
A/kerE is isometric to the restriction algebra, i.e. given
f ∈ A and ε > 0, there exists g ∈ A such that g|E = f |E
and supX |g| ≤ (1 + ε) supE |f |.

I: The family of interpolation sets; E ∈ I if E is weak-star
closed E and A|E = C(E).

I1: The family of isometric interpolation sets; E ∈ I1 means
that C(E) is isometric to A/kerE.

P: The family of p-sets in X, i.e. intersections of peak sets.
That P is a peak set means that there is a function f ∈ A
with f = 1 on P and |f | < 1 off P .

P ∩ I: The family of p-interpolation sets.
The relationship between these families is expressed in the follow-

ing diagram, in which each arrow is an inclusion map [9]:

I ∩ P −→ I1 −→ I
↓ ↓ ↓
P −→ R1 −→ R −→ H −→ C −→ W

The non-obvious aspects of this pattern of inclusions are results
of Glicksberg and Bernard. Each inclusion may be proper.

Various classes of uniform algebras are defined by requiring equal-
ity in one or more of the inclusions.

For instance, the class of regular uniform algebras is characterised
by H = W when X = Σ(A). The Murphy–West class of SR uniform
algebras are precisely those for which R1 = H when X = Σ(A).



86 Anthony G. O’Farrell

Thus the Murphy–West problem is just one of the equality prob-
lems posed by the diagram, for the case X = Σ(A). The equality
problems are quite different, but no less interesting, for the case
X =Sh(A).

To appreciate the distinction, consider the example of the disc
algebra A(D), which has as Shilov boundary the circle S1, and as
character space the closed unit disc. In case X = S1, the diagram
has just two distinct families of sets. P ∩ I = H, and C = W.
The main content of this remark is the celebrated Rudin–Carleson
Theorem [2]. In case X =clos(D), the family of hull-kernel closed
sets is larger than R1. For instance, {− 1

2 , 1
2} does not belong to R1.

(The paper [9] considers the Shilov boundary case and includes an
extension of Rudin–Carleson to a wider context.)

We state the general problem:

Problem 2.3. For each pair of families in the diagram, and for both
cases X = Σ(A) and X =Sh(A), characterise equality.

Some equalities in the diagram define the class of C(X) algebras,
i.e. of commutative C∗-algebras. Glicksberg showed in 1963 [3] that
this is the case for the equality R = W. Thus if we assume A
regular, then A is an SR-algebra if and only if A = C(Σ(A)). But
what about algebras A that are not assumed regular a priori? One
has the following:

Theorem 2.1. Suppose that A is a uniform algebra on its maximal
ideal space X = Σ(A), and is an SR-algebra. Then

(1) Every quotient of A by a closed ideal is a uniform algebra;
(2) A admits no nonzero bounded point derivations; and
(3) All the Gleason parts of A are trivial (i.e. consist of single-

tons).

A bounded point derivation is a continuous linear functional ∂ :
A → C such that

∂(fg) = f(a)∂(g) + ∂(f)g(a)

holds for some point a ∈ X and all f, g ∈ A. A bounded point
derivation annihilates the ideal M2, where M is the maximal ideal
ker({a}) corresponding to the associated point a. It also annihilates
constants, so if it not zero, then the ideals M and closM2 differ.



The Western Front 87

The Gleason parts [2] of A are subsets of Σ(A). They are the
equivalence classes under the Gleason equivalence relation

a ≡ b ⇐⇒ sup
f∈Ball(A)

|f(a)− f(b)| < 2.

Proof. (1) follows from the isometric isomorphism

A|E ' A/I,

valid whenever E =hull(I) for a closed ideal I. This also shows that
there can only be one closed ideal to each hull (“spectral synthesis”),
and hence there can be no bounded point derivations, because the
ideals M and closM2 described above both have hull {a}.

The hypothesis may be rephrased as saying that whenever E is a
hull and f ∈ A, the restriction f |E has an almost-norm-preserving
extension to X in A. In particular, each function defined on a finite
subset of X has an almost-norm-preserving extension to X in A.
Applying this to two-point sets, we deduce (3). ¤

This shows that if a uniform SR-algebra is not a C(X), then it
is a rather odd object. However, properties (2) and (3) are not, by
themselves, enough to characterise C(X), as was shown by famous
examples of McKissick and of Cole. Indeed one is reminded by this
of the oldest open problem about uniform algebras:

Problem 2.4. If A is a uniform algebra and Σ(A) = [0, 1], is A =
C([0, 1])?

So, following Polya’s maxim [10] that whenever there is a problem
you can’t solve, then there is always an easier problem you can’t
solve, it is tempting to pose this:

Problem 2.5. Suppose that Σ(A) =Sh(A) = [0, 1], and A is an SR
uniform algebra. Must A = C([0, 1])?

Indeed, as far as I know, this is open even when A is generated
by just two elements. Putting it another way:

Problem 2.6. Does there exist a polynomially-convex arc Γ ∈ C2

such that the uniform closure P (Γ) on Γ of the algebra of analytic
polynomials is an SR-algebra, has Γ as its Shilov boundary, and is
not C(Γ)?
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3. Uniformly-distributed Sequences

If λ is a complex number of modulus one, then

1
n

n∑

k=1

λk →
{

0 , λ 6= 1,
1 , λ = 1.

Problem 3.1. For what sequences {jk} of positive integers does

1
n

n∑

k=1

λjk →
{

0 , λ 6= 1,
1 , λ = 1?

This came from West in July, 1993, motivated by “some problem
in ergodic theory”.

4. Supports of Measures

Let X be a compact Hausdorff space. A Radon measure on X is, by
definition, an element of the dual space of C(X,R). Such a measure
may be identified with a suitable set function µ : 2R → R, and the
support of µ is defined as the complement of the largest open set
U for which µ(E) = 0 whenever E ⊂ U . We say that X satisfies
the countable chain condition (ccc) if each pairwise-disjoint family
of open sets is countable.

Murphy and West noted [7], Prop. 1] that if there exists a Radon
measure on X with support equal to X, then X satisfies the ccc.

The question is whether or not the converse holds.

Problem 4.1. Suppose X is a compact Hausdorff space satisfying
the countable chain condition. Does there exist a Radon measure
with support equal to X?

The answer may depend on your set theory.

5. Basic and Removable Spectrum

For a commutative Banach algebra A with unit, recall that σA(x)
denotes the spectrum of an element x ∈ A. If A is isometrically and
algebraically imbedded in a larger algebra B, then

σB(x) ⊂ σA(x), and bdy(σA(x)) ⊂ bdy(σB(x)).

Let A(x) denote the closure of the subalgebra with unit C[x] gen-
erated by x in A. The spectrum of x with respect to A(x) is
called the basic spectrum of x, and denoted σ′(x). This spectrum
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is polynomially-convex, so it comprises σA(x) together with all its
holes.

The problem of removing the interior of the spectrum [6] has to
do with finding (if possible) an isometric extension B of A such that
σB(x) = bdy(σ′(x)). For instance, if A = A(D), the disc algebra,
then the problem is solved by taking B = C(S1).

The problem is related to so-called approximate divisors of zero
(ADZ’s). An element z ∈ A is an ADZ in A if there exist yn ∈ A,
for n = 1, 2, . . ., such that

‖yn‖ = 1 and ynz → 0.

In general, it is true that

λ ∈ bdy(σA(x)) ⇒ λ− a is an ADZ ⇒ λ ∈ σA(x).

Thus it is obvious that λ cannot be removed from the spectrum
in any extension if λ − a is an ADZ. Shilov and Arens showed that
the converse holds. Thus the essential problem becomes:

Problem 5.1. Characterise those CBAs, A, (topologically) gener-
ated by a single x ∈ A, such that λ − x is an ADZ in A only when
λ ∈ bdy(σA(x))

It is known that all uniform algebras and certain algebras gener-
ated by an operator have this property, and there are examples of
algebras that do not [6].

There is a related question about the cortex of A, the set of char-
acters on A that extend to characters on each extension B of A: If x
is an ADZ, does the Gelfand transform x̂ vanish somewhere on the
cortex of A?

6. Power-bounded Operators and Semigroups

Given a bounded linear operator T on a Banach space X, it generates
a semigroup 〈T 〉, an algebra C(T ), and a semialgebra A(T ) = Z+[T ].
We say that T is power-bounded if 〈T 〉 is bounded.

West’s work on weakly-compact groups and locally-compact semi-
algebras of operators relates these compactness properties to one
another and to properties of the peripheral spectrum of a power-
bounded operator.

This prompts me to mention another open problem in one complex
variable that arose in connection with the study of power-bounded
operators. The following Tauberian theorem is proved in [1]:
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Theorem 6.1. Let f(z) =
∑∞

n=0 anzn have radius of convergence 1,
let E ⊂ S1 be the set of essential singularites of f on S1, suppose
E has length (1-dimensional Hausdorff measure) zero and suppose
that there exists M < +∞ bounding all the partial sums of the series
on E: ∣∣∣∣∣

N∑
n=0

anζn

∣∣∣∣∣ ≤ M, ∀N ∈ N, ∀ζ ∈ E.

Then ∞∑
n=0

anzn converges to f(z),

for each z ∈ S1 ∼ E.

As an immediate consequence, the hypotheses imply that an → 0.

Problem 6.1. Suppose that f is as in the theorem, except that we
drop the assumption that E have length zero. Must an → 0?

It follows from theorems of Fatou and Carleson that the answer
is yes in the case E = S1.

7. Coda

Present and future Irish Mathematicians owe a great debt to Trevor
for his long and successful efforts to raise the national game. Par-
ticularly noteworthy are his part [13] in the formation of the Irish
Mathematical Society, and his work on the Mathematical Proceed-
ings of the Royal Irish Academy. One must also acknowledge his
encouragment of younger colleagues, both in Mathematics and in
other sports, his wider contribution in national politics, and his out-
standing account [12] of the life and times of Horace Plunkett, who
(like Trevor) did much to help bridge the religious divide in Ireland.
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