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Variations on a Theme of Desmond MacHale

LUISE-CHARLOTTE KAPPE

Für Martin Newell mit den besten Wünschen
für einen angenehmen Ruhestand.

Abstract. This article is based on a talk that the author
gave at Groups in Galway 2005. We discuss four conjectures,
known to be false, and give a progress report on finding min-
imal counterexamples for them. These conjectures are varia-
tions on the 47 (false) conjectures Desmond MacHale gave in
his 1981 paper “Minimum Counterexamples in Group The-
ory”.

My variations are on an Irish tune, the theme is in Desmond
MacHale’s 1981 paper “Minimum Counterexamples in Group The-
ory” [7]. In this paper, 47 conjectures are stated, all known to be
false, and MacHale asks for minimal counterexamples. Conjecture 7
in [7] reads as follows.

Conjecture 7. In any group G, the set of commutators forms a
subgroup.

The commutator of elements g and h, [g, h] = g−1gh, in a group
G can be viewed as the deviation from g of the image of g under the
inner automorphism induced by h. For g ∈ G and α ∈ Aut(G), the
automorphism group of G, we define the autocommutator of g and
α as [g, α] = g−1gα that is the deviation from g of the image of g
under the automorphism α. This brings us to the first variation to
be discussed.

Conjecture 7*. In any group G, the set of autocommutators forms
a subgroup.

Of course, Conjecture 7* is false, but until a few months ago
nobody knew a counterexample, let alone a minimal one. The first
time I heard about the conjecture was at Groups in Galway 2003,
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where I had a discussion with Desmond MacHale during a coffee
break. He wrote up the conjecture for me and added that there might
be abelian counterexamples and that perhaps the two groups of order
96 given by Guralnick [5], which are the minimal counterexamples
for Conjecture 7, are also counterexamples for Conjecture 7*. I took
the sheet home with me and started work with my two collaborators
David Garrison and Denise Yull [4].

But before reporting on the outcome, let me introduce some no-
tation. For a group G, let K(G) = {[g, h] | g, h ∈ G} be the set of
commutators in G and set G′ = 〈K(G)〉, the commutator subgroup
of G, and let K∗(G) = {g−1gα | g ∈ G,α ∈ Aut(G)} be the set of
autocommutators of G and set G∗ = 〈K∗(G)〉, the autocommutator
subgroup of G. With this notation, Conjectures 7 and 7* now read
as follows.

Conjecture 7. For any group G, K(G) = G′.

Conjecture 7*. For any group G, K∗(G) = G∗.

Back home, my two collaborators and I wrote a GAP program
[3] which determines K∗(G) and G∗ for a finite group G that out-
puts whether K∗(G) is equal to G∗ or not. In an attempt to get
a counterexample for Conjecture 7*, we tested the program on the
two groups of order 96, the groups of smallest order in which the set
of commutators is unequal to the commutator subgroup. For both
groups G we obtained that K∗(G) = G∗ = G.

After that we let our program run through the GAP Small Groups
Library [3]. If for a group G the output is that G∗ = K∗(G), the
program proceeds to the next group and halts as soon as it finds
a group with the set of autocommutators unequal to the autocom-
mutator subgroup. As soon as the program reached groups of order
32, in particular the abelian groups, the size of the automorphism
group became a problem. With the following results we can exclude
abelian groups as counterexamples.

Proposition 1. For an abelian torsion group without elements of
even order we have K∗(G) = G∗.

Proposition 2. Let G be a finite abelian 2-group. Then K∗(G) =
G∗.

The two propositions above together with the following lemma
yield our main result.
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Lemma 1. Let P and Q be finite groups of relatively prime order.
Then K∗(P ×Q) = K∗(P )×K∗(G) and (P ×Q)∗ = P ∗ ×Q∗.

Theorem 1. Let G be a finite abelian group. Then K∗(G) = G∗.

After excluding the abelian groups, we still had problems with
groups having a very large automorphism group. After some trial
and error, we limited the order of the automorphism group to 400,000.
Anytime the program would not test a group, there would be an
output indicating which group was skipped and what the order of
the automorphism group was. With these restrictions the program
halted after all groups of order 64 had been checked. Denoting with
G(k, n) the n-th group of order k in the GAP Small Groups Library,
the output consisted of the three groups G(64, n), n = 261, 262, and
266. There were no groups of order less than 64 which had to be
skipped because of the size of the automorphism group. However, the
groups G(64, 261) and G(64, 262) with orders of the automorphism
group being 688,128 and 2,064,384, respectively, were skipped. It
can be easily seen that for these two groups the set of autocommu-
tators is equal to the autocommutator subgroup by observing that
G(64, 261) ∼= D4×C2×C2×C2 and G(64, 262) ∼= Q8×C2×C2×C2,
where D4 is the dihedral group of order 8 and Q8 is the group of
quaternions of order 8. The group G(64, 266), in which the auto-
commutators do not form a subgroup, gives the desired minimal
counterexample for Conjecture 7*. Our results are summarized in
the following theorem.

Theorem 2. There exists exactly one group G of order 64 for which
K∗(G) 6= G∗ and |K∗(G)| = 62, |G∗| = 64, and for all groups of
order less than 64 the autocommutators form a subgroup. The group
G can be given by generators and defining relations as follows:

G = 〈a, b, c, d, e | a2 = b2 = c2 = d2 = e4 = 1,

[a, b] = [a, c] = [a, d] = [b, c] = [b, d] = [c, d] = e2,

[a, e] = [b, e] = [c, e] = [d, e] = 1〉.
The proof that G is a counterexample for Conjecture 7* does not

require the use of GAP. But for proving the minimality of G, the use
of GAP is indispensable.

Now let us turn to the next variation. The first conjecture in [7]
reads as follows.
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Conjecture 1. In a group G, the set of all squares of elements of
G is a subgroup of G.

MacHale gives T = 〈a, b | a3 = b4 = 1, ab = a−1〉 and A4, the
alternating group on 4 letters, as the minimal counterexamples for
Conjecture 1. We consider now the following variation of the above
conjecture.

Conjecture 1*. For a given integer n, n > 1, and any group G,
the set of n-th powers of elements in G is a subgroup of G.

Of course, the above conjecture is false. The topic of Gabriela
Mendoza’s master’s thesis [8] was to determine the minimal coun-
terexamples for n > 2. Before reporting on her results, let me intro-
duce some notation and definitions. For a group G and an integer
n we let G(n) = {xn | x ∈ G}, the set of n-th powers in G, and
Gn = 〈G(n)〉. The following definition facilitates formulating our
results.

Definition 1. Let n be an integer, n > 1. We say the minimal
number of n is µ(n), if there exists a group G of order µ(n) with
G(n) 6= Gn, and G(n) = Gn for all groups G of order less than µ(n).

For odd n, we have a complete and easy answer.

Theorem 3. Let n be an odd integer, n ≥ 3, and let p be the smallest
prime dividing n. Then µ(n) = 2p.

If n is even, the answer is much more complex and it depends on
the exact 2-divisor of n. Our first result is the following.

Theorem 4. Let n = 2k be an integer with k odd. Then µ(n) = 16,
unless n 6≡ 0 mod 3 and then µ(n) = 12.

We still have a complete answer if the exact 2-divisor is 4.

Theorem 5. Let n = 4k be an integer with k odd. Then µ(n) = 64,
unless n 6≡ 0 mod 3, or n ≡ 0 mod 3 and n 6≡ 0 mod 5, or n ≡
0 mod 15 and n 6≡ 0 mod 7, in which case µ(n) = 12, 40, or 56,
respectively.

To get some guidance how results like those in the preceding two
theorems may look like for higher powers of 2, we turned to GAP.
The following table summarizes our GAP calculations for groups of
order 2m, m = 4, 5, 6, 7, 8, indicating the number of groups G with
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G(n) 6= Gn for specified n. The first column gives the order of the
group, the second the total number of groups, the remaining four
columns give the number of groups with G(n) 6= Gn for n = 2, 4, 8,
16.

Table 1

Order Number of Groups n = 2 n = 4 n = 8 n = 16
16 14 2 0 0 0
32 51 16 9 0 0
64 267 127 9 0 0
128 2328 1391 176 0 0
256 56092 27290 3052 18 0

From the above table we can read off that µ(n) ≤ 256 for n = 8k,
where k is odd. We conjecture µ(n) ≤ 22α+2 for n = 2αk with k
odd. There are many exceptions for the case n = 8k that still need
to be determined. There emerges no pattern how the exceptions for
general α can be given in closed form.

Finally, I want to look at two more conjectures, both definitely
false. They have no counterpart in [7], though the first one can be
viewed sort of a dual to Conjectures 1 and 1*. So we just call them
Conjectures A and B.

Conjecture A. For a given prime p, the elements of order dividing
p in a group G always form a subgroup of G.

Conjecture B. For a given prime p, a Sylow p-subgroup of a group
is always normal in the group.

In ongoing research by Gabriela Mendoza, Michael Ward and my-
self [6], we have been looking into finding minimal counterexamples
to Conjectures A and B. We started out with minimal counterex-
amples for Conjecture A, but soon were led to Conjecture B and its
minimal counterexamples and found that they were intimately con-
nected. Minimal counterexamples for Conjecture A potentially can
have p-power order. But it turned out not to be the case. To make
our notions more precise, we make the following definition.

Definition 2. Let p be a prime. We denote with f(p) the order of
a group whose elements of order dividing p do not form a subgroup,
and for every group of order less than f(p) these elements do form
a subgroup.
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In the case of Mersenne primes we can determine f(p) precisely.

Theorem 6. Let p be a prime. Then f(p) = p(p + 1) if and only if
p is Mersenne or p = 2.

To determine f(p) in case p is not a Mersenne prime, we consider
p-closed and minimal non-p-closed groups. The following definition
is due to Reinhold Baer [1].

Definition 3. If Σ is a set of primes and if the set of elements in
the group G whose orders are divisible by primes in Σ only is actually
a subgroup of G, then G is called Σ-closed.

A Σ-closed group for which the set Σ consists of a single prime
p is called p-closed. For finite groups the class of p-closed groups
coincides with the class of groups having a normal Sylow p-subgroup.
Following standard practice, we define minimal non-p-closed groups
as follows.

Definition 4. A group is called a minimal non-p-closed group, if it
is not p-closed but every subgroup and homomorphic image is.

In the literature, non-p-closed groups are called inner p-closed, if
they are not p-closed but every proper subgroup is (see for exam-
ple [2]). Our next theorem characterizes the minimal non-p-closed
groups.

Theorem 7. For a prime p, a minimal non-p-closed group is ei-
ther simple or G = QP with |G| = pqn for some prime q and if
Q ∈ Sylq(G), then Q is a minimal normal subgroup of G and Q is
elementary abelian of rank n. Furthermore, if P ∈ Sylp(G), then
NG(P ) = P and qn ≡ 1 mod p.

For given p, there is more than one minimal non-p-closed group.
We are interested in those of minimal order. This leads to the fol-
lowing definition.

Definition 5. Let n(p) denote the order of the smallest group which
is minimal non-p-closed and denote with s(p) the order of the small-
est simple group which is minimal non-p-closed.

As a corollary to Theorem 7 we obtain the following result.

Corollary 1. Let p be a prime. Then n(p) = min(s(p), p(kp + 1)),
where k is the smallest integer such that kp + 1 is a prime power.
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To determine f(p) for an odd prime p which is not Mersenne,
we have to distinguish between two cases, namely that the Sylow
p-subgroup is normal in G or this is not the case. In the first case
we arrive at f(p) = pp+1, the order of the smallest non-regular p-
group, and in the second case we arrive at f(p) = n(p). However,
|PSL(2, p)| = 1

2p(p2 − 1) < pp+1 for all p ≥ 5 and it can be shown
that PSL(2, p) is a minimal non-p-closed group. Hence we arrive at
the following result.

Theorem 8. Let p be an odd prime which is not Mersenne. Then

f(p) = min(p(kp + 1), s(p)),

where k is the smallest integer such that kp + 1 is a prime power.

The above theorem together with Theorem 6 leads to the following
corollary.

Corollary 2. For any prime p we have f(p) = n(p).

By Dirichlet’s Theorem, infinitely many integers k exist such that
kp + 1 is prime, and not much can be said about the minimal k. To
obtain a prime power, smaller values of k may suffice. For example,
if p = 13, then 4 · 13 + 1 = 53 but already 2 · 13 + 1 = 33. We
observe that in Corollary 1 and Theorem 8 both cases can occur.
For example, if p = 5, then k = 2 and p(kp + 1) = 55 < 60 = s(5).
However, if p = 19, then k = 10 and p(kp + 1) = 3629 > 3420 =
s(19) = |PSL(2, 19)|. Though there appears no way for determining
exact values for the minimal k, we conjecture that for p > 3 we have
s(p) = 1

2p(p2 − 1) = |PSL(2, p)|. Currently, we are in the process of
checking our conjecture by using the classification of Finite Simple
Groups and examining the simple groups of order divisible by p.
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