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Some Mean Inequalities

FINBARR HOLLAND

Dedicated to Trevor West on the occasion of his retirement.

Abstract. Let P denote the collection of positive sequences
defined on the set of natural numbers N. It is proved that if
x ∈ P, and s < 0, then
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, n ∈ N

with equality if and only if x is a constant sequence. This

is a sharp refinement of an inequality discovered by Knopp
in 1928.

1. Introduction

When I received the invitation to participate in the Westfest, I was
in the throes of writing up a solution to the following problem, due to
Joel Zinn, which was posed in the American Mathematical Monthly,
and I offered to speak on this topic at the meeting in TCD to mark
Trevor’s retirement. I’m grateful to the organising committee of the
Westfest for giving me the opportunity to do so.

Problem 1 (Number 11145). Find the least c such that if n ≥ 1,
a1, . . . , an > 0, then

n∑
k=1

k∑k
j=1

1
aj

≤ c
n∑

k=1

ak.

I propose to describe a method to handle a family of similar prob-
lems of which this, and classical ones due to Carleman, and Knopp,
are special cases.
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2. Background

We denote by P the collection of positive sequences x : N → (0,∞).
Clearly, P is a convex set. It is closed under the usual pointwise op-
erations of addition and multiplication, and ordered by the relation:

x ≤ y ⇐⇒ xn ≤ yn, ∀n ∈ N.

In particular, P is a commutative group under multiplication, with
the sequence vector e of ones acting as the identity. We’ll write 1/x
for the multiplicative inverse of x ∈ P:

(1/x)n =
1
xn

, ∀n ∈ N.

We recall a number of familiar functions that take P into itself:

A : P → P; A(x)n =
1
n

n∑
k=1

xk, n = 1, 2, . . . ;

G : P → P; G(x)n = n

√√√√ n∏
k=1

xk, n = 1, 2, . . . ;

H : P → P; H(x)n =
n∑n

k=1
1

xk

, n = 1, 2, . . . ;

min : P → P; min(x)n = min{xk : k = 1, 2, . . . , n}.
These are, respectively, the arithmetic, geometric, harmonic and
minimum means. (Weighted versions of these exist, but I’ll not have
any need to refer to them.)

It is a well-known fact [5] that

min(x)n ≤
n∑n

k=1
1

xk

≤ n

√√√√ n∏
k=1

xk ≤
1
n

n∑
k=1

xk, n = 1, 2, . . . .

Moreover, the inequalities are strict unless x is a constant sequence.
Equivalently,

min ≤ H ≤ G ≤ A.

It’s clear from the definitions that A,G,H and min are “homoge-
neous” in the sense that, if f ∈ {A,G,H,min}, then

f(λx) = λf(x), ∀x ∈ P, λ > 0.
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It’s perhaps less obvious, but nonetheless true, that they are super-
additive: if f ∈ {A,G,H,min}, then

f(x) + f(y) ≤ f(x + y), ∀x, y ∈ P.

Hence they are also concave on P.
We also introduce a one-parameter family of functions {Mt : t > 0}

that leave P invariant. If x ∈ P, we define Mt(x) by

Mt(x)n =

(
n∑n

j=1
1

x
1/t
j

)t

, n = 1, 2, . . . ,

so that Mt(x) = (H(x1/t))t,

min(x) ≤ Mt(x) ≤ G(x) ≤ A(x), ∀x ∈ P, ∀t > 0,

and
lim

t→0+
Mt(x) = min(x), lim

t→∞
Mt(x) = G(x), ∀x ∈ P.

3. An Inequality Between Compositions of Means

I’m interested in compositional relationships between these various
functions. I’ll describe the following result.

Theorem 1. Let t > 0. Then A ◦ Mt ≤ Mt ◦ A. Moreover, A ◦
Mt(x) = Mt ◦A(x) if and only if x = λe for some λ > 0.

For instance, when t = 1, the claim is that A ◦ H ≤ H ◦ A.
Equivalently,

1
n

n∑
k=1

k∑k
j=1

1
xj

≤ n∑n
k=1

k∑k
j=1 xj

, n = 1, 2, . . .

Even for small values of n this is already fairly challenging, as the
reader may discover for him or her self by considering the special
case n = 3.

A more general weighted inequality of this kind was first postu-
lated by Nanjundiah [13] in 1952, but he offered no proof, and indeed
his conjecture is not true generally. A special case of it was conjec-
tured by myself [6] in 1992, and Kedlaya [8] supplied a proof of this
in 1994, namely that A ◦G ≤ G ◦A. In 1996, Mond and Pečarić [12]
proved an analogue of the inequality A ◦H ≤ H ◦A, the case t = 1,
for Hermitian matrices.

To establish the theorem, we begin by proving a lemma.
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Lemma 1. Let t > 0 and let p = t + 1. Let x ∈ P. Then, for each
n ≥ 1,

Mt(x)n = nt inf
{ n∑

k=1

xkap
k : 0 < a ∈ Rn,

n∑
k=1

ak = 1
}

.

Proof. Suppose 0 < a ∈ Rn, and
∑n

k=1 ak = 1. Let q = p/(p−1) =
p/t. Then, by Hölder’s inequality,

1 =
n∑

j=1

(ap
jxj)1/p x

−1/p
j

≤
( n∑

j=1

ap
jxj

)1/p ( n∑
j=1

x
−q/p
j

)1/q

,

Hence
1(∑n

j=1 x
−q/p
j

)p/q
≤

n∑
j=1

ap
jxj .

Equality holds here if

aj =
1

x
q/p
j

(∑n
j=1 x

−q/p
j

) , j = 1, 2, . . . , n.

It follows that
1(∑n

j=1
1

x
1/t
j

)t =
1(∑n

j=1 x
−q/p
j

)p/q

= inf
{ n∑

k=1

xkap
k : 0 < a ∈ Rn,

n∑
k=1

ak = 1
}

.

The stated result follows. �

An equivalent formulation is that, with p = t + 1,

Mt(x)n = np−1 inf
{ n∑

k=1

xkap
k : 0 < a ∈ Rn,

n∑
k=1

ak = 1
}

. (1)

Thus

Mt(x)n ≤ np−1
n∑

k=1

xkap
k (2)

for all probability vectors a ∈ Rn.
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Remark. Already this result reveals that Mt is super-additive and
hence concave.

The result we want to prove is the following: if x ∈ P,

1
n

n∑
k=1

(
k∑k

j=1
1

x
1/t
j

)t

=
1
n

n∑
k=1

Mt(x)k ≤ Mt(A(x))n

=

(
n∑n

k=1
1

A(x)
1/t
k

)t

, n = 1, 2, . . . ,

with equality if and only if x is a constant sequence.
Our idea is this: with n fixed, suppose a is a probability vector in

Rn. Then, by the previous lemma, with p = t + 1,

Mt(A(x))n ≤ np−1
n∑

j=1

ap
jA(x)j

= np−1
n∑

j=1

ap
j

j

j∑
k=1

xk

= np−1
n∑

k=1

xk

n∑
j=k

ap
j

j
,

after interchanging the order of summation, and there is equality
here for a suitable a. But, also, if ui ∈ Ri is a probability vector,

Mt(x)i ≤ ip−1
i∑

j=1

up
ijxj , i = 1, 2, . . . , n,

whence
n∑

i=1

Mt(x)i ≤
n∑

i=1

ip−1
i∑

j=1

up
ijxj

=
n∑

j=1

xj

n∑
i=j

ip−1up
ij .

So, we can accomplish our objective if, given a probability vector
a ∈ Rn, we can construct similar vectors ui ∈ Ri so that

n∑
i=j

ip−1up
ij ≤ np

n∑
k=j

ap
k

k
, j = 1, 2, . . . , n. (3)
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To reach our goal, and to show that these inequalities can be
solved, we construct a certain lower triangular row-stochastic matrix
from a probability vector. To this end, we use the following result
due to Kedlaya [8]:

Lemma 2. The rational numbers

αk(i, j) =

(
n−i
j−k

) (
i−1
k−1

)(
n−1
j−1

) , 1 ≤ i, j, k ≤ n,

satisfy the following conditions
(1) αk(i, j) ≥ 0, for all i, j, k;
(2) αk(i, j) = 0 for all k > min (i, j);
(3) αk(i, j) = αk(j, i) for all i, j, k;
(4)

∑n
k=1 αk(i, j) = 1 for all i, j;

(5)
n∑

i=1

αk(i, j) =
{ n

j , for 1 ≤ k ≤ j,
0, fork > j.

Given a probability vector a ∈ R2, construct the n × n matrix
A = [aij ] by

aij =
n∑

k=1

αj(i, k)ak, 1 ≤ i, j ≤ n.

Then each row of A is a probability vector, because
n∑

j=1

aij =
n∑

j=1

n∑
k=1

αj(i, k)ak

=
n∑

k=1

ak

n∑
j=1

αj(i, k)

=
n∑

k=1

ak (by 4.)

= 1

for all i. Also, aij = 0 for all j > i. Thus A is a lower triangular
row-stochastic matrix.

But, for each pair of indices i, j, aij is a convex combination of
a1, a2, . . . , an, and so, if p ≥ 1,

ap
ij ≤

n∑
k=1

αj(i, k)ap
k, i, j = 1, 2, . . . , n.
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Hence
n∑

i=j

ip−1ap
ij =

n∑
i=1

ip−1ap
ij

≤ np−1
n∑

i=1

n∑
k=1

αj(i, k)ap
k

= np−1
n∑

k=1

ap
k

n∑
i=1

αj(i, k)

= np
n∑

k=j

ap
k

k
(by 5.).

Looking back at (3) we now see that we can solve this by selecting

uij = aij , j = 1, 2, . . . , i.

We’re now ready to provide a proof of the theorem.
Fix x ∈ P, and a positive integer n. Let a be a probability vector

in Rn. Choose the corresponding lower triangular row-stochastic
matrix A = [aij ] as above. By Lemma 1, if 1 ≤ i ≤ n,

Mt(x)i ≤ ip−1
i∑

j=1

ap
ijxj .

Hence
n∑

i=1

Mt(x)i ≤
n∑

i=1

ip−1
i∑

j=1

ap
ijxj

=
n∑

j=1

xj

n∑
i=j

ip−1ap
ij

≤
n∑

j=1

xjn
p

n∑
k=j

ap
k

k

= np
n∑

k=1

ap
k

1
k

k∑
j=1

xj

= np
n∑

k=1

ap
kA(x)k.
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Whence

n−t−1
n∑

i=1

Mt(x)i

is a lower bound for the set{ n∑
k=1

ap
kA(x)k : 0 < a ∈ Rn,

n∑
k=1

ak = 1
}

,

whose infimum is n−tMt(A(x))n. Hence

1
n

n∑
i=1

Mt(x)i ≤ Mt(A(x))n,

and we’re done, apart from dealing with the case of equality, which
is easily settled.

4. A Number of Corollaries

We deduce a number of special cases of Theorem 1.

Corollary 1.
A ◦min ≤ min ◦A.

This is obtained by letting t → 0+.

Corollary 2 (Kedlaya).

A ◦G ≤ G ◦A.

i.e., ∀x ∈ P,

1
n

n∑
i=1

G(x)i ≤ G(A(x))n, ∀x ∈ P, ∀n ≥ 1;

or, more explicitly,

1
n

n∑
i=1

i

√√√√ i∏
j=1

xj ≤ n

√√√√ n∏
j=1

1
j

j∑
i=1

xi.

This is obtained by letting t → ∞. This implies Carleman’s
classical inequality [3, 5, 7]:

||G(x)||1 ≤ e||x||1, ∀x ∈ P.

Corollary 3 (Mond & Pečarić).

A ◦H ≤ H ◦A.
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This is obtained by letting t = 1. It says that, ∀x ∈ P,

1
n

n∑
k=1

k∑k
j=1

1
xj

≤ n∑n
k=1

k∑k
j=1 xj

, n = 1, 2, . . .

Since the sequence
k∑

j=1

xj , k = 1, 2, . . .

is strictly increasing we deduce that the right-hand side does not
exceed

n
∑n

j=1 xj∑n
k=1 k

=
2
∑n

j=1 xj

n + 1
,

whence
n∑

k=1

k∑k
j=1

1
xj

≤ 2n

n + 1

n∑
j=1

xj < 2
n∑

j=1

xj ,

which gives a solution to Zinn’s Monthly problem. Moreover, the
constant 2 cannot be replaced by a smaller number, as can be seen
by taking xj = 1/j, j = 1, 2, . . . , n. Thus, if x ∈ P ∩ `1, so does
H(x), and ||H(x)||1 < 2||x||1.

Corollary 4. ∀t > 0 and ∀x ∈ P,
n∑

i=1

Mt(x)i ≤

(
n1+1/t∑n
j=1 j1/t

)t n∑
k=1

xk, n = 1, 2, . . .

and the inequality is strict unless n = 1.

Proof.

nMt(A)n = np

(
1∑n

j=1 A
−1/t
j

)t

= np

 1∑n
j=1

j1/t

(
∑j

k=1 xk)1/t

t

≤ np
n∑

k=1

xk

(
1∑n

j=1 j1/t

)t

=

(
n1+1/t∑n
j=1 j1/t

)t n∑
k=1

xk.

�



78 Finbarr Holland

Since

lim
n→∞

n1+1/t∑n
j=1 j1/t

= 1 +
1
t
,

a simple consequence of the fact that, with s = 1/t,∑n
j=1 js

ns+1
=

1
n

n∑
j=1

(
j

n
)s

is a Riemann sum for the integral∫ 1

0

xs dx =
1

1 + s
,

Corollary 4 implies a result of Knopp [10] to the effect that

||Mt(x)||1 ≤ (1 + 1/t)t||x||1, ∀x ∈ P. (4)

5. Companion Results When t < 0

The means Mt also make sense when t < 0. Similar methods to those
employed in the previous section lead to the following statement.

Theorem 2. If −1 < t < 0, then A ◦ Mt ≥ Mt ◦ A. Moreover,
A ◦Mt(x) = Mt ◦A(x) if and only if x = λe for some λ > 0.

Letting p = −1/t, we can recast this in terms of p: If p ≥ 1, then,
for all x ∈ P, and all n ≥ 1,(

1
n

n∑
k=1

(
1
k

k∑
i=1

xi

)p)1/p

≤ 1
n

n∑
k=1

(
1
k

k∑
i=1

xp
i

)1/p

. (5)

There is equality only when x is a constant sequence. This is a sub-
stantial improvement of a very well-known result due to Hardy [4, 5],
which states that, if x ∈ `p, then A(x) ∈ `p, and

||A(x)||p ≤
p

p− 1
||x||p.

Inequality (5) was found by Bennett [2], who pointed out that the
reversed inequality holds when 0 < p < 1. A stronger form of (5)
was established by B. Mond and J. E. Pečarić [11], and a weighted
version of their result was outlined by Kedlaya [9]. But results of
this kind were announced much earlier by Nanjundiah [13], though
he appears not to have published a proof.
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