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Subspace Lattices, Reflexivity and Tensor Products

IVAN G. TODOROV

Abstract. This article surveys results on reflexivity of sub-
space lattices and their tensor products. The lattice tensor
product formula is addressed and one new result in this di-
rection is included.

1. Introduction

The Invariant Subspace Problem is nowadays recognised as one of the
most important open problems in Operator Theory. It asks whether
every bounded linear operator acting on a Hilbert space possesses
an invariant subspace different from {0} and the whole space. For a
Hilbert space H, let B(H) be the collection of all bounded linear op-
erators on H, S(H) be the collection of all closed subspaces of H and
P(H) be the collection of all orthogonal projections on H. The set
S(H) is a complete lattice under the operations of intersection and
closed linear span. The one-to-one correspondence between closed
subspaces and orthogonal projections allows us to transfer the lat-
tice structure of S(H) to P(H), thus turning P(H) into a complete
lattice. If A ⊆ B(H) is any family then the set

latA = {P ∈ P(H) : AP = PAP, for each A ∈ A}
is easily seen to be a complete sublattice of P(H); it is called the
invariant subspace lattice of A since the ranges of the projections
in latA are precisely the closed A-invariant subspaces. The Invariant
Subspace Problem can now be restated as the question of whether
there exists an operator A ∈ B(H) such that lat{A} = {0, I}.

Clearly, the last formulation is a special case of two more general
problems.

Problem 1 Given a set A ⊆ B(H), determine the lattice latA.

Problem 2 Given a lattice L ⊆ P(H), determine the subsets A ⊆
B(H) for which latA = L.
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These problems are inverse to one another. Problem 1 can be thought
of as a problem of analysis, while Problem 2 — as a problem of
synthesis. We will give later a more rigorous meaning to this inter-
pretation. For the time being, note that if Ã is the weakly closed
subalgebra of B(H) generated by a set A ⊆ B(H) then latA = lat Ã.
We may thus assume that our families A are subalgebras of B(H)
closed in the weak operator topology.1 It is trivial to check that
an invariant subspace lattice is automatically strongly closed. We
may thus assume that our sublattices L ⊆ P(H) are closed in the
strong operator topology. Such lattices are traditionally called sub-
space lattices. The subspace lattices L for which there exists A
with latA = L are called reflexive.

Problem 2 includes the question of deciding which subspace lat-
tices are reflexive. This question has attracted much attention since
Halmos’ foundational paper [4]; many of its aspects are at present
widely open. In this, mainly survey, article, the milestones of this
investigation will be described. One of the most important contri-
butions in this direction is Arveson’s theorem for the reflexivity of
commutative subspace lattices [1]. This result will be discussed and
other classes of reflexive lattices will be exhibited. The question of
how to build new reflexive lattices from already existing ones will
be addressed. This will lead naturally to the introduction of tensor
products and the discussion of the problem known as the “lattice
tensor product formula” [6]. The known cases for which this for-
mula holds will be described and a new one will be added to that
list. Open problems will be discussed throughout the exposition.
Since we will be often dealing with measure theoretic constructions,
we will assume throughout that our Hilbert spaces are separable.

2. Classes of Subspace Lattices

Subspace lattices first appeared in the 1930’s in von Neumann’s
work on the mathematical foundations of quantum mechanics. A
von Neumann algebra is a weakly closed selfadjoint subalgebra
of B(H). If A is a von Neumann algebra then the collection L of the
non-trivial projections belonging to A is non-empty: the spectral
measure of every selfadjoint operator A ∈ A is entirely contained

1A net {Ai} converges to A in the weak operator topology if (Aix, y) →
(Ax, y) for all x, y ∈ H, and it converges to A in the strong operator topology if
Aix → Ax for all x ∈ H.
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in A. As a matter of fact, L is reflexive: it coincides with the in-
variant subspace lattice of the commutant A′ of A. Indeed, if L ∈ L
and A ∈ A′ then L⊥AL = L⊥LA = 0, so L ⊆ latA′. Conversely,
suppose that M ∈ latA′ and A ∈ A′. Then AM = MAM . Since
A′ is selfadjoint, we also have A∗M = MA∗M . These two identities
give AM = MA, therefore M ∈ A′′. By von Neumann’s Bicommu-
tant Theorem, A′′ = A and so M ∈ L. Call the projection lattice of
a von Neumann algebra a von Neumann lattice. Von Neumann
lattices are orthocomplemented; using the Bicommutant Theorem
once again we can see that an orthocomplemented lattice is reflexive
precisely when it is a von Neumann lattice.

The subspace lattices, structurally opposite to von Neumann lat-
tices, are the totally ordered ones, also called nests. They were
introduced by Ringrose in [11], where he showed that every nest is
reflexive. The idea behind the proof is the following: if N is a nest,
let A0 be the weak closure of the subspace generated by the “full
corners” B(M⊥H, NH), where N,M ∈ N , N < M . Then one can
show that latA0 = N .

Note that every nest L is a commutative subspace lattice
(CSL), in other words, any two projections P,Q ∈ L satisfy the
relation PQ = QP . This property was taken as a starting point
by Arveson in [1], where he established the following fundamental
result.

Theorem 2.1. Every commutative subspace lattice is reflexive.

Before describing Arveson’s approach to the problem, we consider
a special case. Let L be a CSL. An atom of L is a projection E (not
necessarily belonging to L) such that, for any L ∈ L, either E ≤ L
or EL = 0. If the identity projection I is the span of all atoms of L
then L is called totally atomic. Fix a totally atomic CSL L, acting
on a Hilbert space H, and let at(L) be the set of all its atoms. It is
easily seen that if L ∈ L then L = ∨{E ∈ at(L) : E ≤ L}. For each
E ∈ at(L) let

γ(E) = ∧{L ∈ L : E ≤ L}.
Introduce a binary relation ≺ on at(L) by letting E ≺ F if γ(F ) ≤
γ(E). One readily verifies that ≺ is a partial order. Call a subset
α ⊆ at(L) increasing if E ≺ F and E ∈ α imply F ∈ α. Let L0

be the collection of all projections of the form ∨α, where α ⊆ at(L)
is increasing, and A0 be the algebra generated by the subspaces
FB(H)E, with E ≺ F . We first observe that latA0 = L0. Indeed,
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let α ⊆ at(L) be increasing and L = ∨α. Fix E,F ∈ at(L) with
E ≺ F . If E ∈ α then F ∈ α, so F ≤ L and L⊥FB(H)EL = {0}.
If E 6∈ α then EL = 0 and again L⊥FB(H)EL = {0}. Thus,
L0 ⊆ latA0.

Given a projection L on H define α(L) = {E ∈ at(L) : E ≤ L}.
Assume that L ∈ latA0 and let α = α(L). For each E ∈ at(L), the
space EB(H)E is contained in A0. A few moments’ thought now
shows that L = ∨α. Suppose that E ∈ α and E ≺ F . Then

[(FB(H)E)LH] = [FB(H)EH] = FH
and since L is invariant for A0, we conclude that F ∈ α. It follows
that α is increasing.

We thus have latA0 = L0 and therefore to show that L is reflexive
it suffices to establish the following

Claim L = L0.

Proof. First note that if L ∈ L then α(L) is increasing. Indeed,
suppose E ∈ α(L); this yields γ(E) ≤ L. If E ≺ F then γ(F ) ≤ γ(E)
and so γ(F ) ≤ L which means that F ≤ L and so F ∈ α(L). Since
L = ∨α(L), we conclude that L ⊆ L0.

Conversely, let α ⊆ at(L) be increasing. For each E ∈ α we have

γ(E) =
∨{G ∈ at(L) : G ≤ γ(E)}

=
∨{G ∈ at(L) : γ(G) ≤ γ(E)} =

∨{G ∈ at(L) : E ≺ G}.
It follows that ∨α =

∨{γ(E) : E ∈ α} ∈ L and so L0 ⊆ L. ¤

Thus, every totally atomic CSL is reflexive. The above proof
depends heavily on the atomicity of the lattice. If one wishes to
generalise the argument to arbitrary CSL’s, she or he should first
find an appropriate substitute for at(L). It was Arveson’s idea that
this substitute could be a measure space, whose points play the role
of the atoms of L, in case L has no atoms. To be more concrete, fix a
standard (finite) measure space (X, µ). Let ≺ be a standard quasi-
order on X, that is, a reflexive and transitive binary relation, for
which there exist countably many measurable functions f : X → R
such that x ≺ y if and only if fn(x) ≤ fn(y), for each n ∈ N. Call a
measurable set α ⊆ X increasing if there exists a null set M ⊂ X
such that x, y 6∈ M , x ∈ α and x ≺ y imply y ∈ α. On the Hilbert
space H = L2(X,µ) consider the collection of projections

L(X,≺) = {P (α) : α increasing},
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where P (α) is the multiplication by the characteristic function of α.
Since the family of increasing subsets of X is closed under finite
unions and intersections, L(X,≺) is a lattice. A bit more work is
required to show that L(X,≺) is strongly closed, but it is true. Since
P (α)P (β) = P (α ∩ β), the elements of L(X,≺) commute with each
other. We conclude that L(X,≺) is a CSL. Arveson showed in [1]
that every CSL is unitarily equivalent to L(X,≺), for an appropri-
ate choice of a measure space X and a standard quasi-order ≺. This
“Spectral Theorem for CSL’s” is the statement corresponding to the
Claim in the case of a general lattice. Arveson also exhibited an
appropriate substitute A0(X,≺) for the algebra A0 in the argument
above, defined as the closure of a family of “pseudointegral” opera-
tors which live in the graph of ≺, in a similar way as the operators
T ∈ A0 live in the spaces B(FH, EH) with F ≺ E. He established
the reflexivity of L(X,≺) by showing that L(X,≺) = latA0(X,≺).

3. Generating New Reflexive Lattices

It is not only a question of philosophical nature in mathematics
to study whether a property of interest is preserved under certain
operations. Starting with an object or objects possessing a given
property, this often allows to construct new objects with the same
property. For subspace lattices, a natural operation is forming the
join of two (or finitely many) lattices. Given subspace lattices L1

and L2, by L1 ∨ L2 we denote the subspace lattice generated by
L1 and L2. The reflexivity of L1 and L2 does not imply that of
L1 ∨ L2. Indeed, in [10] it is shown that there exist non-reflexive
lattices of the form L = {0, L, M, N, I}, where M ≤ N , L ∧ N = 0
and L∨M = I. Clearly, L is the join of the nests L1 = {0,M, N, I}
and L2 = {0, L, I}.
Question 3.1. Suppose L1 and L2 are reflexive lattices acting on
the same Hilbert space. When is L1 ∨ L2 reflexive?

In concrete situations, some restrictions on the mutual position of
L1 and L2 are imposed e.g. that L1 and L2 commute with each other.
The reason is that, without such an assumption on the generating
lattices, very little can be said about the generated lattice. We gather
some important contributions to the study of Question 3.1 in the
following theorem.
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Theorem 3.2. Let L1 and L2 be subspace lattices acting on the same
Hilbert space and commuting with each other. The lattice L1 ∨L2 is
reflexive whenever one of the following properties holds:

(i) L1 is a nest and L2 is a von Neumann lattice;
(ii) L1 is a totally atomic CSL and L2 is a reflexive lattice;
(iii) L1 is a CSL and L2 is a reflexive lattice containing the pro-

jection lattice of a properly infinite von Neumann algebra.

Part (i) in the above theorem is due to Gilfeather and Larson [3].
Part (ii) and (iii) are due to Katsoulis [8] in the case L2 is a von
Neumann lattice and to Symes [13] in the general case.

To be able to say more about the structure of L1∨L2, one should
assume that L1 and L2 are in even nicer position than that of each
one being contained in the commutant of the other. This is where
tensor products should be introduced. Let H1 and H2 be Hilbert
spaces and H = H1 ⊗H2 be the Hilbert space tensor product of H1

and H2. If A ∈ B(H1) and B ∈ B(H2) then the equality

(A⊗B)(ξ ⊗ η) = Aξ ⊗Bη (ξ ∈ H1, η ∈ H2)

defines a bounded linear operator on H. If P ∈ P(H1) and Q ∈
P(H2) then P ⊗ Q ∈ P(H). Thus, given subspace lattices L1 and
L2 on H1 and H2, respectively, we can form the subspace lattice
L = L1 ⊗ L2 generated by the elementary tensors P ⊗ Q, where
P ∈ L1 and Q ∈ L2. Note that L is the subspace lattice generated
by the amplifications L1⊗1 and 1⊗L2 of L1 and L2. (For a subspace
lattice M we write M⊗ 1 = {M ⊗ I : M ∈M}.) Of course, L1 ⊗ 1
and 1⊗ L2 commute with each other. Our initial question can now
be specialised:

Question 3.3. Suppose L1 and L2 are reflexive lattices. When is
L1 ⊗ L2 reflexive?

The assumption in Question 3.3 is that Li = latAi, i = 1, 2,
for some operator algebras A1 and A2, and one wants to determine
whether there exists an operator algebra A such that L1 ⊗ L2 =
latA. There is a natural candidate for A, namely the (weakly closed)
algebra A1 ⊗A2 generated by the elementary tensors A⊗B, where
A ∈ A1 and B ∈ A2. We thus arrive at a more special question:

Question 3.4. Suppose A1 ⊆ B(H1) and A2 ⊆ B(H2) are operator
algebras. When does the formula below hold

lat(A1 ⊗A2) = latA1 ⊗ latA2 ? (1)
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Equation (1) is called the lattice tensor product formula
(LTPF). Its investigation was initiated by Hopenwasser in [6], as
a “dual” problem to an older question, the algebra tensor prod-
uct formula (ATPF). The cautious reader will have noticed that
there is a natural “inverse” construction to that of passing from an
algebra to its invariant subspace lattice. Namely, if L is a subspace
lattice, one can define

algL = {A ∈ B(H) : AL = LAL, for each L ∈ L},
the algebra of all operators leaving invariant the projections of L.
ATPF is the identity

alg(L1 ⊗ L2) = algL1 ⊗ algL2. (2)

ATPF was first studied in [2]; although not universally true [9], it
has been established in a number of cases. However, it is still open
for CSL’s. If L1 and L2 are von Neumann lattices and Ri = L′′i ,
i = 1, 2, the ATPF is equivalent to the identity

(R1 ⊗R2)′ = R′1 ⊗R′2.
This is the well known Tomita Commutation Theorem, a fundamen-
tal result in von Neumann algebra theory. Its lattice version, the
LTPF for von Neumann algebras, is open. It amounts to verifying
that, if L1 and L2 are von Neumann lattices then L1 ⊗ L2 is also a
von Neumann lattice. In [6] this was shown to hold if L1 and L2 are
injective von Neumann lattices (that is, projection lattices of injec-
tive von Neumann algebras), while in [12] it was established in the
case only one of the von Neumann lattices is injective.

A special case of LTPF is obtained when A2 is the scalar multiples
of the identity on H2 and dimH2 = ∞. Let P = P(H2). Validity
of LTPF is in this case equivalent to the reflexivity of latA1 ⊗ P.
Say that a (not necessarily reflexive) subspace lattice L possesses
property (p) if L ⊗ P is reflexive.

Question 3.5. Does there exist a subspace lattice without property
(p)?

Lattices with property (p) were exhibited in [12]: such are the lattices
of the form (L ∨ N ) ⊗ N0, where L is a CSL, N and N0 are von
Neumann lattices, at least one of which is injective, andN commutes
with L. In particular, every CSL possesses property (p). If P is
replaced by the lattice Pn of all projections on an n-dimensional
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Hilbert space, with n < ∞, the corresponding question, i.e., the
question of whether L ⊗ Pn is reflexive, is open.

4. Tensoring with a CSL

Finding a convenient description of a tensor product lattice is cru-
cial for deciding whether it is reflexive. If one of the lattices is a
CSL, Arveson’s coordinates discussed in Section 2 are very useful.
Suppose that L = L(X,≺) is the CSL corresponding to a standard
quasi-ordered measure space (X,≺, µ) acting on H0 = L2(X, µ).
Let N be a subspace lattice acting on a Hilbert space K. The
Hilbert space H = H0 ⊗ K can be identified with the collection
L2(X,K) of all square integrable K-valued functions on X. Each
element ϕ ∈ L∞(X,µ) gives rise to a multiplication operator on
H0: Mϕf = ϕf . The collection D of all such operators is a maxi-
mal abelian selfadjoint algebra (masa) on H0 and D ⊗ B(K) can be
identified with the family L∞(X,B(K), µ) of all (weakly) measurable
essentially bounded functions A : X → B(K) acting on H pointwise.
If ϕ ∈ L∞(X, µ) and B ∈ B(K) then Mϕ ⊗ B corresponds to the
function ϕB. Under this identification, P(D ⊗ B(K)) consists of all
projection valued (weakly measurable) functions on X. If P (α) ∈ L
and Q ∈ N then the function P corresponding to P (α)⊗Q is given
by P (x) = Q if x ∈ α and P (x) = 0 otherwise. The function P
is moreover increasing: on a set of full measure, x ≺ y implies
P (x) ≤ P (y). On the other hand, the set L(X,≺,N ) of all increas-
ing N -valued functions on X is easily seen to be a subspace lattice.
It follows that

L ⊗N ⊆ L(X,≺,N ). (3)

The lattice L(X,≺,N ) is reflexive whenever N is reflexive: if N =
latB then L(X,≺,N ) = lat(A0(X,≺)) ⊗ B). Thus, to show that
L ⊗ N is reflexive, it suffices to prove that equality holds in (3).
This observation was the basis for establishing LTPF if latA1 is a
totally atomic CSL or a nest and A2 is the scalar multiples of the
identity in [6], and if latA1 is a completely distributive CSL2 or a
Boolean lattice and A2 is arbitrary in [5].

If L is a CSL and A = algL then any masa containing L is easily
seen to be contained in A. Much as in Problem 2, we may look at

2Complete distributivity is the validity of the distributivity laws for arbitrary
subsets of the lattice.
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the family

A(L) = {B ⊆ B(H) : w*-closed algebra

containing masa with latB = L}.
Theorem 2.1 implies that algL is the maximal element of A(L).
Arveson showed [1] that the algebra A0 associated to L as discussed
in Section 2 is the minimal element of A(L). The lattice L is called
synthetic if A0 = algL [1]. We formulate a question for which the
above description of the tensor product is relevant; it is a special
case of Question 3.3.

Question 4.1. Let L be a CSL and N be a von Neumann lattice. Is
L⊗N reflexive? What if L is additionally assumed to be synthetic?

We finally establish LTPF in one more case. The algebras belong-
ing to some of the classes A(L) will be called Arveson algebras.
For an operator algebra A we denote by P(A) the collection of all
projections in A.

Theorem 4.2. Let A1 and A2 be Arveson algebras. Then

lat(A1 ⊗A2) = latA1 ⊗ latA2.

Proof. According to our previous discussion, we may assume that
Ai acts on Hi = L2(Xi, µi), contains the masa Di ≡ L∞(Xi, µi) and
Li = latAi = L(Xi,≺i), for some standard quasi-order ≺i, i = 1, 2.
We have H1 ⊗H2 = L2(X1 ×X2, µ1 × µ2). It is shown in [2] that

L def
= L1 ⊗ L2 = L(X1 ×X2,≺), (4)

where ≺ is the product order on X1×X2.3 Let Si = latDi, i = 1, 2.
Then Si is a Boolean lattice coinciding with P(Di). We first note
that

lat(A1 ⊗A2) = (L1 ⊗ S2) ∩ (S1 ⊗ L2). (5)

Indeed, A1 ⊗ D2 ⊆ A1 ⊗ A2 and, since LTPF holds if one of the
lattices is Boolean,

lat(A1 ⊗A2) ⊆ lat(A1 ⊗D2) = L1 ⊗ S2.

Similarly, lat(A1 ⊗A2) ⊆ S1 ⊗ L2. Thus

lat(A⊗ B) ⊆ (L1 ⊗ S2) ∩ (S1 ⊗ L2).

3By definition, (x1, x2) ≺ (y1, y2) if x1 ≺1 y1 and x2 ≺ y2.
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Conversely, let P ∈ (L1⊗S2)∩ (S1⊗L2). Then the projection P
is invariant for A1 ⊗D2 and for D1 ⊗A2. If A ∈ A1 and B ∈ A2 we
have

(A⊗B)P = (A⊗I)(I⊗B)P = (A⊗I)P (I⊗B)P = P (A⊗I)P (I⊗B)P

and thus P is invariant for A ⊗ B. Since A1 ⊗ A2 is generated by
the elementary tensors, we conclude that P is invariant for A1⊗A2.

Now let P ∈ lat(A1⊗A2). Then P ∈ lat(D1⊗D2) = P(L∞(X1×
X2, µ1 × µ2)) and hence P = P (E) is the multiplication by the
characteristic function of some measurable set E ⊆ X1 × X2. By
(5), P ∈ L1⊗S2 and since S2 corresponds to the trivial order on X2

(x and y are comparable only when x = y), it follows from (4) that
E is increasing with respect to the first variable: there exists a null
set M ⊆ X1 ×X2 such that

(x1, z), (y1, z) 6∈ M, (x1, z) ∈ E and x1 ≺1 y1 imply (y1, z) ∈ E.
(6)

Similarly, there exists a null set N ⊆ X1 ×X2 such that

(z, x2), (z, y2) 6∈ N, (z, x2) ∈ E and x2 ≺2 y2 imply (z, y2) ∈ E. (7)

Now suppose that (x1, x2), (y1, y2) 6∈ M ∪ N , (x1, x2) ∈ E and
(x1, x2) ≺ (y1, y2). Then x1 ≺1 y1 and x2 ≺2 y2. By (6), (y1, x2) ∈ E
and now by (7), (y1, y2) ∈ E. Thus, E is ≺-increasing and so
P ∈ L. ¤

As in the proof of Theorem 4.2, it can be seen that if A1 and A2

are algebras for which L1 = latA1 and L2 = latA2 possess property
(p) then

lat(A1 ⊗A2) = (L1 ⊗P) ∩ (P ⊗ L2).
Thus, in this case, LTPF is equivalent to the identity

L1 ⊗ L2 = (L1 ⊗ P) ∩ (P ⊗ L2). (8)

Question 4.3. When does identity (8) hold?

We finish with a corollary of Theorem 4.2.

Corollary 4.4. Let L1 and L2 be commutative subspace lattices such
that L1 ⊗ L2 is synthetic. Then alg(L1 ⊗ L2) = algL1 ⊗ algL2.

Proof. Let A1 = algL1 and A2 = algL2. By Theorem 4.2, lat(A1⊗
A2) = L1 ⊗ L2 while, by Theorem 2.1, lat alg(L1 ⊗ L2) = L1 ⊗ L2.
Since L1 ⊗ L2 is synthetic, alg(L1 ⊗ L2) = A1 ⊗A2. ¤
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