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Discrete Characterizations of Exponential Dichotomy
for Evolution Families

PETRE PREDA, ALIN POGAN AND CIPRIAN PREDA

Abstract. We present some characterizations of exponen-
tial dichotomy using a discrete argument. The results ob-
tained generalize to the case of exponential dichotomy some
theorems proved by Littman, Rolewicz and Zabczyk.

1. Introduction

One of the most remarkable results in the theory of stability for a
strongly continuous semigroup of linear operators has been obtained
by Datko [2] in 1970; it states that the semigroup T = {T (t)}t≥0 is
uniformly exponentially stable if and only if, for each vector x from
the Banach space X, the application t 7→ ‖T (t)x‖ lies in L2(R+).
Later, A. Pazy (see for instance [10]) showed that the result remains
true even if we replace L2(R+) with Lp(R+), where p ∈ [1,∞). In
1973, R. Datko [3] generalized the results above as follows.

Theorem 1.1. An evolutionary process U = {U(t, s)}t≥s≥0 with
exponential growth is uniformly exponentially stable if and only if
there is p ∈ [1,∞) such that

sup
s≥0

∫ ∞

s

‖U(t, s)x‖pdt < ∞ (x ∈ X).

The result provided by Theorem 1.1 was extended to dichotomy by
P. Preda and M. Megan [14] in 1985. The same result was generalized
in 1986 by S. Rolewicz [16] in the following way.

2000 Mathematics Subject Classification. Primary 34D09; Secondary 34D05,
39A12, 47D06.

Key words and phrases. Evolution families, exponential dichotomy.



20 Petre Preda, Alin Pogan and Ciprian Preda

Theorem 1.2. Let φ : R+ → R+ be a continuous, nondecreasing
function with φ(0) = 0 and φ(u) > 0 for each positive u, and U =
{U(t, s)}t≥s≥0 an evolutionary process on X with exponential growth.
If

sup
s≥0

∫ ∞

s

φ
(‖U(t, s)x‖) dt < ∞ (x ∈ X),

then U is uniformly exponentially stable.

We note here the result obtained independently by Littman [6] in
1989, in the case of C0-semigroups but without the assumption of
continuity of φ.

Results of this type, for the case of C0-semigroups were provided
by I. Zabczyk [17] in 1974, with the additional requirement that the
function φ is also convex, as can be seen below:

Theorem 1.3. For every C0-semigroup T = {T (t)}t≥0 the following
statements are equivalent:

(i) T is exponentially stable;
(ii) there is a convex increasing function φ : R+ → R+ vanishing

at 0 and for every x ∈ X there is α(x) > 0 such that
∫ ∞

0

φ
(
α(x)‖T (t)x‖) dt < ∞ (x ∈ X);

(iii) there is a convex increasing function ϕ : R+ → R+ with
ϕ(0) = 0 and for every x ∈ X there is α(x) > 0 such that

∞∑
n=0

ϕ
(
α(x)‖T (n)x‖) < ∞ (x ∈ X).

Also, more recently, an unified treatment was presented by J. M.
A. M. Neerven [8] in terms of Banach functions spaces.

The aim of this paper is to extend the preceding results to the
case of exponential dichotomy using a discrete time argument.

2. Preliminaries

In the beginning we will fix some standard notation. We denote by
A the set of all non-decreasing functions a : R+ → R+ with the
property that a(t) > 0 for all t > 0. In what follows we will put X
for a Banach space and B(X) the Banach algebra of all linear and
bounded operators acting on X.
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Remark 2.0. If a ∈ A and A : R+ → R+, A(u) =
∫ u

0

a(s)ds, then
A ∈ A and A is a continuous convex bijection.

Definition 2.1. A family of bounded linear operators acting on X
and denoted by U = {U(t, s)}t≥s≥0 is called an evolution family
if the following properties hold:

e1) U(t, t) = I (the identity operator on X), for all t ≥ 0;
e2) U(t, s) = U(t, r) U(r, s), for all t ≥ r ≥ s ≥ 0;
e3) there exist M, w > 0 such that

‖U(t, s)‖ ≤ Mew(t−s) , for all t ≥ s ≥ 0.

In order to deal with the dichotomy property we give the following:

Definition 2.2. A function P : R+ → B(X) is said to be a di-
chotomy projection family if

p1) P 2(t) = P (t), for all t ≥ 0;
p2) P (·)x is a bounded function, for all x ∈ X.

We also denote by Q(t) = I − P (t), t ≥ 0.

Definition 2.3. An evolution family U is said to be uniformly expo-
nentially dichotomic (u.e.d.) if there exists P a dichotomy projection
family and two constants N, ν > 0 such that the following conditions
hold:

d1) P (t)U(t, s) = U(t, s)P (s) for all t ≥ s ≥ 0;
d2) U(t, s) : KerP (s) → KerP (t) is an isomorphism for all t ≥

s ≥ 0;
d3) ‖U(t, s)x‖ ≤ Ne−ν(t−s)‖x‖, for all t ≥ s ≥ 0, and all x ∈

ImP (s);
d4) ‖U(t, s)x‖ ≥ 1

N eν(t−s)‖x‖, for all t ≥ s ≥ 0, and all x ∈
KerP (s).

In what follows we will consider an evolution family U for which
there is a dichotomy projection family P such that the properties d1)
and d2) hold. In this case we will denote by

U1(t, s) = U(t, s)| ImP (s) , U2(t, s) = U(t, s)| KerP (s).

Even if all the conditions e1), e2), e3) and d1), d2) are satisfied, it
does not follows that U−1

2 has exponential growth, as the following
example shows.
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Example 2.4. Let X = R, U(t, s) = e−(t2−s2), P (t) = 0. Then
U−1

2 (t, s) = et2−s2
, for all t ≥ s ≥ 0 and hence U−1

2 does not have
exponential growth.

Remark 2.5. The evolution family U is u.e.d. if and only if there
exist the constants N1, N2, ν1, ν2 > 0 such that, for all t ≥ s ≥ 0,

‖U1(t, s)‖ ≤ N1e
−ν1(t−s) and ‖U−1

2 (t, s)‖ ≤ N2e
−ν2(t−s).

Lemma 2.6. Let g : {(t, s) ∈ R2 : t ≥ s ≥ 0} → R+. If g satisfy
the conditions

i) g(t, s) ≤ g(t, r)g(r, s) , for all t ≥ r ≥ s ≥ 0;

ii) sup
0≤t0≤t≤t0+1

g(t, t0) < ∞;

iii) there exists h : N → R+ with lim
n→∞

h(n) = 0 such that

g(m + n0, n0) ≤ h(m) (m, n0 ∈ N),

then there exist N, ν > 0 such that

g(t, t0) ≤ Ne−ν(t−t0) (t ≥ t0 ≥ 0).

Proof. Let a = sup
0≤t0≤t≤t0+1

g(t, t0), m0 = min{m ∈ N : h(m) ≤ 1
e}.

Conditions i) and ii) imply that sup
0≤t0≤t≤t0+m0

g(t, t0) ≤ am0 . Fix

t, t0 ≥ 0 with t ≥ t0+2m0, m =
[ t

m0

]
, n =

[ t0
m0

]
, where [s] denotes

the largest integer less or equal than s ∈ R. It follows that

mm0 ≤ t < (m + 1)m0, nm0 ≤ t0 < (n + 1)m0, m ≥ n + 2,

and

g(t, t0) ≤ g(t,mm0)g(mn0, (n + 1)n0)g((n + 1)n0, t0)

≤ am0

m∏

k=n+2

g(km0, (k − 1)m0)am0 = a2m0

m∏

k=n+2

h(m0)

≤ a2m0

m∏

k=n+2

e−1 = a2m0e−(m−n−1) ≤ a2m0e2− t−t0
m0
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If t0 ≤ t ≤ t0 + 2m0, then it follows easily that

g(t, t0) ≤ a2m0 ≤ a2m0e2− t−t0
m0 ,

and hence that

g(t, t0) ≤ Ne−ν(t−t0) , for all t ≥ t0 ≥ 0 , where

N = e2a2m0 , ν =
1

m0
. ¤

Lemma 2.7. If a ∈ A, α : N2 → R+, v > 0 satisfy the following
conditions:

i) sup{α(n,m) : m,n ∈ N, n ≤ k} < ∞;

ii) there exists C > 0 such that
n∑

j=0

a
( 1

evj
α(n,m)

)
≤ C, for all

m,n ∈ N, then sup
m,n∈N

α(n,m) < ∞.

Proof. Assume towards a contradiction that sup
m,n∈N

α(m,n) = ∞.
Having in mind that

lim
p→∞

a(evp) = ∞,

we find ∞∑
p=0

a(evp) = ∞,

which implies that there exists k0 ∈ N such that
k0∑

p=0

a(evp) ≥ C + 1.

By our assumption and by condition i) it follows that

sup
m≥0,n≥k0

α(n,m) = ∞,

and so there exist m0, n0 ∈ N, with n0 ≥ k0 and αm,n0 ≥ ewk0 . Now
it is easy to check that

C ≥
n0∑

j=0

a
( 1

evj
α(n0,m0

)
≥

n0∑

j=0

a
( 1

evj
evk0

)

≥
k0∑

j=0

a
(
ev(k0−j)

)
=

k0∑
p=0

a(evp) ≥ C + 1,

which is a contradiction. ¤
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3. The Main Result

We start with the following

Lemma 3.1. If a ∈ A is a continuous convex function and if
T : N2 → B(X) is an operator-valued function with the property that

sup
m∈N

∞∑
n=0

a(‖T (m,n)x‖) < ∞ (x ∈ X),

then there exist j0 ∈ N, r0 > 0 such that

sup
m∈N

∞∑
n=0

a(‖T (m,n)x‖) ≤ j0 (x ∈ X with ‖x‖ ≤ r0).

Proof. For every natural number j we consider the set

Hj = {x ∈ X : sup
m∈N

∞∑
n=0

a(‖T (m,n)x‖) ≤ j}.

From the fact that a is continuous it follows that Hj is a closed set
and since a is also convex it follows that Hj is a convex set for all
j ∈ N. Using the hypothesis we can state that

X =
∞⋃

j=0

Hj .

By Baire’s theorem it follows that there exists j0 ∈ N such that Hj0

has nonempty interior. Then there are x0 ∈ X and r0 > 0 such
that every y ∈ X with ‖y − x0‖ ≤ r0 belongs to Hj0 . Let x ∈ X
with ‖x‖ ≤ r0 and x1 = x + x0, x2 = x − x0. Then ‖x1 − x0‖ =
‖ − x2 − x0‖ = ‖x‖ ≤ r0 and hence x1, −x2, x2 ∈ Hj0 . Finally, by
convexity of Hj0 we obtain that

x =
1
2
x1 +

1
2
x2 ∈ 1

2
Hj0 +

1
2
Hj0 = Hj0 . ¤

Now, we can state the main result of this paper.

Theorem 3.2. The evolution family U is u.e.d. if and only if there
exist a, b ∈ A such that, for all x ∈ X,

sup
m∈N

∞∑

k=0

a(‖U1(k + m,m)P (m)x‖) < ∞ and

sup
m∈N

m∑

k=0

b(‖U−1
2 (m, k)Q(m)x‖) < ∞.
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Proof. Necessity. It is a simple computation for a(t) = b(t) = t.

Sufficiency. Step 1. Let us define

α : N2 → R+, α(n,m) =
1
M
‖U1(n + m,m)Q(m)x‖

where x ∈ X is fixed arbitrary. It follows that

n∑

j=0

a
( 1

ewj
α(n, m)

)
=

n∑

k=0

a
( 1

Mew(n−k)
‖U1(n + m, m)P (m)x‖

)

≤
n∑

k=0

a(‖U1(k + m,m)P (m)x‖)

≤ sup
m∈N

∞∑

k=0

a(‖U1(k + m,m)P (m)x‖) < ∞,

for all m,n ∈ N. By Lemma 2.7, it follows that sup
m,n∈N

α(n,m) < ∞,

and hence by the principle of uniform boundedness we obtain that
there exists L1 > 0 such that, for all m,n ∈ N,

‖U1(n + m,m)P (m)‖ ≤ L1.

Now it is easy to see that

sup
m∈N

∞∑

k=0

A(‖U1(k + m, m)P (m)x‖)

≤ L1‖x‖ sup
m∈N

∞∑

k=0

a(‖U1(k + m,m)P (m)x‖) < ∞,

for all x ∈ X, where A is the function defined in Remark 2.0, which
belongs to A and is continuous and convex, and hence, by apply-
ing Lemma 3.1 to the operator-valued function T : N2 → B(X),
T (m, k) = U1(k + m,m)P (m) it results that there exist j1 ∈ N and
r1 > 0 such that

∞∑

k=0

A(‖U1(k + m,m)P (m)x‖) ≤ j1
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for all m ∈ N and all x ∈ X with ‖x‖ ≤ r1. A simple computation
shows that

n∑

k=0

A(‖U1(n + m,m)P (m)x‖) =

=
n∑

k=0

A(‖U1(n + m,m + k)P (m + k)U1(m + k,m)P (m)x‖)

≤
n∑

k=0

A(L1‖U1(m + k, m)P (m)x‖)

=
n∑

k=0

A(‖U1(m + k, m)P (m)(L1x)‖) ≤ j

for all m,n ∈ N, and each x ∈ X with ‖x‖ ≤ r1

L1
. Because A is also

bijective we have that

‖U1(n + m, m)‖ ≤ L1

r1
A−1

( j1
n + 1

)
(m, n ∈ N).

From Lemma 2.6 it follows that there exist the constants N1, ν1 > 0
such that

‖U1(t, s)‖ ≤ N1e
−ν1(t−s) (t ≥ s ≥ 0).

Step 2. Now fix x ∈ X arbitrary and consider β : N2 → R+,

β(n,m) =
1
M
‖U−1

2 (n + 1, n)Q(n + 1)x‖.

Then we have

n∑

j=0

b
( 1

ewj
β(n,m)

)
=

n∑

k=0

b
( 1

Mew(n−k)
‖U−1

2 (n + 1, n)Q(n + 1)x‖
)

=
n∑

k=0

b
( 1

Mew(n−k)
‖U2(n, k)U−1

2 (n + 1, k)Q(n + 1)x‖
)
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≤
n∑

k=0

b(‖U−1
2 (n + 1, k)Q(n + 1)x‖)

≤
n+1∑

k=0

b(‖U−1
2 (n + 1, k)Q(n + 1)x‖)

≤ sup
l∈N

l∑

k=0

b(‖U−1
2 (l, k)Q(l)x‖) < ∞,

for all n,m ∈ N. As a consequence of Lemma 2.7. we obtain that

sup
n∈N

‖U−1
2 (n + 1, n)Q(n + 1)x‖ < ∞ (x ∈ X),

and by the principle of uniform boundedness it follows that

sup
n∈N

‖U−1
2 (n + 1, n)‖ < ∞.

Now it is clear that there exists a constant δ > 0 such that

‖U−1
2 (n, m)‖ ≤ eδ(n−m) (n ≥ m).

For x an arbitrary vector of X, we define

γ : N2 → R+ , γ(n,m) = ‖U−1
2 (n + m,m)Q(n + m)x‖.

We have that, for all m,n ∈ N,
n∑

j=0

b
( 1

eδj
γ(n,m)

)

=
n∑

j=0

b
( 1

eδj
‖U−1

2 (j + m, m)U−1
2 (n + m, j + m)Q(m + n)x‖

)

≤
n∑

j=0

b(‖U−1
2 (n + m, j + m)Q(m + n)x‖)

≤
n+m∑

k=0

b(‖U−1
2 (n + m, k)Q(n + m)x‖)

≤ sup
l∈N

l∑

k=0

b(‖U−1
2 (l, k)Q(l)x‖) < ∞.

By applying once again Lemma 2.7 we have that sup
n,m∈N

γ(n,m) < ∞,

and hence by the principle of uniform boundedness we obtain that
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there exists L2 > 0 such that, for all n,m ∈ N,

‖U−1
2 (n + m, m)Q(n + m)‖ ≤ L2.

Then it is easy to observe that

sup
m∈N

m∑

k=0

B(‖U−1
2 (m, k)Q(m)x‖)

≤ L2‖x‖ sup
m∈N

m∑

k=0

b(‖U−1
2 (m, k)Q(m)x‖) < ∞

for all x ∈ X, where B : R+ → R+, B(u) =
u∫
0

b(s)ds, which, by

Remark 2.0, is continuous and convex. If we apply Lemma 3.1 to
the operator-valued function V : N2 → B(X) defined by

V (n,m) =
{

U−1
2 (m,n)Q(m) , m ≥ n

0 , m < n

we can state that there are j2 ∈ N, r2 > 0 such that

sup
m∈N

m∑

k=0

B(‖U−1
2 (m, k)Q(m)x‖) ≤ j2,

for all x ∈ X with ‖x‖ ≤ r2. It follows that
n∑

k=0

B(‖U−1
2 (m + n,m)Q(m + n)x‖)

=
n∑

k=0

B(‖U−1
2 (k + m,m)Q(k + m)×

× U−1
2 (m + n,m + k)Q(m + n)x‖)

≤
n∑

k=0

B(L2‖U−1
2 (m + n, k + m)Q(m + n)x‖)

=
m+n∑

j=m

B(‖U−1
2 (n + m, j)Q(n + m)(L2x)‖)

≤
n+m∑

j=0

B(‖U−1
2 (m + n, j)Q(m + n)(L2x)‖) ≤ j2,
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for all m,n ∈ N, and all x ∈ X with, ‖x‖ ≤ r2
L2

. Using the fact that
B is bijective too we obtain that, for all m,n ∈ N,

‖U−1
2 (n + m, m)‖ ≤ L2

r2
B−1

( j2
n + 1

)
.

In order to apply Lemma 2.6 we observe that

U−1
2 (t, t0) = U2(t0, [t0])U−1

2 ([t0] + 2, [t0]) U2([t0] + 2, t)

for all 0 ≤ t0 ≤ t ≤ t0 + 1 and hence

sup
0≤t0≤t≤t0+1

‖U−1
2 (t, t0)‖ ≤ M2L2e

3ω.

Finally we obtain that there exists N2, ν2 > 0 such that

‖U−1
2 (t, t0)‖ ≤ N2e

−ν2(t−t0) , for all t ≥ t0 ≥ 0. ¤
The necessity of Theorem 3.2 is not true for all a, b ∈ A as the

following example illustrates.

Example 3.3. Let X = R, U(t, s) = e−(t−s), P (t) = 1, a(u) =
∞∑

n=1

n
√

u

n2
. It is clear that U = {U(t, s)}t≥s≥0 is u.e.d. but for x = 1,

we have
∞∑

k=0

a(‖U1(k + m,m)P (m)x‖) =
∞∑

k=0

a(e−k) =
∞∑

k=0

∞∑
n=1

1
n2

e−
k
n

=
∞∑

n=1

∞∑

k=0

1
n2

e−
k
n

=
∞∑

n=1

1
n2

e
1
n

e
1
n − 1

= ∞,

for all m ∈ N.

Theorem 3.4. The evolution family U is u.e.d. if and only if there
exist K,L, p, q > 0 such that

∞∑
n=m

‖U(n,m)x‖p ≤ K‖x‖p (m ∈ N, x ∈ ImP (m)) and

l∑
n=m

‖U(n,m)x‖q ≤ L‖U(l, m)x‖q (m ≥ l, x ∈ KerP (m)).

Proof. Follows easily from Theorem 3.2 for a(u) = up, b(u) = uq. ¤
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