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Polygonal Areas in Regular and Distorted Lattices

DIMITRIOS KODOKOSTAS

1. Distorted Lattices, Long Determinants and
Statement of the Main Results

Some sixteen or seventeen years ago as a youngster I’ve heard of
a beautiful exercise claiming that if we divide each side of a con-
vex quadrilateral in 2n equal parts and join the corresponding di-
vision points of opposite sides by line segments, then by colouring
the small quadrilaterals formed alternatively as black and white, the
total black area equals the total white area! (Fig. 1a).
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Figure 1

Recently, reflecting once again on the same problem I attempted
a rigorous proof and I fell upon a rain of surprises. It is the goal of
this article to share some of these surprises.

In the current section we will state the main results and we will
develop the necessary notation and terminology for a concise expo-
sition. Some technical details necessary for the proofs are delayed
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to Section 2 and the proofs themselves are postponed to Section 3.
Section 4 contains some corollaries, facts, conjectures, challenges and
exercises.

The most important result is by far Theorem 1 along with its
Corollary.

So let us start with the results. First we prove

Proposition. Let ABCD be a convex quadrilateral. If we divide
each one of the sides AB, DC into m equal parts, and each of the
sides AD, BC into n equal parts (m,n ∈ N∗), then by joining the
corresponding division points of opposite sides by line segments, each
of these segments from AB to DC is divided in n equal parts, while
each of these segments from AD to BC is divided in m equal parts
(Fig. 4c).

Then as an easy consequence we provide a proof of a generalization
of the opening exercise to this article (cf. Corollary 1 in Section 3).

The above proposition is notable since it leads us to defining the
notion of distorted lattices:

Recall that according to one of many equivalent definitions, a
usual lattice in the plane is a set of vectors of the form t1

−→v 1 + t2
−→v 2

where −→v 1,
−→v 2 are linearly independent plane vectors and t1, t2 ∈ Z

(for example cf. [3]). Instead of vectors, we can equivalently think of
the points they represent in the plane. Naturally, one cannot resist
dissecting the plane in the parallelograms these points suggest by
drawing the set of lines H = {t−→v 1 + t2

−→v 2, t ∈ R and t2 =constant
in Z}, and the set of lines V = {t1−→v 1 + t−→v 2, t ∈ R and t1 =constant
in Z} (Fig. 1b). Often, a lattice is defined as a set of lines of the
above two forms. Each such line is called a lattice line and their
intersection points are called lattice points.

Observe that all lattice lines in H are parallel to each other, as are
to each other all lattice lines in V . Observe also that on each lattice
line the distance of any two successive lattice points is constant.

Trying to generalize the notion of a lattice we can ask for a system
of two sets of lines H,V in the plane so that not all lines in any of
H, V are necessarily parallel to each other. Of course we should at
least ask for the property that on any line, any two consecutive in-
tersection points with lines of the other set have a constant distance.
It is clear that we cannot ask for this distance to remain the same
for all lines of the same set. Unfortunately it is also clear that if the
lines of either of these sets are not all parallel to each other then
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a large number of unpleasant facts occurs. So if we insist to retain
the possibility that members of any one of the two families are not
all parallel to each other, it is more convenient to drop the use of
lines and instead introduce the use of line segments according to the
following

Definition 1. A distorted (or generalized) plane lattice, consists of
two sets of line segments, so that any two segments of the same set
do not intersect, any two segments of different sets intersect, and the
intersection points on each segment divide it into equal parts. We
also ask that the endpoints of each segment are intersection points.

Examples of distorted lattices are given in Figure 2.
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Figure 2

We shall call the segments belonging to one of the sets horizon-
tal, and to the other perpendicular (with no preference on the
assignments), and all of them as lattice segments. The intersec-
tion points will be called lattice points. The segments into which
each lattice segment is divided by the intersection points will be
called lattice sub-segments. Clearly any two horizontal segments
are divided in the same number of sub-segments say m, and simi-
larly any two vertical segments are also divided in the same number
of sub-segments, say n (m,n ∈ N∗). Such a lattice will be called an
{m,n} distorted lattice and it will be denoted as L{m,n}.

The last condition in the definition was given in order to avoid
calling lattices such troublesome cases as those in Figure 3. Even
with the provisions of the definition, “pathological”cases of lattices
do occur, like the one in Figure 4a which is a {2, 4} distorted lattice.
Conjecture 1a in Section 4 states that for m 6= 1 6= n such pathologies
do not occur. We shall call lattices L{m,n} with m 6= 1 6= n as non
trivial whereas the rest as trivial. An example of a trivial distorted
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lattice is given in Figure 4b. The most trivial lattice is L{1, 1}
which is nonhing else than a simple quadrilateral with horizontal
segments its two opposite sides and vertical segments its other two
sides (Fig. 2c).

Figure 3
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Figure 4

Finally let us call genuine distorted lattices those in which the
horizontal segments are not all parallel to each other or the vertical
segments are not all parallel to each other. All other distorted lattices
will be called regular or usual. Regular lattices are just finite
restrictions of the usual infinite lattices. For this reason we can call
the usual infinite lattices as infinite regular lattices as well.

Note that Proposition 1 assures the existence of genuine distorted
lattices L{m,n} for no matter how large m,n ∈ N.

In what follows we shall mostly be interested in distorted lattices
arising from convex quadrilaterals in the way described in Proposi-
tion 1. In Section 4 we show that analogues of Proposition 1 hold
in some cases for non-convex quadrilaterals ABCD as well. The
quadrilateral giving rise in such a way to a lattice will be called the
associated quadrilateral to the lattice; the lattice itself is going
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to be called a convex or non-convex distorted lattice according
to the nature of its associated quadrilateral, and it will be denoted
as LABCD{m,n}. All other lattices can be appropriately called as
pathological distorted lattices. It is clear that all convex and
some non-convex distorted lattices are divided by the lattice seg-
ments into small quadrilaterals which we shall call lattice quadri-
laterals.

From now on and until further notice, all lattices will be convex
distorted lattices but not necessarily non trivial or non genuine. The
characterization “distorted”will be frequently dropped.

It is useful to fix notation and a universal picture in our minds
for all convex quadrilaterals as well as for all distorted lattices which
they produce. So let ABCD be any convex quadrilateral. Without
any loss of generality we will assume that for its interior angles hold
B̂ + Ĉ ≤ 1800, Ĉ + D̂ ≤ 1800 (Fig. 5a). Such an assumption is
permitted as is shown in Section 2. The first condition equivalently
means that the half-lines BA, CD intersect (or they are parallel and
lie) at the same half-plane with respect to the line BC at which the
line segment AD lies. Similarly for the second condition. We also
arrange so that the orientation (A, B,C, D) of ABCD coincides with
the clockwise (i.e. the negative) orientation of the plane. We shall
say that such an ABCD is in a nicely arranged position. We are
going to place DC in an as possible horizontal position with respect
to our point of view. So ABCD should look like in Figure 4c. We
agree to consider as horizontal segments of any distorted lattice with
associated quadrilateral ABCD those lying at the same family with
AB,CD. We shall call AB as top and CD as bottom horizontal
segment. Similarly, AD will be called left and BC right vertical
segment.

It is also convenient to assign to each lattice point of a nicely
arranged lattice LABCD{m,n}, a pair of coordinates similar to the
usual rectangular coordinates; only now, point (a, b) with 0 ≤ a ≤
m, 0 ≤ b ≤ n will mean the intersection point of the (a+1)th vertical
segment counting from left to right, with the (b + 1)th horizontal
segment counting from top to bottom. Frequently this point will be
denoted as Lab (Fig. 4c).

Our next and most important result refers to a way of calculating
the area of any simple closed polygon with vertices in some lattice
points of a (nicely arranged) convex distorted lattice LABCD{m,n},



36 Dimitrios Kodokostas

in terms of the coordinates of its vertices. We shall call such polygons
as lattice polygons. For a simple polygon A1A2...Ak we will be
denoting its area by (A1A2...Ak).

We are not going to define a unit area and so we necessarily have
to calculate the areas comparing them to a substitute of the unit
area. Note that as the lattice quadrilaterals become smaller as we
move to the top or to the left, the smallest one is the quadrilateral
in the upper left corner. Since the four triangles in which this small-
est quadrilateral is partitioned by its two diagonals are also lattice
polygons, it is conceivable that the area of any other lattice polygon
can be calculated in terms of the areas of these four triangles. It
turns out that nice area calculations can be made in terms of the
area E of only the smallest triangle in the top left corner, but also
with the help of the areas Ev, Eh of two other triangles associated
to the top left quadrilateral. To understand how these two triangles
first make their appearance, we provide below the main lemma used
for the calculations. The lemma refers to a very trivial lattice of the
form L{1, 1}.
Lemma. Let ABCD be a convex quadrilateral with B̂ + Ĉ ≤ 1800,
Ĉ + D̂ ≤ 1800 (Fig. 5a). Let T be a point such that

−→
BT =

−−→
AD

and let us call (ABD) = E, (BTC) = Ev, (DTC) = Eh. Then
(DBC) = E+ Ev + Eh, (ABC) = E + Eh, (ACD) = E + Ev.
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The following generalization of this lemma is our main result. The
algebraic notation will be explained shortly after:
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Theorem 1. Let us consider a convex distorted lattice LABCD{m,n}
for which we assume without loss of generality that for its inte-
rior angles hold B̂ + Ĉ ≤ 1800, Ĉ + D̂ ≤ 1800 (Fig. 5b). Let T

be a point such that
−−−→
L10T =

−−−−→
L00L01 and call (L01L00L10) = E,

(L10TL11) = Ev, (L01TL11) = Eh. If A1A2...Ak is a simple lattice
polygon and Ai = Laibi

then

±(A1A2...Ak) =

∣∣∣∣∣∣∣∣

1 1 1 1 · · · 1 1
a1 a2 a3 · · · ak−2 ak−1 ak a1

b1 b2 b3 · · · bk−2 bk−1 bk b1

1 1 1 1 · · · 1 1

∣∣∣∣∣∣∣∣
E

+

∣∣∣∣∣∣∣∣

a2 a3 a4 a5 · · · ak−4 ak−3

a1 a2 a3 · · · ak−2 ak−1 ak a1

b1 b2 b3 · · · bk−2 bk−1 bk b1

a1 a2 a3 a4 · · · ak−1 ak

∣∣∣∣∣∣∣∣
Eh

+

∣∣∣∣∣∣∣∣

b1 b2 b3 b4 · · · bk−1 bk

a1 a2 a3 · · · ak−2 ak−1 ak a1

b1 b2 b3 · · · bk−2 bk−1 bk b1

b2 b3 b4 b5 · · · bk b1

∣∣∣∣∣∣∣∣
Ev

The + sign appears exactly when the orientation (A1, A2, ..., Ak)
of A1A2...Ak is its positive orientation in the plane. The assumption
about the angles of ABCD effects on the actual result but obviously
it is not crucial. It basically organizes one’s thought towards nicely
arranged convex quadrilaterals. Eh, Ev are a measure of how far is
LABCD{m,n} from being regular.

In the limit case D̂ + Ĉ = 1800, B̂ + Ĉ = 1800, i.e. whenever
ABCD is a parallelogram or equivalently whenever LABCD{m,n}
is the restriction of a usual infinite lattice in an appropriate finite
piece of it, we get the

Corollary. Let us consider a convex distorted lattice LABCD{m,n}
for which ABCD is a parallelogram (i.e. our lattice is a finite restric-
tion of an infinite regular lattice), and let us call (L01L00L10) = E.
If A1A2...Ak is a simple lattice polygon and Ai = (ai, bi) then

±(A1A2...Ak) = (ABCD)
2mn

�������

1 1 1 1 · · · 1 1
a1 a2 a3 · · · ak−2 ak−1 ak a1
b1 b2 b3 · · · bk−2 bk−1 bk b1

1 1 1 1 · · · 1 1

�������
If moreover LABCD{m, n} is part of the regular lattice of the in-

tegers in the plane, or more generally whenever the lattice quadrilat-
erals have unit area, the last formula becomes
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±(A1A2...Ak) = 1
2

∣∣∣∣∣∣∣

1 1 1 1 · · · 1 1
a1 a2 a3 · · · ak−2 ak−1 ak a1

b1 b2 b3 · · · bk−2 bk−1 bk b1

1 1 1 1 · · · 1 1

∣∣∣∣∣∣∣
.

The algebraic notation used above is explained by the

Definition 2. A long determinant

A =

∣∣∣∣∣∣∣∣

c1 c2 c3 c4 · · · cr−1

a1 a2 a3 · · · ar−2 ar−1 ar

b1 b2 b3 · · · br−2 br−1 br

d1 d2 d3 d4 · · · dr−1

∣∣∣∣∣∣∣∣
is an orthogonal array of numbers in 4 rows and r + 1 = 3 columns.
The last two places of each of the first and the last row are empty,
as are the second and third places of the first column. This symbol
is defined as another shorthand of

∑r−1
1 ciaibi+1 −

∑r−1
1 dibiai+1 = c1a1b2+ c2a2b3 + · · ·+

cr−1ar−1br −d1b1a2 −d2b2a3 −· · ·− dr−1br−1ar.

Long determinants can have an arbitrary long row size. In many
ways they resemble the usual determinants and they can actually
be defined in terms of them. For example check out that the long
determinant∣∣∣∣∣∣∣∣

1 1 1
a1 a2 a3 a1

b1 b2 b3 b1

1 1 1

∣∣∣∣∣∣∣∣
equals the usual determinant∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

1 1 1

∣∣∣∣∣∣
.

Thus we believe that the name we assigned to them is a suitable one.
Although long determinants posses many interesting properties

we shall not be interested in them here. We are mainly going to use
them as a concise symbol neatly expressing our results.
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2. Technicalities

We now develop the necessary technical details for the proofs of the
results stated in Section 1. These details consist of elementary results
in Euclidean Geometry and Algebra. Accordingly, our treatment will
be elementary. The reader can skip most of this section, hopefully
without conceptual difficulties in following Sections 3 and 4. One
can even skip the whole section and return to it only when he/she
finds it necessary.

We start by presenting a concise summary of well known facts
about polygons which are important to us here. But beware, not all
of their their proofs are trivial. The interested reader can try to prove
some of them but it is possibly better to consult appropriate books
([1], [2] and many others). Of course it will be assumed tacitly that
we work within one of the usual axiomatic definitions of Euclidean
Geometry (for example cf. [2]).

Next we prove in the form of small lemmas some not really deep
properties of polygons, but of a special importance to our goals in
this article. The proofs to be presented are not unique or the best
ones. They are included here just for the shake of rigorousness since
most of them are not found in the literature. Our arguments will be
purely geometric.

2.1. Known facts about polygons. First we need to clarify the
notion of polygon in which we are interested here.

We care about simple closed polygons (or just polygons from now
on) in the usual sense:

Combinatorial definition: A polygon is a collection of a finite
sequence of distinct points (A1, A2, · · · , An)(n ∈ N, n = 3) in the
plane (called the polygon’s vertices) and of the line segments
(A1A2, A2A3, · · · , An−1An, AnA1) (called the polygon’s sides) such
that: each vertex belongs to exactly two sides and every pair of
distinct sides shares at most one point, in which case this point
is a vertex. Finally, two consecutive sides (in a cyclic sense) are
not allowed to lie on the same line. This polygon will be denoted
as < A1A2 · · ·An > and it will be called n−gon. We agree to
consider any other polygon produced by a cyclic permutation of
(A1, A2, · · ·An) as coinciding with < A1A2 · · ·An >. The set of
cyclic permutations in which (A1, A2, · · ·An) belongs will be called
the orientation of the polygon.
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Point set definition: The point set P of the plane consisting
of the union of the polygon’s sides can be obtained as union of
the sides of another polygon, namely the one defined by the se-
quence (An,An−1 · · · , A1) and the corresponding sequence of sides
(AnAn−1, An−1An−2, · · · , A2A1, A1An) (check that this is indeed a
polygon!). P is called Euclidean Polygon, or just polygon if no
confusion arises and either (A1, A2, · · · , An), (An, An−1, · · · , A1) de-
fine it. We write P = A1A2 · · ·An = An, An−1, · · · , A1. We also say
that P has two orientations: (A1, A2,· · · , An) and (An, An−1,· · · ,A1).
These are by definition all the orientations of P and they are dis-
tinct. Exactly one of them will be called the positive orientation
of P in the plane:

Loosely speaking, the positive orientation of P in the plane is the
one for which a journey around the polygon according to this orien-
tation results to a net full anti-clockwise twist in respect to a fixed
interior point. Another way to express this idea is by saying that the
positive orientation in the plane is the one for which during a journey
around the polygon following this orientation, our left hand always
points towards the interior of the polygon (here again for the sake of
simplicity we have used a somehow loose mathematical terminology).
Exactly one of the two orientations of P is its positive orientation
in the plane (Fig. 6a). We are going to follow the usual terminology
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calling polygons with 3, 4, etc. sides as triangles, quadrilaterals etc.,
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and we will be using the terms parallelogram, square and so on, in
the usual sense.

The above definition of a polygon does not allow two distinct sides
to share a common nontrivial sub-segment of each, or to share even
just one interior point of each (Fig. 6b). Note also that ABCD is
not the same as ABDC (Fig. 6c). So the order of the vertices (i.e.,
the sequence in the definition) is important!

Very often one needs to consider as polygons some limit cases of
polygons (as defined above). For example it is often convenient to
drop in the definition the condition that two consecutive sides are
not allowed to lie on the same line. Then we talk about n-gons in
the broad sense. In Figure 7a, P = ACBD is a polygon of 4-sides
in a broad sense. Actually it is a virtual 3−gon (triangle) coinciding
with ADC.

Observe that if BC is a line and A,D are points in different half-
planes with respect to the line BC then ABDC is always a quadri-
lateral or at least a quadrilateral in the broad sense (Fig. 7a,b). In
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what follows, most lemmas and propositions hold for polygons in the
broad sense as well.
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The following properties of the polygons are known to be true:
– Any polygon divides the plane into two disjoint regions and is the
boundary of each (Fig. 7c).
– Any two points K, L of either of the above two regions, can be
connected by a finite sequence of segments KA1, A1A2, · · · , An−1An,
AnL so that all segments lie entirely in this region.
– Any line segment with an end point in one of the regions and the
other endpoint in the other region intersects the polygon at least in
one point.
– Exactly one of the regions is bounded, i.e., the distance of any two
of its points is less than a constant real number.

The bounded region is called the interior of the polygon and the
other (unbounded) region is called the exterior of the polygon. Note
that the points of the polygon itself do not belong to either of these
two regions. The union of a polygon with its interior will be called a
polygonal region; the vertices, the sides, and the orientation of the
polygon will be called vertices, sides, interior and orientation
of the polygonal region as well. The polygon itself will be called
corresponding polygon to the polygonal region.

If A1A2 · · ·An is a polygon, its polygonal region will be denoted
as A1A2 · · ·An.

Some other equally notable results require the notion of convex
polygons:

According to one of many equivalent definitions, a polygon is con-
vex if the line defined by any one of its sides, leaves all other sides
of the polygon at the same half-plane with respect to this line.

An equivalent definition states that the polygon is convex if all
interior angles of the polygon are convex (i.e., less than 1800). For
a polygon A1A2 · · ·An, an angle Ai−1ÂiAi+1 (indices mod n) is
called interior, if the points of the angle not on the sides and close
enough to the vertex, all lie in the interior of the polygon. We will
be denoting the interior angle Ai−1ÂiAi+1 simply by Âi (Fig. 7c).
All angles here are defined as usual without reference to any extra
equipment like orientation etc.

Yet another definition of a convex polygon is the one asking that
any line segment with endpoints on the corresponding polygon re-
gion, lies itself on this region.
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For a quadrilateral, there exists an even funnier definition (or else
property) for convexity: P =< ABCD > is convex iff the diagonals
AC,BD intersect in an interior point of each.

For convex polygons the following properties are known to be true:
– Any line segment with one end point in the interior and the other
in exterior of a convex polygon intersects the polygon exactly once.
– A line with points in both the interior and the exterior of a convex
polygon intersects the polygon in exactly two points.
– A line segment with endpoints on a convex polygon lies except
from its endpoints entirely in the interior of the polygon. Returning
to the properties of arbitrary polygons (not necessarily convex) we
should mention that there is defined a function measuring the size
of any polygonal region, called area of the polygon. There exist
many ways to define the important notion of area. Since the present
article refers to elementary Euclidean Geometry we follow the usual
elementary way of defining area following the rules:
– To each polygonal region is assigned an area which is a non negative
number.
– Equal polygonal regions have equal areas.
– A square with side of unit length has unit area.
– A polygonal region partitioned into a finite number of other polyg-
onal regions, has area equal to the sum of the areas of the polygonal
regions in its partition (addition property).

For the shake of rigorousness we should mention that two polygo-
nal regions in the plane are said equal if one can assume the position
of the other in the plane after a sequence of finitely many Euclidean
moves in the space.

Also, a finite partition of a polygonal region means that there
exist finitely many polygonal regions so that
– any two of them do not share a common interior point and
– the union of these regions (as a subset of the plane) is our original
polygonal region.

The trick to make actual calculations with areas is given by the
triangulation property of the polygonal regions:

Any polygonal region can be partitioned into triangular regions,
and moreover this can be done by drawing internal diagonals of the
polygonal region.

Diagonal means a line segment with endpoints two non consec-
utive vertices of the polygonal region, and internal diagonal means
that the whole diagonal lies in the polygonal region.
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So then in order to calculate the area of a polygonal region, one
needs to provide a formula for the area of an arbitrary triangular
region, to triangulate the given polygonal region and finally to use
the addition property of the area.

A couple of remarks on internal diagonals are in order here:
An internal diagonal AiAj (1 ≤ l < m ≤ n− 2) of a polygonal re-

gion P = A1A2 · · ·An partitions the region into two other polygonal
regions: P 1 = A1A2 · · ·AlAmAm+1 · · ·An, P2 = AlAl+1 · · ·Am−1A
(Fig. 7d).

An internal diagonal of any of these two regions is an internal diag-
onal of A1A2 · · ·An as well. The only common part of P 1, P2 is their
common side AlAm. The orientations (A1, A2, · · · ,Al, Am, Am+1, · · ·
An), (Al, Am+1, · · · ,Al−1, Al) of P 1, P 2 are called induced by the
orientation (A1, A2, · · · , An) of P ; P , P 1, P 2 equipped with these
orientations are called similarly oriented. Similarly for the other
orientations of these polygonal regions. Whenever P is equipped
with its positive orientations in the plane, then the induced orienta-
tions on P 1, P 2 are their positive orientations in the plane as well.

Now especially for the polygonal region of a quadrilateral, it is true
that both its diagonals or exactly one is internal depending on if the
quadrilateral is convex or not. By the way note that the existence of
at least one internal diagonal implies immediately that the sum of
the interior angles of any quadrilateral equals 3600. In the case of a
convex ABCD each diagonal, being an internal diagonal, partitions
ABCD into two triangular regions. Note that for a convex ABCD
again, the line BD leaves the vertices A,C in different half-planes,
and similarly for the line AC.

Let us close mentioning that if A,B, C,D are points in the plane
such that

−−→
AB =

−−→
DC then ABCD is a parallelogram. All parallelo-

grams are convex polygons.

2.2. Some more facts about polygons and a property of
long determinants. The reader should be aware of the fact that
although most of the results in the following lemmas are intuitively
clear, their proofs can be tiresome. One should occasionally recall the
previous remarks on polygons. Many arguments can be considerably
shortened if one assumes a few more facts about polygons as given.

Our first lemma provides us with a tool used for an induction
argument in the proof of our main result.
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The exposition will be considerably facilitated if for a polygonal
region A1A2 · · ·An we call a pair of vertices of the form Ar, Ar+2

(indices mod n) as “next to side”vertices.

Lemma 1. For any polygonal region with n vertices (n = 4) there
exists an internal diagonal joining a next to side pair of vertices.

In other words, there exists an internal diagonal which partitions
our polygonal region in at least one triangular region.

Proof. We prove it by a total induction argument:
For n = 4, clearly any internal diagonal has the required property.
Let us suppose that the proposition is true for all values of n up

to some value k = 4.
We are going to prove that the proposition is also true for n = k+1

and thus we will be done.
So let P = A1A2 · · ·Ak+1 be a polygonal region. We will prove

the existence of a diagonal with the desired property by a descending
induction argument:

Let AlAm, 1 5 l < m 5 n − 2 be an internal diagonal of P
(Fig. 7d) and let us call P 1 = A1A2 · · ·AlAmAm+1 · · ·An. Let us
also call N(P 1) the number of vertices of P 1.

If we were lucky enough to have N(P 1) = 3, then of course this
would translate to d1 being an internal diagonal of P with the desired
property.

So from now on let us assume that N(P 1) = 4.
Since 4 ≤ N(P 1) ≤ (k + 1) − 1 = k, the induction hypothesis

provides an internal diagonal d1 of P 1 joining a next to side pair of
vertices of P 1, say {T1, T

′
1}. d1 is an internal diagonal of P as well.

If {T1, T
′
1} 6= {Al, Am+1} and {T1, T

′
1} 6= {Al−1Am} then {T1, T

′
1}

is a next to side pair of vertices of P as well, making the internal
diagonal d1 of P 1 one of the desired.

On the other hand, if not both {T1, T
′
1} 6= {Al, Am+1}, {T1, T

′
1} 6=

{Al−1Am} are true, let us assume without any loss of generality that
{T1, T

′
1} = {Al, Am+1}. Then:

Let N(P 2) be the number of vertices of the polygonal region
P 2 = A1A2 · · ·AlAm+1Am+2 · · ·An.
If N(P 2) = 3, this would translate to T1T

′
1 = AlAm+1 being an

internal diagonal of P with the desired property.
So from now on let us assume that N(P 1) = 4.
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Then since 4 ≤ N(P 2) = N(P 1)−1 ≤ k the induction hypothesis
provides to us an internal diagonal d2 of P 2 joining a next to side
pair of vertices of P 2, say {T2, T

′
2}. d2 is an internal diagonal of P

as well.
With a similar argument as for d1 we show that either d2 is an

internal diagonal of P with the desired property, or else without loss
of generality {T2, T

′
2} = {Al, Am+2}.

We continue in this way and we
(I) either find an internal diagonal of P with the desired property

for P , or else
(II) we form a sequence of internal diagonals d1, d2, · · · of P such

that none has the desired property of P but which have the property:
each di is a diagonal of a polygonal region P i with number of vertices
N(P i) such that 4 ≤ N(P 1) = k and 4 ≤ N(P i) = N(P i−1)− 1 for
i = 2.

Clearly (II) leads to a contradiction as follows: Since the number
N(P i) of vertices of P i decreases by 1 as i increases by 1, inevitably
N(P i) would have to be less than 4 for some i, which is a contradic-
tion because of 4 ≤ N(P i) which is also supposed to be true.

Thus (I) holds and we have finished. ¤

The next lemma is an almost obvious fact and any proof of it
depends on how much one accepts as already proved to be true.

Lemma 2. A line segment joining two interior points in opposite
sides of a convex quadrilateral partitions it into two convex quadri-
laterals.

Proof. Let K, L be points on the sides AB, CD respectively of the
convex quadrilateral ABCD. We will prove the result for AKLD;
similar arguments will prove it for KBCL as well.

It is enough to show that every side of AKLD defines a line that
leaves all other sides at the same half plane (with respect to the line).

Since ABCD is convex, the line AB, i.e. the line AK, leaves
at the same half-plane the whole ABCD. Again because ABCD is
convex, the segment LK lies in ABCD.

Thus the line AK leaves at the same half-plane all three segments
AD, DL,KL.

Similarly the line DL leaves at the same half-plane all three seg-
ments AD,AK, KL, and line AD leaves at the same half plane all
three segments AK,KL, DL.



Polygonal Areas in Regular and Distorted Lattices 47

Finally showing that the points A, D lie at the same half-plane
with respect to the line KL would imply that line KL leaves at
the same half-plane the segments AK, AD,DL; and paired with the
above facts about lines AK,DL, AD, we would have finished.

Note that since ABCD is convex, the interior points of the seg-
ment KL lie in the interior of ABCD, the points of the line KL
exterior to the segment KL lie in the exterior of ABCD, and the
points K, L lie on ABCD.

Now if we assume for a moment that the points A,D lie at different
half planes with respect to the line KL, the segment AD would have
to intersect the line KL, say at a point S. The point S lying at
segment AB, does not lie at the exterior of ABCD and so it has to
be a point of the segment KL (Fig. 8a).

S cannot coincide with an end point of KL. If for example it
coincides with K, then K as a point lying on both AB, AD should
be their unique common point A, a contradiction by assumption.

S cannot either be an interior point of KL, since otherwise it
would have to lie at the interior of ABCD, a contradiction because
S as a point of the segment AB lies on ABCD.

Thus the points A,D lie indeed at the same half-plane with respect
to the line KL as wanted. ¤
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Figure 8

Note that assuming ABCD to be a quadrilateral in the usual
sense, i.e., no three of its vertices are collinear, then AKLD is also
a quadrilateral in the usual sense. For if for example D, A, K are
collinear then the segments DA,AK lie on the same line. Since the
segments AK, AB lie at the same line, we get that the segments
DA, AB lie at the same line, which gives that the points D, A, B are
collinear, a contradiction.
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We now give a property about the angles of a quadrilateral.

Lemma 3. (a) For any quadrilateral there exist three consecutive
interior angles X̂, Ŷ , Ẑ such that X̂ + Ŷ ≤ 1800 and Ŷ + Ẑ ≤ 1800.
(b) If ABCD is a convex quadrilateral with interior angles such that
B̂ + Ĉ ≤ 1800, Ĉ + D̂ ≤ 1800 then the half-lines DA,CB intersect
(or they are parallel and lie) at the same half-plane with respect to
the line CD at which the line segment AB lies. Moreover if O is
the intersection point of the half-lines DA,CB then A,B lie at the
interior of the segments DO, CO respectively. Similar facts hold for
the half-lines BA, CD.

Proof. (a) Let Â, B̂, Ĉ, D̂ be the interior angles of ABCD with ver-
tices at A,B, C,D respectively.

The relation Â+B̂+Ĉ+D̂ = 3600 implies that either B̂+Ĉ ≤ 1800

or Â + D̂ ≤ 1800.
Without loss of generality let us assume that B̂ + Ĉ ≤ 1800.
Then again the relation Â+ B̂ + Ĉ + D̂ = 3600 implies that either

Ĉ + D̂ ≤ 1800 or Â + B̂ ≤ 1800.
Without loss of generality let us assume that Ĉ+D̂ ≤ 1800. Then

B̂, Ĉ, D̂ have the required property.
(b) Let π1, π2 be the two half-planes with respect to the line CD.

Since ABCD is convex, both A,B lie on just one of π1, π2 say on
π1.

It is certainly true that the half-line DA lies entirely in π1 (Fig. 8b);
for if not, then by assuming A′ to be a point of the half-line DA in
π2 then the line CD intersects the segment AA′ in an interior point.
Of course, this intersection point is necessarily the point D (Fig. 8c).
But D as the origin of the half-line DA cannot lie in the interior of
any segment AA′ of this half-line and we arrived in a contradiction.

Similarly it is true that the half-line CB lies entirely in π1.
So we proved that the half-lines DA, CB lie at the same half-plane

π1 with respect to the line CD.
Now the relation Ĉ + D̂ ≤ 1800 i.e. BĈD + AD̂C ≤ 1800 is well

known to imply that the half-lines DA, CB are parallel or intersect;
note that generally there exist three relative positioning cases for two
half-lines: they intersect, they are parallel or they do not intersect
without being parallel.

Of course if they intersect say at O, this point ought to lie on π1

as well (Fig. 8d). In this case, since ABCD is convex, both A,D
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lie at the same half-plane, call it π3, with respect to the line BC
i.e. with respect to the line OC. (Note that the points O, C indeed
define a line, i.e. C does not coincide with O for otherwise the line
DO i.e. DA would coincide with line DC, a contradiction).

The part of the line DO which lies at π3 is the half-line OD. Thus
A has to lie on the half-line OD. Since A also lies at the half-line
DO, we conclude that it lies on the intersection of the half-lines OD
and DO which is the segment OD. Of course A cannot coincide with
any of D, O since otherwise ABCD would not satisfy the defining
conditions for a polygon. So A is an interior point of the segment
DO. Similarly we show that B lies in the interior of the segment
CO. ¤

The next lemma investigates the way by which the property of
“nice arranged position”is inherited to the two quadrilaterals at
which a convex quadrilateral is partitioned by a line segment joining
two opposite sides.

Lemma 4. Let ABCD be a convex quadrilateral with interior angles
such that B̂ + Ĉ ≤ 1800, Ĉ + D̂ ≤ 1800 and K, N, L,M be interior
points of the sides AB, BC, CD, DA respectively such that AK

KB =
DL
LC and BN

NC = AM
MD . Then in the quadrilaterals AKLD, KBCD,

ABNM , NMCD the following hold respectively about their interior
angles: (a) (K̂ + L̂ ≤ 1800, D̂ + L̂ ≤ 1800), (b) (L̂ + Ĉ ≤ 1800, B̂ +
Ĉ ≤ 1800), (c) (B̂ + N̂ ≤ 1800, M̂ + N̂ ≤ 1800), (d) (N̂ + Ĉ ≤
1800, D̂ + Ĉ ≤ 1800)

Proof. We are only going to prove (a) and (b) since the rest are
proved in a similar way. Actually in a sense, (c) and (d) are just
a repetition of (a) and (b). In order to keep a better track of the
angles involved, we are going to use their usual three letter notation.
(a) Proof of AK̂L + KL̂D ≤ 1800:

If AB ‖ DC then we immediately have AK̂L + KL̂D = 1800.
If AB ∦ DC, then the lines AB, DC intersect, say at O (Fig. 9a).

By the previous lemma, A lies on the segment OB. Since K is a
point of the segment AB, the point A will also lie in the segment
OK. This is equivalent to O lying in the half-line KA. Similarly O
lies on the half-line LD.

So O is the intersection point of the half-lines KA,LD. This is
equivalent to AK̂L + DL̂K < 1800 i.e. AK̂L + KL̂D < 1800 as
wanted.
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Proof of AD̂L + DL̂K ≤ 1800:
Let l1, l2 be the parallel lines to the line AD from L,C respectively.

Let also L′, C ′ be the intersection points of the line AB with l1, l2
respectively (Fig. 9b,c). Since L is a point of the segment DC it
follows that l1, l2 lie at the same half-plane –say (π)– with respect
to the line AD and L′ is a point of the segment AC ′ such that AL′

L′C′

= DL
LC .
Since ABCD is convex, it totally lies at the same half plane with

respect to the line AD. But the point C of ABCD lie with respect
to the line AD at the half-plane (π). Thus ABCD lies totally at
(π), and then the points A,K, B, L′, C ′ lie on the same half-line
Ax = (π) ∩AD of the line AD.

Then since AL′
L′C′ = (DL

LC =)AK
KB we either have that

K lies in the segment AL′ and B lies in the segment AC ′ (Fig. 9b)
or

K lies in L′x− {L′} and B lies in C ′x− {C ′} (Fig. 9c).
In the latter case we would have AD̂C +BĈD > AD̂C +DĈC ′ >

1800, a contradiction.
So the former case is true, which implies that AD̂L + DL̂K ≤

AD̂L + DL̂L′ = 1800.
(b) The relation KB̂C +BĈL ≤ 1800 is none other than the relation
AB̂C + BĈD ≤ 1800 which holds by assumption.

The relation KL̂C + LĈB ≤ 1800 can be proved in a similar
manner as was proved relation AD̂L + DL̂K ≤ 1800 above, only
now one has to draw the parallels from D and L to the line BC. ¤
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a   b    c    

Figure 9

An immediate corollary concerning distorted lattices is the follow-
ing.
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Lemma 5. In a convex distorted lattice LABCD{m,n} all quadrilat-
erals LklLtlLtsLks, k, t ∈ {0, 1, · · · , m}, l, s ∈ {0, 1, · · · , n}, k < t,
l < s with sides on the lattice segments are convex and for their
interior angles hold L̂tl + L̂ts ≤ 1800, L̂ts + L̂ks ≤ 1800.

Proof. By Lemma 2 the segment Lk0Lkn partitions ABCD into
two convex quadrilateral regions ALk0LknD, Lk0BCLkn (Fig. 10a).
Lemma 4 assures us that for the interior angles of Lk0BCLkn hold:
B̂ + Ĉ ≤ 1800, Ĉ + L̂kn ≤ 1800.

By Lemma 2 the segment Lt0Ltn partitions the region Lk0DLknC
into two convex quadrilateral regions Lk0Lt0LtnLkn, Lt0BCLtn.

Lemma 4 assures us that for the interior angles of Lk0Lt0LtnLkn

hold: L̂t0 + L̂tn ≤ 1800, L̂tn + L̂kn ≤ 1800.
By Lemma 2 the segment LklLtl partitions Lk0Lt0LtnLkn into

two convex quadrilateral regions Lk0Lt0LtlLkl, LklLtlLtnLkn.
Lemma 4 assures us that for the interior angles of LklLtlLtnLkn

hold: L̂tl + L̂tn ≤ 1800, L̂tn + L̂kn ≤ 1800.
Finally by Lemma 2 the segment LksLts partitions LklLtlLtnLkn

into two convex quadrilateral regions LklLtlLtsLks, LksLtsLtnLkn.
Lemma 4 assures us that for the interior angles of LklLtlLtsLks

hold: L̂tl + L̂ts ≤ 1800, L̂ts + L̂ks ≤ 1800. ¤
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The following lemma deals with some extremely useful for our
purposes point positioning properties.

Lemma 6. Let ABCD be a convex quadrilateral with interior angles
such that B̂+Ĉ ≤ 1800, Ĉ+D̂ ≤ 1800 and let T, M, N be points such
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that
−→
BT =

−−→
MC =

−−→
AD. Then (a) T is interior point of ABCD (or

lies on the segment AB whenever AB ‖ CD). Even more is true:
T is interior point of DBC whenever AB ∦ CD, (b) M is exterior
point of ABCD, or lies on the segment BC whenever AD ‖ BC,
(c) ABMC is a convex quadrilateral, or just a triangle whenever
AB ‖ CD or AD ‖ BC.

Note that T is also defined by the relation
−−→
DT =

−−→
AB. Defining

the point M ′ by the relation
−−−→
M ′C =

−−→
AB similar facts to the above

hold for the points T, M ′ as well.

Proof. (a) Let ε be the parallel from C to the line AD. Since ε does
not intersect the line AD it has to totally lie at one of the half-planes
with respect to the line AD say at (π).

Now since ABCD is convex, it totally lies at the same half plane
with respect to the line AD. But as already mentioned the point
C of ABCD lie with respect to the line AD at the half-plane (π).
Thus ABCD lies totally at (π).

Let us call C ′ the intersection of the lines AB, ε. C ′ indeed exists
and is unique since AB and the parallel AD of ε intersect at a unique
point; namely at A. Moreover, since C ′ ∈ ε ⊂ (π), C ′ lies at the half-
line Ax = AD∩ (π). If it were true that B was a point of C ′x−{C ′}
(Fig. 10b) then AD̂C+BĈD > AD̂C+DĈC ′ = 1800 a contradiction
by assumption.

So B is a point of the segment AC ′.
Let ε′ be the parallel from B to AD. ε′ intersects the line AC at

a unique point, say B′, since its parallel line AD does so. Since also
AD ‖ ε′ ‖ ε and B is a point of the segment AC ′, B′ has to be a
point of the segment DC.

If AB is parallel to DC (Fig. 11a) then ABB′D is a parallelogram,

so
−−→
BB

′
=
−−→
AD and the point T is the point B′ which lies on the side

DC of ABCD.
If AB is not parallel to DC (Fig. 11b) then their intersection

point O lies on the half-lines BA, CD because of the relation AB̂C +
BĈD ≤ 1800. Since B′ is a point of the segment DC , the point O
lies on the half-lines BA, B′D as well. But Thales Theorem implies
then BB′

AD = BO
AO > 1 =⇒ BB′ > AD. This says that there exists a

point T ′ on BB′ such that BT ′ = AD. Notice that since ABCD is
convex, the points D, B′ of the side DC lie on the same half-plane
with respect to the line AB. So BT ′ = AD translates to

−−→
BT ′ =

−−→
AD,
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which means that T coincides with T ′ i.e. an interior point of the
segment BB′. Finally, since ABCD is convex, and B belongs to side
AB and B′ belongs to side DC, all interior points of the segment
BB′ –T is one of them– lie in the interior of ABCD.

Now since ABCD is convex, its diagonal BD is internal, partition-
ing ABCD into the two triangular regions ADB, DBC. Because of
this partitioning, one would have that T is a point of DBC if he/she
could prove that T is not a point of ADB.

But
−→
BT =

−−→
AD =⇒ ABTD = parallelogram = convex polygon

=⇒ T,A lie in different half-planes with respect to the line DB. So
T cannot lie in ADB.

Necessarily then, T is a point of DBC. Since T is an interior point
of ABCD it cannot lie on the segments BC,CD. But T cannot either
lie on DC since otherwise the line BT would coincide with the line
BD thus intersecting the line AD, a contradiction by the fact that
line BT is parallel to AD. We conclude that T is an interior point
of DBC.

(b) Note that
−→
BT = (

−−→
AD =)

−−→
MC. Thus:

If T does not lie on the line BC then BTCM is a genuine parallelo-
gram (Fig. 11b), and then the points T, M lie on different half-planes
with respect to the line BC. Since the ABCD and its interior lie
at the same side with respect to the line BC as does the interior
point T , we conclude that M has to lie at the other half-plane, and
so definitely at the exterior of ABCD.

If T lies on the line BC, then M also does. Note that T lies on
the line BC iff AD ‖ BC (Fig. 11c). Moreover then:
– In the case AB is not parallel to DC, we proved in (a) that BB′ >
AD which in our case translates to BC > AD = CM , and so M is
actually a point of the segment BC.
– In the case AB is parallel to DC, pairing it with AD ‖ BC we
conclude that ABCD is a parallelogram, thus M coincides with B
which of course is a point of BC.

(c) In the case (AB ‖ DC, AD ‖ BC) (Fig. 12a), the point M
coincides with B and ABMC becomes the triangle ABC.

In the case AD ∦ BC, we proved in (b) that the points M and A
(which is a point of ABCD) lie in different half-planes with respect
to the line BC. Thus ABMC is indeed a polygon.
– If moreover AB ‖ DC (Fig. 12b) then the point M lies on the line
AB and ABMC is not a genuine quadrilateral but a triangle.



54 Dimitrios Kodokostas

– If instead AB ∦ DC (Fig. 12c) we will show that the segments
AM, BC intersect at an interior point for each of them, thus ABMC
would be a convex (genuine) quadrilateral, and we will be done.
Indeed:

We proved in (a) that in this case there exists a point B′ on the
segment BC such that BB′ ‖ AD and BB′ > AD. Since BB′ > AD
there exist an interior point M ′ of BB′ such that B′M ′ = AD. Since
M ′ is an interior point of BB′ and B, B′ are points on the convex
quadrilateral ABCD, M ′ is moreover an interior point of ABCD.
Then we know that the points A,M ′ lie on the same half-plane with
respect to the line DB′ (i.e. the line DC). But then B′M ′ = AD

gives
−−−→
B′M ′ =

−−→
AD =

−−→
CM which means that the point M ′ lies on

the line AM . Since M ′ is an interior point of ABCD and M is an
exterior point, the line M ′M intersects ABCD in exactly two points.
One of them is A. Let M ′′ be the other one.

Of course M ′′ cannot lie on AB for then line AB would have to
coincide with line AM which is parallel to DC, thus AB ‖ DC, a
contradiction.

Also, M ′′ cannot lie on AD for then line AD would have to co-
incide with line AM which is parallel to DC, thus AD ‖ DC, a
contradiction.

But M ′′ cannot lie on the side DC either since M ′′ ∈ AM ‖ DC.
We necessarily then have that M ′′ ∈ BC and that moreover it is

an interior point of this segment.
Finally note that the points A,M of the line M ′M lie on different

half-planes with respect to the line BC. So then, the point M ′′ at
which the line M ′M intersects the line BC has to be an interior
point of the segment AM . ¤

The following lemma deals with areas and it is a well known result
with a plethora of proofs.

Lemma 7. Let ABCD be a convex quadrilateral, K, N,L, M be
the midpoints of the sides AB,BC,CD,DA respectively, and O be
the intersection point of the segments KL, MN . Then (a) KL, MN
bisect each other, (b) (AKOM)+(CLOM) = (BKON)+(DLOM).

Proof. (a) Since M,K are the midpoints of the segments AD, AB

we have
−−→
MK =

−−→
DB
2 . similarly

−−→
LN =

−−→
DB
2 . Thus

−−→
MK =

−−→
LN and so

MKNL is a parallelogram, which implies the result.
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(b) It is (Fig. 12d)

(AKOM) + (CLOM) = (AKM) + (OKM) + (CLN) + (OLN) (2.1)

Note that since M, K are the midpoints of AD,AB it is true that

(AKM) =
1
4
(ABD) and

−−→
KM =

1
2
−−→
BD (2.2)

Similarly,

(CLN) =
1
4
(CBD) and

−−→
NL =

1
2
−−→
BD (2.3)

(2.2), (2.3) imply

(AKM) + (CLN) =
1
4
(ABD) +

1
4
(CBD) =

1
4
(ABCD) (2.4)
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and
−−→
KM =

−−→
NL thus KNLM is a parallelogram, and so (OKM) =

1
4 (KNLM) = (OLN), from which

(OKM) + (OLN) =
1
2
(KNLM) (2.5)

(2.1),(2.4),(2.5)=⇒ (AKOM)+(CLOM) = 1
4 (ABCD)+ 1

2 (KNLM)
A similar argument shows that (BKON)+(DLOM) = 1

4 (ABCD)
+ 1

2 (KNLM) as well, establishing the result. ¤
Our last lemma deals with the only property of long determinants

needed in Section 3.

Lemma 8. The value of the long determinant∣∣∣∣∣∣∣∣

c1 c2 c3 · · · ck

a1 a2 · · · ak−1 ak a1

b1 b2 · · · bk−1 bk b1

d1 d2 d3 · · · dk

∣∣∣∣∣∣∣∣
does not change if we change

all indices replacing (1, 2, · · · k−1, k) by the same cyclic permutation
simultaneously in all rows.

Proof. It is enough to show it whenever the indices (1, 2, · · · , k−1, k)
are replaced by their cyclic permutation (2, 3, · · · , k, 1):

It is∣∣∣∣∣∣∣∣

c1 c2 c3 · · · ck−1 ck

a1 a2 · · · ak−2 ak−1 ak a1

b1 b2 · · · bk−2 bk−1 bk b1

d1 d2 d3 · · · dk−1 dk

∣∣∣∣∣∣∣∣
=

= (
k−1∑
i=1

ciaibi+1 + ckakb1) − (
k−1∑
i=1

dibiai+1 + dkbka1)

and∣∣∣∣∣∣∣∣

c2 c3 c4 · · · ck c1

a2 a3 · · · ak−1 ak a1 a2

b2 b3 · · · bk−1 bk b1 b2

d2 d3 d4 · · · dk d1

∣∣∣∣∣∣∣∣
=

= (
k−2∑
i=2

ciaibi+1 + ckakb1 + c1a1b2) − (
k−2∑
i=2

dibiai+1 + dkbka1 +

d1b1a2) = (
k−1∑
i=1

ciaibi+1 + ckakb1) − (
k−1∑
i=1

dibiai+1 + dkbka1) ¤
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3. Proofs of the Main Results

Proposition 1. Let ABCD be a convex quadrilateral. If we divide
each one of the sides AB,DC in m equal parts, and each of the
sides AD, BC in n equal parts (m,n ∈ N∗), then by joining the
corresponding division points of opposite sides by line segments, each
of these segments from AB to DC is divided into n equal parts, while
each of these segments from AD to BC is divided into m equal parts.

Thus a convex distorted lattice LABCD{m,n} is formed.

Proof. Let us call each of the segments from AB to DC as vertical,
and each of the segments from AD to BC as horizontal.

Let us also call our proposition as P (n,m). We are going to use
a double-induction argument.

P (n, 1) is trivially true: The partition points of the segments
AB,DC are just {A,B} and {D,C}respectively; so the only vertical
segments are AD,BC. This implies that the two vertical segments
intersect each horizontal segment only at its two endpoints and so
each horizontal segment is “partitioned”in just one part. Of course
by assumption the horizontal segments partition each one of AD,BC
i.e. the vertical segments, in n equal parts.

We are now going to prove that P (n, 2) is true for all n = 1. We
achieve this by induction on n:

For n = 1 it is a most trivially true proposition. Just imitate the
proof of P (n, 1).

For n = 2 we met it before as Lemma 7a. Let us suppose that
P (n, 2) holds for some n = 2.

Then for P (n + 1, 2):
Let the partition points of AD and BC into n + 1 equal parts be

A = L00, L01, L02, · · · , L0n, L0(n+1) = D , and B = L10, L11, L12,
· · · , L1n, L1(n+1) = C respectively. Let also the midpoints of the
segments L00L10, L01L11, · · · , L0(n+1)L1(n+1) be L0, L1, · · · , Ln+1

(Fig. 13a).
Note now that the quadrilateral L00L10L1nL0n is convex because

of Lemma 5. Then applying the true proposition P (n, 2) to the
quadrilateral L00L10L1nL0n we get that the line L0Ln contains the
points L0, L1, · · · , Ln−1, Ln.

Similarly, applying the true proposition P (n, 2) to the (convex
because of Lemma 5) quadrilateral L01L11L1(n+1)L0(n+1) we get that
the line L1Ln+1 contains the points L1, L2, · · · , Ln, Ln+1.
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Since n = 2, the two points L1, L2 lie on both lines L0Ln, L1Ln+1.
Thus these lines coincide and contain all L0, L1, · · · , Ln−1, Ln, Ln+1.
This proves that P (n + 1, 2) is true.

Next, we are going to prove that for a given n = 1, the proposition
P (n,m) is true for all m = 2. We achieve this by induction on m:

So let us fix a value greater or equal to 1 for n. Then:
For m = 1, our proposition becomes proposition P (n, 1) which we

have already proved above.
For m = 2, our proposition becomes proposition P (n, 2) which

we have also proved above. Let us suppose that P (n,m) is true for
some m = 2. Then for P (n,m + 1):

Let the partition points of AB,DC into m equal parts (Fig. 13b)
be respectively

A = L00, L10, L20, · · · , Lm0, L(m+1)0 = B and
D = L0n, L1n , L2n, · · · , Lmn, L(m+1)n = C,
and let the partition points of AD,BC into n equal parts be
A = L00, L01, L02, · · · , L0(n−1), L0n = D and
B = L(m+1)0, L(m+1)1, L(m+1)2, · · · , L(m+1)(n−1), L(m+1)n = C.
Let finally the partition points of the segments L10L1n, Lm0Lmn

into n equal parts be respectively
L10, L11, · · · , L1(n−1), L1n and
Lm0, Lm1, · · · , Lm(n−1), Lmn.
Note now that the quadrilateral L00Lm0LmnL0n is convex because

of Lemma 5 Then applying the true proposition P (n, m) to this
quadrilateral we get that the lines L00Lm0, L01Lm1, · · · , L0nLmn

contain respectively the 0th, 1st,2nd, · · · , nth partition points in n
equal parts of all the segments c0 = L00L0n, c1 = L10L1n, c2 =
L20L2n, · · · , cm = Lm0Lmn.

Similarly, applying the true proposition P (n, m) to the (convex
because of Lemma 5) quadrilateral L10L(m+1)0L(m+1)nL1n we get
that the lines L10L(m+1)0, L11L(m+1)1, · · · , L1nL(m+1)n contain
respectively the 0th, 1st, 2nd, · · · , nth partition points in n equal
parts of all the segments c1 = c1 = L10L1n, c2 = L20L2n, · · · ,
cm = Lm0Lmn, cm+1 = L(m+1)0L(m+1)n.

Then for each i ∈ {0, 1, 2, · · · , n} the ith partition points of the
two distinct (since m = 2) segments c1 = L10L0n, c2 = L20L2n lie
on both lines L0iLmi, L1iL(m+1)i . Thus for each i ∈ {0, 1, 2, · · · , n}
these lines coincide and contain the ith partition points of all c0, c1,
· · · , cm, cm+1. This proves that P (n,m + 1) is true. ¤
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Figure 13

Corollary 1. If we divide each one of two opposite sides of a convex
quadrilateral region into 2n equal parts and each one of the other two
opposite sides into 2m equal parts (n,m ∈ N∗), then connect the
corresponding division points of the opposite sides by line segments
and finally colour the quadrilateral regions formed as black and white
in a chess like manner (i.e. any two regions sharing a common side
are differently painted), then it is true that the total black area equals
the total white area.

Proof. If ABCD is our quadrilateral, we know by the previous propo-
sition that by dividing its sides as stated, it is formed a convex dis-
torted lattice LABCD{2m, 2n} and by Lemma 5 that ABCD is par-
titioned into a number of convex quadrilateral regions Pk. We group
these quadrilaterals by 4 as in the Figure 14a, i.e. we form the larger
quadrilateral regions Pij = L(2i)(2j)L(2i+2)(2j)L(2i+2)(2j+2)L(2i+2)(2j)

i ∈ {0, 2(n− 1)}, j ∈ {0, 2(m− 1)}.
In each Pij , the lattice points on their sides are just the endpoints

and midpoints of the sides. Again by Lemma 5 we know that each
Pij is convex. So then Lemma 7b implies that the two black Pk ’s
contained in Pij have total area equal to the total area of the two
white Pk’s contained in Pij . So by adding for all i, j, we get that the
sum of all Pk with black area equals the sum of all Pk with white
area. ¤

The next seven lemmas are special cases of our main theorem and
they lead us gradually to the theorem itself.
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Lemma 9. Let ABCD be a convex quadrilateral with interior angles
such that B̂ + Ĉ ≤ 1800, Ĉ + D̂ ≤ 1800. Let T be a point such that−→
BT =

−−→
AD and let us call (ABD) = E, (BTC) = Ev, (DTC) = Eh.

Then (DBC) = E+ Eh + Ev, (ABC) = E + Eh, (ACD) = E + Ev.

Proof. We will prove it in the hardest case B̂ + Ĉ < 1800, Ĉ + D̂ <
1800. All other cases are just limit cases of this “hard”one and the
proof demands only trivial alterations of the one we give below (or
since then at least one pair of opposite sides of ABCD are parallel,
many other even easier proofs can be given).

About (DBC):
By Lemma 6 we have that T is an interior point of DBC (Fig. 14b),

so then (DBC) = (DBT ) + (BTC) + (DTC) =⇒
(DBC) = (DBT ) + Eh + Ev (3.1)

But
−→
BT =

−−→
AD =⇒ ABTD = parallelogram =⇒

(DBT ) = (ABD) = E (3.2)

(3.1)(3.2) =⇒ (DBC) = E + Eh + Ev as wanted.
About (ABC) and (ACD):

First observe that (ABCD) = (ABC) + (ACD) thus

(ABC) + (ACD) = 2E + Eh + Ev (3.3)

Let us now consider a point M such that
−−→
MC =

−−→
AD. We know by

Lemma 6 that M is an exterior point of ABCD (Fig. 14b) and that
ABMC is convex.

Let us observe that
−→
BT =

−−→
AD =

−−→
MC =⇒ BMCT is a parallelo-

gram, thus −−→
BM =

−→
TC (3.4)
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and (BMC) = (BTC) = Ev (3.5)

Similarly
−−→
AD =

−−→
MC =⇒ DAMC = parallelogram, so

(AMC) = (ACD) (3.6)

Note that we have shown above ABTD to be a parallelogram, and
so we have −−→

BA =
−−→
TD (3.7)

(3.4), (3.7) =⇒ triangleABM = triangleDTC =⇒
(ABM) = (DTC) = Eh (3.8)

Now since ABMC is convex its diagonals are internal and we have

(ABMC) = (ABM) + (AMC) = (ABC) + (BMC)
(3.5),(3.6),(3.8)

=⇒
Eh + (ACD) = (ABC) + Ev (3.9)

Solving the system of (3.3), (3.9) we get (ABC) = E + Eh, (ACD)
= E + Ev as wanted (Fig. 15a). ¤
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Lemma 10. Let ABCD be a convex quadrilateral with interior an-
gles such that B̂+Ĉ ≤ 1800, Ĉ+D̂ ≤ 1800 and K, L be the midpoints
of the sides AB, CD respectively. Let also T1, T2 be points such that−−→
KT 1 =

−−→
AD,

−→
BT 2 =

−−→
KL, and let us call (AKD) = E, (KT1L) =

Ev, (DT1L) = Eh and (KBL) = E′, (BT2C) = E′
v, (LT2C) = E′

h.
Then

E′ = E + Eh, E′
h = Eh, E′

v = Ev, (KBL) = E + Eh = (AKD) +
Eh, (LBC) = E + 2Eh + Ev = (DKL) + Eh, (KBC) = E + 2Eh =
(AKL) + Eh, (LKC) = E + Eh + Ev = (DAL) + Eh.
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In other words, as we move from the triangles of AKLD (formed
by its diagonals) to the right at the corresponding triangles of KBCL
(formed by its diagonals) the areas increase by Eh (Fig. 15c).

Proof. By Lemmas 2,4 we know that AKLD,KBCL are convex
and that for their interior angles the following hold respectively:
(K̂ + L̂ ≤ 1800, L̂ + D̂ ≤ 1800), (B̂ + Ĉ ≤ 1800, Ĉ + L̂ ≤ 1800).

Then applying Lemma 9 to AKLD, KBCL we get respectively

(AKD) = E, (DKL) = E + Eh + Ev, (AKL) = E + Eh

(DAL) = E + Ev (3.10)

(KBL) = E′, (LBC) = E′ + E′
h + E′

v, (KBC) = E′ + Eh

(LKC) = E′ + E′
v (3.11)

Thus we would have proved all the required relations if we could only
establish the first three of them: E′ = E + Eh, E′

h = Eh, E′
v = Ev.

This is not hard to do:
(a) Observe that L is the midpoint of the side AB of the trian-

gle LAB. Thus (KBL) = (AKL), which because of (3.10), (3.11)
becomes E′ = E + Eh.

(b) Let us consider the point M defined by
−−→
CM =

−−→
BK (Fig. 15b).

Then
−−→
CM =

−−→
BK =

−−→
KA =

−−→
T2L, where the last equality holds

since AKT1D is a parallelogram (because of
−−→
KT 1 =

−−→
AD ).

So MCDT1 is a parallelogram. Then the midpoint L of the diag-
onal DC is the center of the parallelogram and it is well known that
(DT1L) = (LMC) i.e.

Eh = (LMC) (3.12)

But,
−−→
BT2 =

−−→
KL =⇒ BT2LK is a parallelogram =⇒ −−→

BK =
−−→
T2L =⇒−−→

CM =
−−→
T2L =⇒ CMLT2 is a parallelogram, thus

(LMC) = (LT2C) = E′
h (3.13)

(3.12), (3.13) =⇒ E′
h = Eh.

(c)
−−→
CM =

−−→
BK imply that BCMK is a parallelogram and so−−→

KL =
−−→
BC. This, paired with

−−→
BT2 =

−−→
KL imply equality for the

triangles KLM, BT2C. Consequently (KLM) = (BT2C) i.e.

(KLM) = E′
v (3.14)
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But note that we have just shown in (b) that L is the center of the
parallelogram MCDT1. Then L is also the midpoint of the segment
T1M . Thus (KLM) = (KLT1) i.e.

(KLM) = Ev (3.15)

(3.14), (3.15) =⇒ E′
v = Ev. ¤

Similarly we can prove

Lemma 11. Let ABCD be a convex quadrilateral with interior an-
gles such that B̂ + Ĉ ≤ 1800, Ĉ + D̂ ≤ 1800 and let M, N be the
midpoints of the sides AD, BC respectively. Let also T1, T2 be points
such that

−−→
KT 1 =

−−→
AB,

−−→
DT 2 =

−−→
MN , and let us call (ABM) =

E, (BT1N) = Ev, (MT1N) = Eh and (MND) = E′, (NT2C) =
E′

v, (DT2C) = E′
h. Then

E = E′, Ev = E′
v, Eh = E′

h, (MND) = E + Ev = (ABM) + Ev,
(DNC) = E +Eh +2Ev = (MBN)+Eh, (NCM) = E +Eh +Ev =
(BNA) + Ev, (DMC) = E + 2Ev = (MAN) + Ev.

In a certain sense this lemma is a restatement of the previous one.
It essentially says that as we move from the triangles of ADMN
(formed by its diagonals) down at the corresponding triangles of
MNCD (formed by its diagonals) the areas increase by Ev (Fig. 15c).

Lemma 12. Let us consider a convex distorted lattice LABCD{m,n}
and let us assume without loss of generality that for the interior
angles of ABCD it is B̂ + Ĉ ≤ 1800, Ĉ + D̂ ≤ 1800. Let T be a
point such that

−−−→
L10T =

−−−−→
L00L01. Equivalently T is defined by

−−−→
L01T =−−−−→

L00L10. Let us call (L01L00L10) = E, (L10TL11) = Ev, (L01TL11) =
Eh. Then the areas of the triangles with vertices three “neighbor”
lattice points are given by (L(a−1)bLabLa(b−1)) = (L(a+1)bLabLa(b+1))
= (L(a+1)bLabLa(b+1)) = (L(a+1)bLabLa(b+1)) = E + aEh + bEv,
whenever the triangles make sense.

Proof. Let us call L
ab

= LabL(a+1)bL(a+1)(b+1)La(b+1), a ∈ {0, 1,
· · · , m−1}, b ∈ {0, 1, · · · , n−1} the quadrilateral regions into which
ABCD is partitioned by the horizontal and the vertical lattice seg-
ments. By Lemma 4 we know that the union of any two of L

ab

sharing a common side is a nicely positioned convex polygonal re-
gion. This allows us to apply the last two lemmas to any union of
two L

ab
’s sharing a common side. The crucial point is to notice that
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since T is defined by both
−−−→
L10T =

−−−−→
L00L01,

−−−→
L01T =

−−−−→
L00L10 then as

we move to triangles horizontally to the right, their areas increase
by Eh, while as we move to triangles vertically down, their areas in-
crease by Ev (Fig. 16). Then the required formula should be entirely
clear. A mathematically rigorous proof can be given by an induction
argument. Alternatively, the following heuristic argument is good
enough for proof:

Let us define for each L
ab

a point Tab such that
−−−−−−−→
L(a+1)bTab =−−−−−−−→

LabLa(b+1) and let us call (La(b+1)LabL(a+1)b) = Eab,
(L(a+1)bTabL(a+1)(b+1)) = Eab

v , (La(b+1)TabL(a+1)(b+1)) = Eab
h .

Of course T00 coincides with T , and E00 = E, E00
v = Ev, E00

h =
Eh.

Let us fix an index a ∈ {0, 1, · · · ,m− 1}.
Applying Lemma 10 successively to L

00∪ L
10

, L
10 ∪L

20
, · · · ,

L
(a−1)0 ∪ L

a0
we get the following interesting relations:

Ea′0
v = Ev, Ea′0

h = Eh, ∀a′ = 0, 1, · · · , a (3.16)

With these relations at hand, applying again Lemma 10 succes-
sively to L

00 ∪ L
10

, L
10 ∪ L

20
, · · · , L

(a−1)0 ∪ L
a0

and recalling that
(L00L10L01) = E we get:

(L10L20L11) = E + Eh and so then by (3.16)
(L20L30L21) = E + 2Eh and so then by (3.16)
...
(La0L(a+1)0La1) = E + aEh.
Now we fix an index b ∈ {0, n− 1} and applying Lemma 10 suc-

cessively to L
a0 ∪ L

a1
, L

a1 ∪ L
a2

, · · · , L
a(b−1) ∪ L

ab
we at least get

Eab′
h = Eh, Eab′

v = Ev, ∀b′ = 0, 1, · · · , b (3.17)

With these relations at hand we apply again Lemma 10 succes-
sively to L

a0 ∪ L
a1

, L
a1 ∪ L

a2
, · · · , L

a(b−1) ∪ L
ab

and recalling that
(La0L(a+1)0La1) = E + aEh now we get:

(La1L(a+1)1La2) = E + aEh+ Ev and so then

(La2L(a+1)2La3) = E + aEh + 2Ev and so then
...

(LabL(a+1)bL(a+1)(b+1)) = E + aEh + bEv

Observe that for the quadrilateral La(b−1)L(a+1)bLa(b+1)L(a−1)b

(whenever it makes sense) its diagonals bisect each other. Thus the
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last relation gives

(L(a−1)bLabLa(b−1)) = (L(a+1)bLabLa(b+1)) = (L(a+1)bLabLa(b+1)) =

(L(a+1)bLabLa(b+1)) = E + aEh + bEv (3.18)

Since a ∈ {0,m − 1}, b ∈ {0, n − 1}, this proves the required result
except for the triangles LanL(a+1)(n−1)L(a+1)n, a ∈ {0, m− 1}. For
these triangles we argue as follows:

By Lemma 5 we know that any L
a(n−1)

, a ∈ {0,m − 1} is a
nicely positioned convex polygonal region. This allows us to apply
Lemma 9 to it. Since (3.17) gives E

a(n−1)
v = Ev, E

a(n−1)
h = Eh

and (3.18) gives (L(a+1)(n−1)La(n−1)Lan) = E + aEh + (n − 1)Ev,

applying Lemma 9 to L
a(n−1)

we get (LanL(a+1)nL(a+1)(n−1)) =
(L(a+1)(n−1)La(n−1)Lan)+Eh +Ev = [E + aEh +(n− 1)Ev] +Eh +
Ev = E + (a + 1)Eh + nEv. ¤
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Lemma 13. Let us consider a convex distorted lattice LABCD{m,n}
and assume without loss of generality that for the interior angles of
ABCD it is B̂+ Ĉ ≤ 1800, Ĉ +D̂ ≤ 1800. Let T be a point such that−−−→
L10T =

−−−−→
L00L01. Equivalently T is defined by

−−−→
L01T =

−−−−→
L00L10. Let

us call (L01L00L10) = E, (L10TL11) = Ev, (L01TL11) = Eh. Then
the areas of the triangles with one side on a lattice segment are given
by

(a) (La1bLa2bLa3b′) = |a2 − a1| |b′ − b| (E + a3Eh + bEv) =
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±




∣∣∣∣∣∣∣∣

1 1 1
a1 a2 a3 a1

b b b′ b
1 1 1

∣∣∣∣∣∣∣∣
E +

∣∣∣∣∣∣∣∣

a2 a3 a1

a1 a2 a3 a1

b b b b′

a1 a2 a3

∣∣∣∣∣∣∣∣
Eh +

+

∣∣∣∣∣∣∣∣

b b b′

a1 a2 a3 a1

b b b′ b
b b′ b

∣∣∣∣∣∣∣∣
Ev


.

(b) (Lab1Lab2La′b3) = |a′ − a| |b2 − b1| (E + aEh + b3Ev) =

±




∣∣∣∣∣∣∣∣

1 1 1
a a a′ a
b1 b2 b3 b1

1 1 1

∣∣∣∣∣∣∣∣
E +

∣∣∣∣∣∣∣∣

a a′ a
a a a a′

b1 b2 b3 b1

a a a′

∣∣∣∣∣∣∣∣
Eh +

+

∣∣∣∣∣∣∣∣

b1 b2 b3

a a a′ a
b1 b2 b3 b1

b2 b3 b1

∣∣∣∣∣∣∣∣
Ev


.

The + sign holds whenever the positive orientations in the plane
of La1bLa2bLa3b′ and Lab1Lab2La′b3 are (La1b, La2b, La3b′) and (Lab1 ,
Lab2 , La′b3), respectively.

Proof. We will prove only (a) since part (b) is proved in a similar
manner.

In order to facilitate notation we call M = La1b, N = La2b, O =
La3b′ , P = La3b, G = L(a3+1)b,H = La3(b−1) (Fig. 17a). We want to
prove

(OMN) = |a2 − a1| |b′ − b| (E + a3Eh + bEv).
It is OP

HP = |b′ − b| =⇒ (OMN)
(HMN) = |b′ − b| =⇒

(OMN) = |b′ − b| (HMN) (3.19)

And MN
PG = |a2 − a1| =⇒ (HMN)

(HPG) = |a2 − a1| =⇒
(HMN) = |a2 − a1| (HPG) (3.20)

But the previous lemma gives us

(HPG) = E + a3Eh + bEv (3.21)

(3.19), (3.20), (3.21) =⇒ (OMN) = |a2 − a1| |b′ − b| (E+a3Eh+bEv)
as wanted.
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Note that whenever the indices are such that G = L(a3+1)b or
H = La3(b−1) is not defined (i.e. for a3 = n or b = 0), then the point
G′ = L(a3−1)b or F ′ = La3(b+1) is defined and it can replace G or H
in the above argument with no other changes.

Observe now that the orientation (La1b, La2b, La3b′) of the triangle
La1bLa2bLa3b′ is its positive orientation in the plane exactly when
(a1 < a2 and b′ > b) or (a1 > a2 and b′ < b) (Fig. 17b). In these
cases our formula becomes

(La1bLa2bLa3b′) = (a2 − a1)(b′ − b)(E + a3Eh + bEv) = (a2b
′ +

a1b−a2b−a1b
′)E + (a3a2b

′+a3a1b−a3a2b−a3a1b
′)Eh + (ba2b

′+
ba1b− ba2b− ba1b

′)Ev

=

∣∣∣∣∣∣∣∣

1 1 1
a1 a2 a3 a1

b b b′ b
1 1 1

∣∣∣∣∣∣∣∣
E +

∣∣∣∣∣∣∣∣

a2 a3 a1

a1 a2 a3 a1

b b b b′

a1 a2 a3

∣∣∣∣∣∣∣∣
Eh +

+

∣∣∣∣∣∣∣∣

b b b′

a1 a2 a3 a1

b b b′ b
b b′ b

∣∣∣∣∣∣∣∣
Ev.

A similar argument shows that if (La1b, La2b, La3b′) is the negative
orientation of La1bLa2bLa3b′ in the plane then the − sign holds in
the last equality of our formula. ¤

Lemma 14. Let us consider a convex distorted lattice LABCD{m,n}
and let us assume without loss of generality that for the interior
angles of ABCD it is B̂ + Ĉ ≤ 1800, Ĉ + D̂ ≤ 1800. Let T be a
point such that

−−−→
L10T =

−−−−→
L00L01. Equivalently T is defined by

−−−→
L01T =−−−−→

L00L10. Let us call (L01L00L10) = E, (L10TL11) = Ev, (L01TL11) =
Eh. Then the areas of the quadrilaterals with sides on the lattice
segments are given by

(LacLbcLbdLad) = |b− a| |d− c| (2E + (a + b)Eh + (c + d)Ev).

Observe that the orientation (Lac, Lbc, Lbd, Lad) of LacLbcLbdLad

is its positive orientation in the plane exactly when (a < b and c < d)
or (a > b and c > d). In this case the area of LacLbcLbdLad is given
by (LacLbcLbdLad) = (b− a)(d− c)[2E + (a + b)Eh] + (c + d)Ev.

Proof. It is (Fig. 17c)

(LacLbcLbdLad) = (LacLadLbd)+ (LacLbcLbd)
previous lemma

=
= |b− a| |d− c| (E + aEh + dEv) + |b− a| |d− c| (E + cEv + bEh)
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= |b− a| |d− c| [2E + (a + b)Eh + (c + d)Ev]. ¤

c

d

a b

d

c

b a

P=La b N=L a b

O=La b'
P N

O

La bLa b

La b'

La b
La b

La b'
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M=La bE=L (a +1)b
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E M
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For b=0:   

3  

3  

3  

3     

1    2        
  a    b    

1   2  

3   

1   2    

3    

c    

Figure 17

Lemma 15. Let us consider a convex distorted lattice LABCD{m,n}
and assume without loss of generality that for the interior angles of
ABCD it is B̂ + Ĉ ≤ 1800, Ĉ + D̂ ≤ 1800. Let T be a point such
that

−−−→
L10T =

−−−−→
L00L01 and let us call (L01L00L10) = E, (L10TL11) =

Ev, (L01TL11) = Eh. If A1A2A3 is a lattice triangle with Ai =
(ai, bi) = Laibi then

±(A1A2A3) =

��������

1 1 1
a1 a2 a3 a1

b1 b2 b3 b1

1 1 1

��������
E +

��������

a2 a3 a1

a1 a2 a3 a1

b1 b2 b3 b1

a1 a2 a3

��������
Eh

+

��������

b1 b2 b3

a1 a2 a3 a1

b1 b2 b3 b1

b2 b3 b1

��������
Ev

The + sign holds exactly when (A1, A2, A3) is the positive orien-
tation of A1A2A3 in the plane.
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Proof. For A1A2A3 with one side lying on a lattice segment, the
result was shown in Lemma 13. So let us assume that no side of
A1A2A3 lies on any lattice segment.

We will treat the case when (A1, A2, A3) is the positive orientation
of A1A2A3 in the plane; the other case is proved similarly. Note that
since the sides of A1A2A3 do not lie on lattice segments, the first
coordinates a1, a2, a3 of its vertices are distinct, and similarly the
second coordinates b1, b2, b3 are distinct as well.

Note also that since (A1, A2, A3) is the positive orientation of
A1A2A3 in the plane, then by changing the indices in this orientation
by a cyclic permutation of (1, 2, 3) we end up with the same positive
orientation of A1A2A3 in the plane. But since by Lemma 8 the value
of the long determinants do not change if the indices in each row
change by the same cyclic permutation of (1, 2, 3), we can assume
that a1 is the smallest number among a1, a2, a3. Now since b1, b2, b3

are distinct, all possible placements of A1A2A3 on the lattice as
shown in Figure 18.

So a way to achieving our goal is to prove the formula for each
one of the cases of Figure 18.

We shall demonstrate it in only two cases; the method is the same
for all of them, and the result comes similarly trivially in all cases.
In a more conventional notation we wish to prove

(A1A2A3) = (a1b2+a2b3+a3b1−a2b1−a3b2−a1b3)E + (a2a1b2+
a3a2b3 + a1a3b1 − a1b1a2 − a2b2a3 − a3b3a1)Eh + (b1a1b2 + b2a2b3+
b3a3b1 − b2b1a2 − b3b2a3 − b1b3a1)Ev. Proof in the case of Figure
19a:

Let us call K = (a3, b2), L = (a1, b2), M = (a1, b3). Note that
(A1A2A3) = (A2LA1) − (A3MA1) − (KLMA3) − (A2KA3) The
triangles and the quadrilateral on the right hand side of this equality
are like those treated in Lemmas 13, 14. Using those formulas for
their areas discharged from absolute values we can write (by taking
care to use their positive orientations in the plane):
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(A1A2A3) = (A2LA1)− (A3MA1)− (KLMA3)− (A2KA3)
= (a2 − a1)(b2 − b1)(E + a1Eh + b2Ev)

− (a3 − a1)(b3 − b1)(E + a1Eh + b3Ev)
−(a3 − a1)(b2 − b3)[2E + (a3 + a1)Eh +
+(b2 + b3)Ev]
−(a2 − a3)(b2 − b3)(E + a3Eh + b2Ev)

= (a1b2 + a2b3 + a3b1 − a2b1 − a3b2 − a1b3)E
+(a2a1b2 + a3a2b3 + a1a3b1 − a1b1a2 − a2b2a3

−a3b3a1)Eh

+(b1a1b2 + b2a2b3 + b3a3b1 − b2b1a2 − b3b2a3

−b1b3a1)Ev

Proof in the case of Figure 19b: Let K = (a2, b1),L = (a2, b3),M=
(a1, b3). Then (taking care about orientations as before):

(A1A2A3) = (A1KLM)− (A1KA2)− (A2LA3)− (A1MA3)
= (a2 − a1)(b3 − b1)(2E + (a2 + a1)Eh + (b3 + b1)Ev)

−(a2 − a1)(b2 − b1)(E + a2Eh + b1Ev)
−(a2 − a3)(b3 − b2)(E + a2Eh + b3Ev)
−(a3 − a1)(b3 − b1)(E + a1Eh + b3Ev)

= (a1b2 + a2b3 + a3b1 − a2b1 − a3b2 − a1b3)E
+(a2a1b2 + a3a2b3 + a1a3b1 − a1b1a2 − a2b2a3

−a3b3a1)Eh

+(b1a1b2 + b2a2b3 + b3a3b1 − b2b1a2 − b3b2a3

−b1b3a1)Ev

as wanted. ¤

Theorem 1. Let us consider a convex distorted lattice LABCD{m,n}
and let us assume without loss of generality that for the interior an-
gles of ABCD it is B̂ + Ĉ ≤ 1800, Ĉ + D̂ ≤ 1800. Let T be a point
such that

−−−→
L10T =

−−−−→
L00L01 and call (L01L00L10) = E, (L10TL11) =

Ev, (L01TL11) = Eh. If A1A2...Ak is a simple lattice polygon and
Ai = (ai, bi) = Laib1 then
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±(A1A2...Ak) =

��������

1 1 1 1 · · · 1 1
a1 a2 a3 · · · ak−2 ak−1 ak a1

b1 b2 b3 · · · bk−2 bk−1 bk b1

1 1 1 1 · · · 1 1

��������
E+

+

��������

a2 a3 a4 a5 · · · ak a1

a1 a2 a3 · · · ak−2 ak−1 ak a1

b1 b2 b3 · · · bk−2 bk−1 bk b1

a1 a2 a3 a4 · · · ak−1 ak

��������
Eh +

+

��������

b1 b2 b3 b4 · · · bk−1 bk

a1 a2 a3 · · · ak−2 ak−1 ak a1

b1 b2 b3 · · · bk−2 bk−1 bk b1

b2 b3 b4 b5 · · · bk b1

��������
Ev

The + sign holds whenever (A1, A2, · · · , An) is the positive ori-
entation of A1A2...Ak in the plane.
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A3

A1
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A1
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A3

A2
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A1

A2

A3

A1

A2

A3

A1

A3

A3

A1
A2

A2

A1

i    i i  i
a b i    

A  =(a ,b )=L      

Figure 18

Note that because of Lemma 8 we can replace in any one of the
above long determinants all indices simultaneously in all rows by the
same cyclic permutation.
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Proof. We prove it only in the case when (A1, A2, · · · , An) is the pos-
itive orientation of A1A2...Ak in the plane; the other case is proved
similarly.

We shall develop an induction argument on k.
For k = 3 the result was shown in the previous lemma. Let us

assume the truth of the result for some value k = 3.
Then for the value k + 1:
Let A1A2...AkAk+1 be a lattice polygon and let us assume that

(A1, A2, · · · , Ak, Ak+1) is its positive orientation in the plane.
It is k + 1 = 4 and by Lemma 1 there exists an internal diagonal

with endpoints a pair of next to side vertices. In other words there
exists an internal diagonal for which at least one of the two polygonal
regions in which A1A2...AkAk+1 is partitioned is triangular. With-
out loss of generality we can assume that A1Ak is such a diagonal
(Fig. 19c). Then (A1A2...AkAk+1) = (A1A2...Ak) + (A1AkAk+1).

Note that since (A1, A2, · · · , Ak, Ak+1) is the positive orienta-
tion of A1A2...AkAk+1 in the plane, then the induced orientations
(A1, A2, · · · , Ak), (A1, Ak, Ak+1) are the positive orientations in the
plane of the polygon A1A2...Ak and of the triangle A1AkAk respec-
tively. Then by the induction hypothesis it holds:

(A1A2...Ak)=

∣∣∣∣∣∣∣∣

1 1 1 1 · · · 1 1
a1 a2 a3 · · · ak−2 ak−1 ak a1

b1 b2 b3 · · · bk−2 bk−1 bk b1

1 1 1 1 · · · 1 1

∣∣∣∣∣∣∣∣
E+
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+

∣∣∣∣∣∣∣∣

a2 a3 a4 a5 · · · ak a1

a1 a2 a3 · · · ak−2 ak−1 ak a1

b1 b2 b3 · · · bk−2 bk−1 bk b1

a1 a2 a3 a4 · · · ak−1 ak

∣∣∣∣∣∣∣∣
Eh +

+

∣∣∣∣∣∣∣∣

b1 b2 b3 b4 · · · bk−1 bk

a1 a2 a3 · · · ak−2 ak−1 ak a1

b1 b2 b3 · · · bk−2 bk−1 bk b1

b2 b3 b4 b5 · · · bk b1

∣∣∣∣∣∣∣∣
Ev

= (
k−1∑

i=1

aibi+1 + akb1 −
k−1∑

i=1

biai+1 − bka1)E

+(
k−1∑

i=1

ai+1aibi + a1akb1 −
k−1∑

i=1

aibiai+1 − akbka1)Eh

+(
k−1∑

i=1

biaibi+1 + bkakb1 −
k−1∑

i=1

bi+1biai+1 − b1bka1)Ev

and

(A1AkAk+1) =
��������

1 1 1
a1 ak ak+1 a1

b1 bk bk+1 b1

1 1 1

��������
E +

��������

ak ak+1 a1

a1 ak ak+1 a1

b1 bk bk+1 b1

a1 ak ak+1

��������
Eh

+

��������

b1 bk bk+1

a1 ak ak+1 a1

b1 bk bk+1 b1

bk bk+1 b1

��������
Ev =

= (a1bk +akbk+1 +ak+1b1 −b1ak −bkak+1 −bk+1a1)E + (aka1bk

+ak+1akbk+1 +a1ak+1b1 −a1b1ak −akbkak+1 −ak+1bk+1a1)Eh +
(b1a1bk +bkakbk+1 +bk+1ak+1b1 −bkb1ak−bk+1bkak+1−b1bk+1a1)Ev
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So

(A1A2...AkAk+1)

= (A1A2...Ak) + (AkAk−1Ak+1)

= (

k−1X
i=1

aibi+1 + akb1 −
k−1X
i=1

biai+1 − bka1 +

+a1bk + akbk+1 + ak+1b1 − b1ak − bkak+1 − bk+1a1)E

+(

k−1X
i=1

ai+1aibi + a1akb1 −
k−1X
i=1

aibiai+1 − akbka1 + aka1bk +

+ak+1akbk+1 + a1ak+1b1 − a1b1ak − akbkak+1 − ak+1bk+1a1)Eh

+(

k−1X
i=1

biaibi+1 + bkakb1 −
k−1X
i=1

bi+1biai+1 − b1bka1 + b1a1bk +

+bkakbk+1 + bk+1ak+1b1 − bkb1ak − bk+1bkak+1 − b1bk+1a1)Ev

= (

kX
i=1

aibi+1 + ak+1b1 −
kX

i=1

biai+1 − bk+1a1)E +

+(

k−1X
i=1

ai+1aibi + a1ak+1b1 −
k−1X
i=1

aibiai+1 − ak+1bk+1a1)Eh +

(

kX
i=1

biaibi+1 + bk+1ak+1b1 −
k−1X
i=1

bi+1biai+1 − b1bk+1a1)Ev

=

∣∣∣∣∣∣∣∣

1 1 1 1 · · · 1 1 1
a1 a2 a3 · · · ak−2 ak−1 ak ak+1 a1

b1 b2 b3 · · · bk−2 bk−1 bk bk+1 b1

1 1 1 1 · · · 1 1 1 1

∣∣∣∣∣∣∣∣
E+

+

∣∣∣∣∣∣∣∣

a2 a3 a4 a5 · · · ak ak+1 a1

a1 a2 a3 · · · ak−2 ak−1 ak ak+1 a1

b1 b2 b3 · · · bk−2 bk−1 bk bk+1 b1

a1 a2 a3 a4 · · · ak−1 ak ak+1

∣∣∣∣∣∣∣∣
Eh+

+

∣∣∣∣∣∣∣∣

b1 b2 b3 b4 · · · bk−1 bk bk+1

a1 a2 a3 · · · ak−2 ak−1 ak ak+1 a1

b1 b2 b3 · · · bk−2 bk−1 bk bk+1 b1

b2 b3 b4 b5 · · · bk−2 bk−1 b1

∣∣∣∣∣∣∣∣
Ev

¤
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Corollary 2. Let us consider a convex distorted lattice LABCD{m,n}
for which ABCD is a parallelogram (i.e., our lattice is a finite re-
striction of a regular infinite lattice), and let us call (L01L00L10) =
E. If A1A2...Ak is a simple lattice polygon and Ai = (ai, bi) then

(a) ±(A1A2...Ak) =

= (ABCD)
2mn

∣∣∣∣∣∣∣∣

1 1 1 1 · · · 1 1
a1 a2 a3 · · · ak−2 ak−1 ak a1

b1 b2 b3 · · · bk−2 bk−1 bk b1

1 1 1 1 · · · 1 1

∣∣∣∣∣∣∣∣
(b) If moreover LABCD{m,n} is part of the regular lattice of the
integers in the plane, or more generally whenever the lattice quadri-
laterals have unit area, the last formula becomes

±(A1A2...Ak) = 1
2

∣∣∣∣∣∣∣∣

1 1 1 1 · · · 1 1
a1 a2 a3 · · · ak−2 ak−1 ak a1

b1 b2 b3 · · · bk−2 bk−1 bk b1

1 1 1 1 · · · 1 1

∣∣∣∣∣∣∣∣
The + sign holds whenever (A1, A2, · · · , An) is the positive orienta-
tion of A1A2...Ak in the plane.

Proof. (a) The result comes immediately from the theorem since here
we have Eh = 0 = Ev and E = (L00L01L10) = (L00L01L11L10)

2 = 1
2 .

(b) The result comes from part (a) since here (ABCD) = mn ·
(area of any lattice quadrilateral) = mn· = mn. ¤

4. Final Remarks

The material presented so far is rich enough to deserve a few more
comments. We organize these remarks roughly into sections.

4.1. About lattices. In the previous sections we dealt with lat-
tices LABCD{m,n} derived from polygons ABCD, mainly from con-
vex ones. Unfortunately it is not true that all distorted lattices
come from polygons. An example is given in Figure 4a where an
L{4, 1} is depicted, whith {s1, s2} say the horizontal segments and
{l1, l2, l3, l4, l5} are the vertical ones.

Nevertheless the following conjecture might be true:

Conjecture 1. (a) If L{m,n} is non trivial (i.e. m 6= 1 6= n), then
L{m,n} ≡ LABCD{m,n} for some quadrilateral ABCD.

(b) For every L{m,n} there exists a polygon (in the broad sense)
A1A2 · · ·Ak whose sides lie on the lattice segments and such that
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all lattice segments lie in A1A2 · · ·Ak partitioning this region into a
number (mn maybe?) of quadrilaterals (in the broad sense).

For a quadrilateral ABCD in the broad sense it is of course true
that all segments joining two opposite sides lie in ABCD (Fig. 20a).
Figure 20b shows a non-convex ABCD for which the segments join-
ing the midpoints of the opposite sides lie in ABCD, while in Figure
20c these segments don’t lie in ABCD. Now note that Proposition 1

D

A

B

C

B

D C D

A

B

C

A

d       a   b   c   

m    

n     

Figure 20

holds also for ABCD in the broad sense or even for a non-convex
one, provided that all segments lie in ABCD.

In other words the reader is invited to prove:

Proposition 2. Let ABCD be a non-convex quadrilateral or one in
a broad sense. Let us divide each of the sides AB,DC in m equal
parts, and each of the sides AD, BC in n equal parts (m,n ∈ N∗)
and join the corresponding division points of opposite sides by line
segments. If all these segments lie in ABCD (as is the case when
ABCD is a quadrilateral in the broad sense) then each one of them
from AB to DC is divided into n equal parts, while each one from
AD to BC is divided into m equal parts.

Now comparing a general distorted lattice L{m, n} to a usual (in-
finite) one, we can observe that unlike in the case of a usual lattice,
the exist only finitely many (m or n) in number lattice sub-segments
on each lattice line. Thus in order to hope for the possibility of sim-
ulating of situations of a usual lattice to a distorted one, we must
first at least hope to prove that for any given pair of no matter how
large natural numbers m,n, there exists a distorted (m,n) lattice.
Figure 20d shows how one can achieve this using Thales Theorem so
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that the vertical segments are parallel to each other, but the horizon-
tal segments are not parallel to each other. Of course Proposition 1,
answers on how to achieve this assuming that neither the horizontal
or the vertical segments are parallel to each other.

Challenge 1. Generalize the notion of a distorted lattice into three
or more dimensions.

4.2. Corollaries of Proposition 1.

Exercise 1. Let ABCD be a convex quadrilateral and let K,L, M,N
be points on AB,CD,AD, BC respectively such that AK

KB = DL
LC = κ,

AM
MD = BN

NC = λ with κ, λ > 0. Then the intersection point O of the
segments KL,MN divides the first in a ratio KO

OL = λ and the second
in a ratio MO

ON = κ. The result generalizes for points K,L, M, N on
the lines AB, CD,AD, BC respectively.

Hint: First prove it for κ, λ rational, say κ = m1
m , λ = n1

n with the
help of Proposition 1. Next, for arbitrary κ, λ consider sequences
of points (Kr ∈ AK)r∈N, (Lr ∈ DL)r∈N, (Mr ∈ AM)r∈N, (Nr ∈
BN)r∈N, such that AKr

KrB = DLr

LrC = κr and AMr

MrD = BNr

NrC = λr with
κr, λr rational and κr

r−→∞−→ κ, λr
r−→∞−→ λ (Fig. 21a).

Exercise 2. Let Ax, By be half-lines on the same half-plane with re-
spect to the line AB. If A1, A2, · · · are points on Ax and B1, B2, · · ·
points on By such that AA1 = A1A2 = · · · and BB1 = B1B2 = · · ·
then the midpoints of the segments AB,A1B1, A2B2, · · · all lie in
the same line (Fig. 21b).

The proof comes immediately from Proposition 1.
One can try to prove a converse of Exercise 2:

Exercise 3. Let ε1, ε2, ε3 be lines in the plane, any two of them inter-
secting. Then for any M2 ∈ ε2, there exist unique M1 ∈ ε1,M3 ∈ ε3
such that M2 is the midpoint of M1M3. Check what happens when-
ever it is not true that any two of ε1, ε2, ε3 intersect.

Hint: Call O the intersection point of ε2, ε3 and consider the point
M ′ such that

−−→
OM =

−−−→
MM ′ (Fig. 21 c). Call M1 the intersection of

ε1 with the parallel to ε3 from M ′. Call M3 the intersection of ε3
with the line M1M .
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4.3. About areas. Proposition 2 can be used to generalize Corol-
lary 1.

For example the following is true:

Exercise 4. Let BCD be a triangle and A be the midpoint of BD.
We divide each one of the segments AB,BC, CD, DA into four equal
parts and we join the corresponding partition points of AB,CD and
of BC, DA. (Fig. 21c) Then BCD is partitioned into polygonal re-
gions (all are quadrilateral except from a triangular one) which if
coloured in a chess-like manner as black and white satisfy that the
total black area equals the total white area.

Hint: Imitate the proof of Corollary 1 or proceed straight forward
essentially applying a couple of times the proof of Lemma 7b.

The reader is invited to formulate a generalization of Corollary 1.

Exercise 5. Prove Corollary 1 with the help of Theorem 1.
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Let us now move our attention from “total”(black or white) to
“individual”polygonal areas in a lattice LABCD{m,n}, ABCD con-
vex. Recall from Section 1 that a potentially appropriate candidate
for unit area substitute was decided there to be the set of the areas
of the triangles P1 = L00L01L11, P2 = L01L11L10, P3 = L00L01L10,
P4 = L00L11L10 in which the smallest (top left corner) quadrilat-
eral L00L01L11L10 of the lattice is divided by its diagonals. Nev-
ertheless the calculations were actually made in terms of only one
of these areas E = (L00L01L11) and in terms of two other areas
Ev, Eh. This “detachment”from our original plan occurred only for
the shake of notational simplicity. According to the relations proved
in Lemma 9, the areas (P1), (P2), (P3), (P4) are expressed in terms of
E, Ev, Eh and conversely these relations reveille that E,Ev, Eh can
be expressed in terms of (P1), (P2), (P3), (P4).

Philosophically speaking, one can consider that in our area cal-
culations E is a “unit area”substitute, while Ev, Eh express a “defi-
ciency measure”for the distorted lattice LABCD{m,n} to be a usual
one (i.e., the restriction to a finite part of an infinite usual lattice in
the plane).

By the way as is evident from Lemma 14 the areas of the quadri-
laterals in which the distorted lattice LABCD{m,n} (ABCD convex)
is partitioned by its horizontal and vertical segments grow smaller
as we move up or to the left. This makes the top left corner quadri-
lateral the one with the smallest possible area.

Challenge 2. If you succeeded in generalizing the notion of a dis-
torted lattice into three or more dimensions, then generalize Propo-
sition 1, Corollary 1, Theorem 1 in these dimensions as well.

Challenge 3. At least generalize Theorem 1 in higher dimensions
in the case of the usual integer lattice Zn, n = 3.

4.4. About long determinants.

Challenge 4. Provide a calculus of long determinants.

This calculus should contain properties referring to the relation-
ship between long determinants and the usual determinants. One
such property was given in Section 1.

The calculus should also contain “internal properties”of the long
determinants like the one in the following
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Lemma 16. The following “gluing”property is true∣∣∣∣∣∣∣∣

c1 c2 c3 · · · ck−1

a1 a2 · · · ak−2 ak−1 ak

b1 b2 · · · bk−2 bk−1 bk

d1 d2 d3 · · · dk−1

∣∣∣∣∣∣∣∣
+

+

∣∣∣∣∣∣∣∣

ck ck+1 ck+2 · · · cl−1

ak ak+1 · · · al−2 al−1 al

bk bk+1 · · · bl−2 bl−1 bl

dk dk+1 dk+2 · · · dl−1

∣∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣

c1 c2 c3 · · · cl−1

a1 a2 · · · al−2 al−1 al

b1 b2 · · · bl−2 bl−1 bl

d1 d2 d3 · · · dl−1

∣∣∣∣∣∣∣∣

Proof. By the definition of the long determinants, the formula to be
proved is equivalent to

(
k−1∑
1

ciaibi+1 −
k−1∑
1

dibiai+1) + (
l−1∑

k

ciaibi+1 −
l−1∑

k

dibiai+1)

=
l−1∑
1

ciaibi+1 −
l−1∑
1

dibiai+1

which in turn is equivalent to

(
k−1∑
1

ciaibi+1 +
l−1∑

k

ciaibi+1)− (
k−1∑
1

dibiai+1 +
l−1∑

k

dibiai+1)

=
l−1∑
1

ciaibi+1 −
l−1∑
1

dibiai+1,

which is of course true. ¤
Challenge 5. Generalize the notion of the long determinant to in-
clude orthogonal arrays of more than 4 rows. Provide a calculus of
these generalized long determinants.

Challenge 6. If you succeeded in intelligently generalizing the no-
tion of the long determinant, find a “non trivial”geometric applica-
tion of this generalization.
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