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Pell Equation x2 −Dy2 = 2, II

AHMET TEKCAN

Abstract. In this paper solutions of the Pell equation
x2 −Dy2 = 2 are formulated for a positive non-square inte-
ger D using the solutions of the Pell equation x2−Dy2 = 1.
Moreover, a recurrence relation on the solutions of the Pell
equation x2 − Dy2 = 2 is obtained. Furthermore, the solu-
tions of the equation x2

n −Dy2
n = 2n are obtained using the

solutions of the equation x2 −Dy2 = 2.

1. Introduction

A real binary quadratic form f (or just a form) is a polynomial in
two variables of the type

f(x, y) = ax2 + bxy + cy2

with real coefficients a, b, c. The discriminant of f is defined by the
formula b2 − 4ac and denoted by D.

Let D be a non-square discriminant. Then the Pell form is defined
by the formula

fD(x, y) =
{

x2 − D
4 y2 if D ≡ 0 (mod 4)

x2 + xy − D−1
4 y2 if D ≡ 1 (mod 4)

(1.1)

Let
Pell(D) =

{
(x, y) ∈ Z2 : fD(x, y) = 1

}

and
Pell±(D) =

{
(x, y) ∈ Z2 : fD(x, y) = ±1

}
.

Then Pell(D) is infinite. The binary operation

(x1, y1).(x2, y2) = (x1x2 + Dy1y2, x1y2 + y1x2)
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is a group law on Pell(D) for which Pell(D) ' {±1} × Z.
Let d be a positive non-square discriminant and K = Q(

√
d) be

the quadratic number field. Then every element α of K can be rep-
resented as

α =
a + b

√
d

c
for a, b, c ∈ Z. The conjugate of α is denoted by

α =
a− b

√
d

c
.

The trace and norm of α are given by

Tr(α) = α + α =
2a

c

and

N(α) = αα =
a2 − db2

c2
,

respectively. It is easy to show that for α, β ∈ K,

Tr(α + β) = Tr(α) + Tr(β)

and
N(αβ) = N(α)N(β).

If d ≡ 1 (mod 4) then the elements of K are of the form

α =
a + b

√
d

2
, (1.2)

where a, b ∈ Z, and if d ≡ 2, 3 (mod 4) then the elements of K are of
the form

α = a + b
√

d, (1.3)

where a, b ∈ Z. As in the case of rationals, the set of integers of
K forms a ring which we will be denoted as OK, the maximal order
of K.

If every integer α ∈ OK can be uniquely expressed as

α = a1w1 + a2w2

where ai ∈ Z and wi ∈ OK, then we call w1, w2 an integral basis for
K, and we denote OK by the Z-module [w1, w2] = w1Z+ w2Z.

Every algebraic number field has an integral basis, and in the
quadratic fields it is especially easy to give one.
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If d ≡ 1 (mod 4), then from Eq. (1.2) it is seen that

w1 = 1 and w2 =
1 +

√
d

2
is an integral basis.

If d ≡ 2, 3 (mod 4), then from Eq. (1.3) it is seen that

w1 = 2 and w2 =
√

d

is an integral basis.
The discriminant of K is defined as

D(K) =
∣∣∣∣

w1 w1

w2 w2

∣∣∣∣
2

,

hence, D(K) = D for d ≡ 1 (mod 4) and D(K) = 4d for d ≡
2, 3 (mod 4). Therefore,

D(K) =
4d

r2

for

r =
{

2 d ≡ 1 (mod 4)
1 d ≡ 2, 3 (mod 4) (1.4)

and {1, w} is an integral basis of K for

w =
r − 1 +

√
d

r

(see [2]).
The D-order OD is defined to be the ring

OD = {x + yρD : x, y ∈ Z} , (1.5)

where

ρD =

{ √
D
4 if D ≡ 0 (mod 4)

1+
√

D
2 if D ≡ 1 (mod 4)

It is clear from definition that OD is a subring of Q
(√

D
)
.

Lemma 1.1. [1] Let α ∈ OD.Then α is a unit in OD if and only if
N(α) = ±1.

The unit group O∗
D is defined to be the group of units of the

ring OD. Let
O∗D,1 = {α ∈ O∗D : N(α) = +1}

and for D > 0
O∗D,+ = {α ∈ O∗D : α > 0}
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be the subgroup of positive units.
By Eq. (1.1) and Lemma 1.1, there is a bijection ψ : Pell±(D) →

O∗D given by ψ(x, y) = x + yρD. Since it is in bijection with a
commutative group, Pell±(D) itself is a group for every non-square
discriminant D. The mapping ψ is used to transport the group law
from O∗

D, so that by definition

a.b = ψ−1 (ψ(a)ψ(b))

for every a, b ∈ Pell±(D), i.e. the product (u, v).(U, V ) of two ele-
ments (u, v), (U, V ) ∈ Pell±(D) is defined by the rule

(u, v).(U, V ) = (x, y), (1.6)

where x + yρD = (u + vρD)(U + V ρD).
It follows by a calculation that

(u, v).(U, V ) =
{ (

uU + D
4 vV, uV + vU

)
if D ≡ 0 (mod 4)

(uU + D−1
4 vV, uV + vU + vV ) if D ≡ 1 (mod 4)

(1.7)
The group structure on Pell±(D) has been defined as

ψ : Pell±(D) → O∗D

and is an isomorphism of groups. Moreover, Eq. (1.7) is a group law
on Pell±(D) with identity element (1, 0) for all non-zero discrimi-
nants D.

Lemma 1.2. [1] O∗
D,+ ' Z for every positive non-square discrimi-

nant D.

From Lemma 1.2 we obtain

Lemma 1.3. [1] Let D be a non-square discriminant and let εD be
the smallest unit of OD that is greater than 1 and let

τD =
{

εD if N(εD) = +1
ε2

D if N(εD) = −1

then

Pell±(D) ' O∗D = {±εn
D; n ∈ Z} ' {±1} × Z

and

Pell(D) ' O∗
D,1 = {±τn

D; n ∈ Z} ' {±1} × Z.



Pell Equation x2 −Dy2 = 2, II 77

The fundamental unit εD is defined to be the smallest unit of OD

that is greater than 1.
The Pell equation is the equation x2−dy2 = 1, and the negative

Pell equation is the equation x2 − dy2 = −1, where d is a positive
non-square integer. The set of all solutions of the Pell equation is
infinite. The first solution (x1, y1) of the Pell equation is called the
fundamental solution.

One may rewrite the Pell equation as

x2 − dy2 =
(
x + y

√
d
)(

x− y
√

d
)

= 1,

so that finding a solution comes down to finding a nontrivial unit
in the ring Z

[√
d
]

of norm 1; here the norm Z
[√

d
]∗ → Z∗ = {±1}

between unit groups multiplies each unit by its conjugate, and the
units ±1 of Z

[√
d
]
are considered trivial. This reformulation implies

that once one knows a solution, fundamental solution, of the Pell
equation, one can find infinitely many others. More precisely, if the
solutions are ordered by magnitude, then the n th solution (xn, yn)
can be expressed in terms of the fundamental solution by

xn + yn

√
d =

(
x1 + y1

√
d
)n

. (1.8)

for n > 2..
In [3], Jacobson and Williams considered the solutions of the con-

secutive Pell equations X2
0 − (D − 1)Y 2

0 = 1 and X2
1 − DY 2

1 = 1,
where D and D − 1 are not perfect square. They also proved that
ρ(D) = log X1

log X0
could be arbitrary large for integers X1 and X2.

In [4], McLaughlin considered the solutions of the multi-variable
polynomial Pell equation C2

i −FiH
2
i = (−1)n−1, where n is a positive

integer, {Fi} a finite collection of multi-variable polynomials, Ci and
Hi are multi-variable polynomials with integral coefficients.

In [5], Lenstra gave the solution of the Pell equation using the
ring Z

[√
d
]
. He considered the solvability of the Pell equation as a

special case of Dirichlet’s unit theorem from algebraic number theory
which describes the structure of the group of units of a general ring
of algebraic integers; for the ring Z

[√
d
]
, it is product of {±1} and

an infinite cyclic group.
In [6], Li proved that the Pell equation x2−dy2 = 1 has infinitely

positive solutions. If (x1, y1) is the fundamental solution, then for
n = 2, 3, 4, . . . , xn + yn

√
d = (x1 + y1

√
d)n. The pairs (xn, yn) are

all the positive solutions of the Pell equation. The xn’s and yn’s are
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strictly increasing to infinity and satisfy the recurrence relations

xn+2 = 2x1xn+1 − xn,

yn+2 = 2x1yn+1 − yn.

Li also proved that the fundamental solution of the Pell equation is
obtained by writing

√
d as a simple continued fraction. It turns out

that √
d = a0 +

1
a1 + 1

a2+...

where a0 =
[√

d
]

and a1, a2, . . . is a periodic positive integer se-
quence. The continued fraction will be denoted by 〈a0, a1, a2, . . .〉.
The kth convergent of 〈a0, a1, a2, . . .〉 is the number

pk

qk
= 〈a0, a1, a2, . . . , ak〉

with pk and qk relatively prime numbers. Let a0, a1, a2, . . . , am be
the period for

√
d. Then the fundamental solution of the Pell equa-

tion x2 − dy2 = 1 is

(x1, y1) =
{

(pm−1, qm−1) if m is even
(p2m−1, q2m−1) if m is odd

and the other solutions are xn + yn

√
d =

(
x1 + y1

√
d
)n

for n > 2.

In [7], Matthews considered the solutions of the equation x2 −
Dy2 = N for D > 0. He shoved that a necessary condition for
the solvability of x2 − Dy2 = N, with gcd(x, y) = 1, is that the
congruence u2 ≡ D (mod Q0) shall be soluble, where Q0 = |N |.

In [8], Mollin gave a formula for the solutions of the equations both
X2−DY 2 = c and x2−Dy2 = −c using the ideals I = [Q, P +

√
D],

for positive non-square integer D.
In [9], Mollin, Cheng and Goddard considered the solutions of

the Diophantine equation aX2 − bY 2 = c in terms of the simple
continued fraction expansion of

√
a2b, and they explored a criteria

for the solvability of AX2−BY 2 = C for given integers A,B, C ∈ N.
In [10], Mollin, Poorten and Williams considered the equation

x2 − Dy2 = −3. They obtained a formula for the solutions of this
equation using the continued fraction expansion of

√
D and using

the ambiguous ideals I = [Q,P +
√

D], i.e., I = I, where I denotes
the conjugate of I.
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In [11], Stevenhagen considered the solutions of the negative Pell
equation x2 − Dy2 = −1 for a positive non-square integer D. He
stated a conjecture for the solutions of the equation x2−Dy2 = −1.

In [12], we considered the solutions of the Pell equation x2−Dy2 =
2 using the fundamental element of the field Q

(√
∆

)
.

In the present paper, the solutions of the Pell equation x2−Dy2 =
2 for positive non-square integer and a recurrence relation for the
solutions of the Pell equation x2 −Dy2 = 2 are obtained using the
solutions of the Pell equation x2 −Dy2 = 1.

2. The Pell Equation x2 −Dy2 = 2

First, consider the fundamental solution of the Pell equation x2 −
Dy2 = 2.

Theorem 2.1. If (x1, y1) = (a, 1) is the fundamental solution of
the Pell equation x2−Dy2 = 1, then the fundamental solution of the
Pell equation x2 − (D − 1)y2 = 2 is (X1, Y1) = (a, 1).

Proof. Since (x1, y1) = (a, 1) is the fundamental solution of the Pell
equation x2 −Dy2 = 1, we have

a2 −D = 1.

Hence, by basic calculation, it is easily seen that

X2
1 − (D − 1)Y 2

1 = a2 − (D − 1) = a2 −D + 1 = 2.

Therefore, (X1, Y1) = (a, 1) is the fundamental solution of the Pell
equation x2 −Dy2 = 2. ¤

Theorem 2.2. If D = k2 − 2, k > 2, then the fundamental solution
of the Pell equation x2 −Dy2 = 1 is (x1, y1) = (a, b) = (k2 − 1, k),
and the fundamental solution of the Pell equation x2 − Dy2 = 2 is
(X1, Y1) = (b, 1).

Proof. Note that (x1, y1) = (a, b) = (k2 − 1, k) is the fundamental
solution of the Pell equation x2 −Dy2 = 1 since

x2
1 −Dy2

1 = a2 −Db2 = (k2 − 1)2 − (k2 − 2)k2 = 1.

For (X1, Y1) = (b, 1), we get

X2
1 −DY 2

1 = b2 −D = k2 − (k2 − 2) = 2.

Therefore, (X1, Y1) = (b, 1) is the fundamental solution of the Pell
equation x2 −Dy2 = 2. ¤
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Now we consider the solutions of the Pell equation x2−Dy2 = 2.
To get this we have the following theorem.

Theorem 2.3. Let (X1, Y1) = (k, l) be the fundamental solution of
the Pell equation x2 −Dy2 = 2.Then the other solutions of the Pell
equation x2 −Dy2 = 2 are (Xn, Yn), where(

Xn

Yn

)
=

(
k lD
l k

)(
xn−1

yn−1

)
(2.1)

for n > 2.

Proof. From above equalities we get(
Xn

Yn

)
=

(
k lD
l k

)(
xn−1

yn−1

)
=

(
kxn−1 + lDyn−1

lxn−1 + kyn−1

)
.

(2.2)
Hence it is easily seen that

X2
n −DY 2

n = (kxn−1 + lDyn−1)
2 −D (lxn−1 + kyn−1)

2

= k2x2
n−1 + 2klDxn−1yn−1 + l2D2y2

n−1

−D(l2x2
n−1 + 2klxn−1yn−1 + k2y2

n−1)

= k2(x2
n−1 −Dy2

n−1)−Dl2(x2
n−1 −Dy2

n−1)

= (x2
n−1 −Dy2

n−1)(k
2 −Dl2)

= 2,

since x2
n−1 − Dy2

n−1 = 1, and (X1, Y1) = (k, l) be the fundamental
solution of the Pell equation x2 −Dy2 = 2, i.e., k2 −Dl2 = 2. ¤

From Theorem 2.3 the following corollary can be obtained.

Corollary 2.4. The solutions (Xn, Yn) of the Pell equation x2 −
Dy2 = 2 satisfy the following relations(

Xn+1

Yn+1

)
=

(
aXn + bDYn

bXn + aYn

)
=

(
a bD
b a

)(
Xn

Yn

)

for n > 1.

Proof. We know from Eq. (2.2) that(
Xn

Yn

)
=

(
kxn−1 + lDyn−1

lxn−1 + kyn−1

)
.

Hence

xn−1 =
klXn + (2− k2)Yn

2l
and yn−1 =

−lXn + kYn

2
. (2.3)
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On the other hand from Eq. (2.1)
(

xn

yn

)
=

(
a bD
b a

)n (
1
0

)
(2.4)

=
(

a bD
b a

)(
a bD
b a

)n−1 (
1
0

)

=
(

a bD
b a

)(
xn−1

yn−1

)

=
(

axn−1 + bDyn−1

bxn−1 + ayn−1

)
.

Using Eq. (2.3) and Eq. (2.4) we find(
Xn+1

Yn+1

)
=

(
k lD
l k

) (
xn

yn

)
(2.5)

=
(

k lD
l k

) (
axn−1 + bDyn−1

bxn−1 + ayn−1

)

=
(

xn−1(ak + blD) + yn−1(bkD + alD)
xn−1(al + bk) + yn−1(blD + ak)

)

Applying Eq. (2.3) and Eq. (2.5) it follows that

Xn+1 = xn−1(ak + blD) + yn−1(bkD + alD)

=
(

klXn + (2− k2)Yn

2l

)
(ak + blD)

+
(−lXn + kYn

2

)
(bkD + alD)

=
2alXn + 2bDlYn

2l
= aXn + bDYn

and
Yn+1 = xn−1(al + bk) + yn−1(blD + ak)

=
(

klXn + (2− k2)Yn

2l

)
(al + bk)

+
(−lXn + kYn

2

)
(blD + ak)

=
2blXn + 2alYn

2l
= bXn + aYn.
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Hence(
Xn+1

Yn+1

)
=

(
aXn + bDYn

bXn + aYn

)
=

(
a bD
b a

)(
Xn

Yn

)
.

¤

Example 2.1. Let D = 2. Then the fundamental solution of the Pell
equation x2 − 2y2 = 1 is (x1, y1) = ( 3, 2), and the other solutions
are (

x2

y2

)
=

(
3 4
2 3

)2 (
1
0

)
=

(
17
12

)
,

(
x3

y3

)
=

(
3 4
2 3

)3 (
1
0

)
=

(
99
70

)
,

(
x4

y4

)
=

(
3 4
2 3

)4 (
1
0

)
=

(
577
408

)
,

(
x5

y5

)
=

(
3 4
2 3

)5 (
1
0

)
=

(
3363
2378

)
,

(
x6

y6

)
=

(
3 4
2 3

)6 (
1
0

)
=

(
19601
13860

)
,

(
x7

y7

)
=

(
3 4
2 3

)7 (
1
0

)
=

(
114243
80782

)
,

(
x8

y8

)
=

(
3 4
2 3

)8 (
1
0

)
=

(
665857
470832

)
,

(
x9

y9

)
=

(
3 4
2 3

)9 (
1
0

)
=

(
3880899
2744210

)
.

The fundamental solution of the Pell equation x2 − 2y2 = 2 is
(X1, Y1) = (k, l) = (2, 1), and the other solutions are

(
X2

Y2

)
=

(
2 2
1 2

)(
3
2

)
=

(
10
7

)
,

(
X3

Y3

)
=

(
2 2
1 2

)(
17
12

)
=

(
58
41

)
,

(
X4

Y4

)
=

(
2 2
1 2

)(
99
70

)
=

(
338
239

)
,

(
X5

Y5

)
=

(
2 2
1 2

)(
577
408

)
=

(
1970
1393

)
,
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(
X6

Y6

)
=

(
2 2
1 2

) (
3363
2378

)
=

(
11482
8119

)
,

(
X7

Y7

)
=

(
2 2
1 2

) (
19601
13860

)
=

(
66922
47321

)
,

(
X8

Y8

)
=

(
2 2
1 2

) (
114243
80782

)
=

(
390050
275807

)
,

(
X9

Y9

)
=

(
2 2
1 2

) (
665857
470832

)
=

(
2273378
1607521

)
,

(
X10

Y10

)
=

(
2 2
1 2

) (
3880899
2744210

)
=

(
13250218
9369319

)
.

Now we give a relation between
(

a bD
b a

)
and

(
k lD
l k

)
. To

get this, set

SL2(2,R) =
{(

r s
t u

)
: r, s, t, u ∈ R, ru− st = 2

}
.

Then we have

Theorem 2.5. There exists an element A ∈ SL2(2,R) such that
(

a bD
b a

)
A =

(
k lD
l k

)
.

Proof. Let A =
(

r s
t u

)
for r, s, t, u ∈ R. Then we have

(
a bD
b a

) (
r s
t u

)
=

(
ar + bDt as + bDu
br + at bs + au

)
=

(
k lD
l k

)
.

Hence from the two equations

ar + bDt = k

br + at = l

and

as + bDu = lD

bs + au = k
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we obtain

r =
l − a2l + abk

b

s =
k − a2k + ablD

b
t = al − bk

u = ak − blD.

Hence

A =
(

l−a2l+abk
b

k−a2k+ablD
b

al − bk ak − blD

)
.

It is easily seen that

det(A) =
(

l − a2l + abk

b

)
(ak − blD)

−
(

k − a2k + ablD

b

)
(al − bk)

=
b(k2 −Dl2)

b

= k2 −Dl2

= 2.

Therefore A ∈ SL2(2,R). ¤

Now we would like to obtain a recurrence relation on the solutions
of the Pell equation x2 − Dy2 = 2. To get this using Eq. (2.1) we
obtain

(
x1

y1

)
=

(
a
b

)
, (2.6)

(
x2

y2

)
=

(
2a2 − 1

2ab

)
,

(
x3

y3

)
=

(
4a3 − 3a

b(4a2 − 1)

)
,

(
x4

y4

)
=

(
8a4 − 8a2 + 1
b(8a3 − 4a)

)
,
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(
x5

y5

)
=

(
16a5 − 20a3 + 5a

b(16a4 − 12a2 + 1)

)
,

(
x6

y6

)
=

(
32a6 − 48a4 + 18a2 − 1

b(32a5 − 32a3 + 6a)

)
,

(
x7

y7

)
=

(
64a7 − 112a5 + 56a3 − 7a
b(64a6 − 80a4 + 24a2 − 1)

)
,

(
x8

y8

)
=

(
128a8 − 256a6 + 160a4 − 32a2 + 1

b(128a7 − 192a5 + 80a3 − 8a)

)
,

and hence

(
X2

Y2

)
=

(
ka + lbD
la + kb

)
, (2.7)

(
X3

Y3

)
=

(
k(2a2 − 1) + 2ablD
l(2a2 − 1) + 2abk

)
,

(
X4

Y4

)
=

(
k(4a3 − 3a) + blD(4a2 − 1)
l(4a3 − 3a) + kb(4a2 − 1)

)
,

(
X5

Y5

)
=

(
k(8a4 − 8a2 + 1) + blD(8a3 − 4a)
l(8a4 − 8a2 + 1) + kb(8a3 − 4a)

)
,

(
X6

Y6

)
=

(
k(16a5 − 20a3 + 5a) + blD(16a4 − 12a2 + 1)
l(16a5 − 20a3 + 5a) + kb(16a4 − 12a2 + 1)

)
,

(
X7

Y7

)
=

(
k(32a6 − 48a4 + 18a2 − 1)
l(32a6 − 48a4 + 18a2 − 1)

+ blD(32a5 − 32a3 + 6a)
+ kb(32a5 − 32a3 + 6a)

)
,

(
X8

Y8

)
=

(
k(64a7 − 112a5 + 56a3 − 7a)
l(64a7 − 112a5 + 56a3 − 7a)

+ blD(64a6 − 80a4 + 24a2 − 1)
+ kb(64a6 − 80a4 + 24a2 − 1)

)
,

(
X9

Y9

)
=

(
k(128a8 − 256a6 + 160a4 − 32a2 + 1)
l(128a8 − 256a6 + 160a4 − 32a2 + 1)

+ blD(128a7 − 192a5 + 80a3 − 8a)
+ kb(128a7 − 192a5 + 80a3 − 8a)

)
.
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Using Eq. (2.7) it is easily seen that

X4 = (2k2 − 1)(X3 −X2) + X1, (2.8)
X5 = (2k2 − 1) (X4 −X3) + X2,

X6 = (2k2 − 1) (X5 −X4) + X3,

X7 = (2k2 − 1) (X6 −X5) + X4,

X8 = (2k2 − 1) (X7 −X6) + X5,

X9 = (2k2 − 1) (X8 −X7) + X6.

Eq. (2.8) is also satisfied for Yn. Hence we have

Conjecture 2.6. The solutions of the Pell equation x2 −Dy2 = 2
satisfy the following recurrence relations

Xn = (2k2 − 1) (Xn−1 −Xn−2) + Xn−3,

Yn = (2k2 − 1) (Yn−1 − Yn−2) + Yn−3

for n > 4.

Now we obtain a formula for the solutions of the equation x2
n −

Dy2
n = 2n using the solutions of the Pell equation x2 −Dy2 = 2.

Theorem 2.7. Let (X1, Y1) = (k, l) be the fundamental solution of
the Pell equation x2 −Dy2 = 2. Let

(
Un

Vn

)
=

(
k lD
l k

)n (
1
0

)
(2.9)

for n > 1.Then
U2

n −DV 2
n = 2n

for n > 1.

Proof. We prove the Theorem by induction on n. For n = 1 we have

U2
1 −DV 2

1 = k2 −Dl2 = 2

since (X1, Y1) = (k, l) is the fundamental solution of the Pell equa-
tion x2 −Dy2 = 2.

Let us assume that the equation U2
n −DV 2

n = 2n is satisfied for
(Un−1, Vn−1), i.e. ,

U2
n−1 −DV 2

n−1 = 2n−1.
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We want to show that the equation U2
n −DV 2

n = 2n is also satisfied
for (Un, Vn). From Eq. (2.9) it is easily seen that

(
Un

Vn

)
=

(
k lD
l k

)n (
1
0

)

=
(

k lD
l k

)(
k lD
l k

)n−1 (
1
0

)

=
(

k lD
l k

)(
Un−1

Vn−1

)

=
(

kUn−1 + lDVn−1

lUn−1 + kVn−1

)
.

Hence

U2
n −DV 2

n = (kUn−1 + lDVn−1)
2 −D (lUn−1 + kVn−1)

2

= U2
n−1(k

2 −Dl2) + Un−1Vn−1(2klD − 2klD)

+V 2
n−1(l

2D2 − k2D)

= U2
n−1(k

2 −Dl2)−D(k2 −Dl2)V 2
n−1

= (k2 −Dl2)
(
U2

n−1 −DV 2
n−1

)

= 2 · 2n−1 = 2n.

Thus (Un, Vn) is also a solution of the equation U2
n −DV 2

n = 2n. ¤

Example 2.2. Consider the Pell equation x2 − 2y2 = 2. The fun-
damental solution is (X1, Y1) = (k, l) = (2, 1). Using Eq. (2.9) we
obtain

(
U1

V1

)
=

(
2 2
1 2

)1 (
1
0

)
=

(
2
1

)

(
U2

V2

)
=

(
2 2
1 2

)2 (
1
0

)
=

(
6
4

)

(
U3

V3

)
=

(
2 2
1 2

)3 (
1
0

)
=

(
20
14

)

(
U4

V4

)
=

(
2 2
1 2

)4 (
1
0

)
=

(
68
48

)
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(
U5

V5

)
=

(
2 2
1 2

)5 (
1
0

)
=

(
232
164

)

(
U6

V6

)
=

(
2 2
1 2

)6 (
1
0

)
=

(
792
560

)
.

Hence it is easily seen that

U2
1 − 2V 2

1 = 2,

U2
2 − 2V 2

2 = 4,

U2
3 − 2V 2

3 = 8,

U2
4 − 2V 2

4 = 16,

U2
5 − 2V 2

5 = 32,

U2
6 − 2V 2

6 = 64.
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