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Triangle Geometry and Jacobsthal Numbers

PAUL BARRY

Abstract. The convergence properties of certain triangle
centres on the Euler line of an arbitrary triangle are studied.
Properties of the Jacobsthal numbers, which appear in this
process, are examined, and a new formula is given. A Ja-
cobsthal decomposition of Pascal’s triangle is presented.

This review article takes as its motivation a simple problem in ele-
mentary triangle geometry to study some properties of the Jacobs-
thal numbers, defined by the recurrence relation

an+2 = an+1 + 2an, a0 = 0, a1 = 1 (1)

These numbers form the sequence 0, 1, 1, 3, 5, 11, 21, 43, . . . [Sloane,
A001045]. We let J(n) or Jn stand for the nth Jacobsthal number,
starting with J(0)=0. These numbers are linked to the binomial co-
efficients in a number of ways. Traditional formulas for J(n) include

J(n) =
1

3.2n−1

floor((n+1)/2)∑

k=1

C(n, 2k − 1)32k−1 (2)

J(n) =
floor(n/2)∑

j=0

C(n− 1− j, j)2j (3)

To simplify expressions, we shall not normally give upper summation
bounds in what follows, using the fact that C(n, k) = 0 for k > n to
ensure that all summations are finite.

The investigation of this article leads to another formula, namely

J(n) =
∑

(n+k) mod 3=1

C(n, k) =
∑

(n+k) mod 3=2

C(n, k) (4)

which emphasizes how the Jacobsthal numbers provide an interesting
decomposition property of Pascal’s triangle. We shall also draw some
links to the Fibonacci numbers.
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The solution to recurrence (1) takes the form

J(n) =
2n

3
− (−1)n

3
. (5)

As may be expected of a direct generalization of the Fibonacci num-
bers (solutions of the recurrence a(n) = a(n− 1) + a(n− 2), a(0) =
0, a(1) = 1), the Jacobsthal numbers have many interesting proper-
ties.

The starting point of this study is a simple geometric exploration,
concerning triangle centres along the Euler line of a plane trian-
gle. We recall that a triangle centre is a point of concurrency of
lines related to the geometry of the triangle. When these lines are
drawn from the vertices of a triangle to the opposite sides they are
commonly called cevians. An online database of significant triangle
centres is maintained at

[http://faculty.evansville.edu/ck6/encyclopedia/].

Examples are the centroid G of a triangle, obtained by joining ver-
tices to the midpoints of the opposite sides, the circumcentre O, the
point of intersection of the perpendicular bisectors through the mid-
points of the sides, and the orthocentre H, the point of intersection
of the altitudes of the triangle (the lines drawn from the vertices that
meet the opposite sides at a right-angle). The points O, G, and H lie
on a line called the Euler line. A further point that lies on this line
is the point N , the centre of the nine-point circle. This circle is the
circumcircle of the median triangle, which is obtained by joining the
midpoints of the sides of the original triangle. These centres obey
the relations

OH = 3OG = 2ON (6)

Note that for the purposes of this review, we shall refer to the line
segment from O to H as the Euler line.

We now consider the sequence Tn of median triangles, associated
with a given triangle T , defined as follows. We define T0 = T , and
Tn+1 is defined to be the median triangle of Tn, obtained by joining
the midpoints of the sides of Tn.

Some easy observations can be made. All triangles Tn, n ≥ 1, are
similar to T0. In fact, it can be shown that Tn = (− 1

2 )nT0.
By construction, the perpendicular bisectors of the sides of Tn are

the altitudes of Tn+1, and hence the circumcentre On of Tn is the
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orthocentre Hn+1 of Tn+1:

On = Hn+1 (7)

We now use the properties of N , the nine-point circle centre, to
generate another important relationship. Starting with the original
triangle T = T0, we note that N = N0 is the circumcentre O1 of
the first median triangle T1. This is by construction, since N is the
centre of the unique circle which passes through the midpoints of the
sides of T . We note in passing that it is also the circumcentre of the
first orthic triangle (the triangle obtained by joining the feet of the
altitudes).

Now it is well-known that N0 = N = 1
2 (O0 + H0) — that is, it is

in the middle of the Euler line. Hence we have the relation

O1 =
1
2
(O0 + H0). (8)

This result can be generalized to the following.

Lemma 1.

On+1 =
1
2
(On + Hn) (9)
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Proof. As above, On+1 is the circumcentre of the median triangle
Tn+1 of Tn, so it is the nine-point circle centre Nn of Tn. The
previous result applied to these two triangles yields the result. ¤

We now have the following proposition, which will link this con-
struction to the Jacobsthal numbers.

Proposition 2.
On = anO0 + bnH0 (10)

where the sequences an and bn obey the recurrence relation

xn+2 =
1
2
(xn+1 + xn) (11)

with a0 = 1, a1 = 1
2 , and b0 = 0, b1 = 1

2 .

Proof. The case n = 0 is easily dealt with, since trivially we have
O0 = 1.O0 + 0.H0. To establish the other initial conditions, we
appeal to (8) O1 = 1

2 (O0 + H0).
Now assume that for k ≤ n, we have Ok = akO0 + bkH0, with ak

and bk as above. Then

On+1 =
1
2
(On + Hn)

=
1
2
(On + On−1)

=
1
2
(anO0 + bnH0 + an−1O0 + bn−1H0)

=
1
2
(an + an−1)O0 +

1
2
(bn + bn−1)H0

= an+1O0 + bn+1H0

as required. ¤

Thus the sequence of circumcentres O1, O2, O3,... corresponds to
the points O0,

1
2O1 + 1

2H1,
3
4O0 + 1

4H0,
5
8O0 + 3

8H0,
11
16O0 + 5

16H0, . . .
We recognize that the numerators an and bn of the coefficients of
O0 and H0 in this sequence are related to the Jacobsthal numbers
0, 1, 1, 3, 5, 11, 21, . . . We shall make this relationship clear shortly.

Proposition 3.

an =
2
3

+
1
3
(−1

2
)n, bn =

1
3
− 1

3
(−1

2
)n. (12)
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Proof. The characteristic equation of the recurrence (11) is

x2 − 1
2
x− 1

2
= 0. (13)

The general solution of this is cn = A.1n + B.(− 1
2 )n. Fitting the

initial conditions (11) yields the result. ¤

Corollary 4. The circumcentres of the sequence of triangles Tn con-
verges to the point 2

3O0 + 1
3H0 on the Euler line of T .

Proof.

On = [
2
3

+
1
3
(−1

2
)n]O0 + [

1
3
− 1

3
(−1

2
)n]H0. (14)

Taking limits as n →∞ yields the result. ¤

The manner of convergence is of interest in itself, as successive
points oscillate about the limit point, with each point remaining on
the Euler line.

We observe that an + bn=1, which implies that each centre On

is a convex combination of O0 and H0, and hence lies on the Euler
line. Further easily established relations between the two sequences
are an− bn = 1

3 + 2
3 (− 1

2 )n and 2bn+1 = an. This last equality comes
about since

bn+1 =
1
3
− 1

3
(−1

2
)n+1 ⇒ 2bn+1 =

2
3
− 2

3
(−1

2
)n+1 =

2
3

+
1
3
(−1

2
)n

(15)
As objects of independent study, these sequences can lead to some
interesting identities. Some of these are detailed below.

Proposition 5.

∑

k=0

C(n, 2k)32k =
1
2
(4n + (−1)n2n). (16)

Proof.

an =
2
3

(
1
4

(1 + 3)
)n

+
1
3

(
1
4

(1− 3)
)n
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=
1
3

(
1
4
(1 + 3)

)n

+
1
3

(
1
4
(1 + 3)

)n

+
1
3

(
1
4

(1− 3)
)n

=
1
3

+
2
3

1
4n

(
1 +

(
n
2

)
32 +

(
n
4

)
34 + ...

)

=
1
3

+
1
3

(
−1

2

)n

Solving between the last two lines for(
1 +

(
n
2

)
32 +

(
n
4

)
34 + ...

)

yields the result. ¤

Note that this is [Sloane, A003665]. It is the binomial transform
of the expansion of cosh(3x).

We also note that this gives us the expression

an − 1
3

=
2
3

1
4n

∑

k=0

C(n, 2k)32k. (17)

In a similar manner, we obtain

Proposition 6.

bn =
2

3.4n

∑

k=0

C(n, 2k + 1)32k+1. (18)

Proof. We have bn = 1
3 ( 1

4 (1 + 3))n − 1
3 ( 1

4 (1− 3))n. Expanding both
binomials and cancelling terms gives us the result. ¤

This may also be written as bn = 2
4n

∑
k=0 C(n, 2k+1)32k. Noting

that
∑

k=0 C(n, 2k + 1) = 2n−1, we can rearrange this to express bn

as 1
2n times a weighted average of powers of 9.

bn =
1
2n

( 1
2n−1

∑

k=0

C(n, 2k + 1)32k
)

=
1
2n

(∑

k=0

C(n, 2k + 1)9k)
/ ∑

k=0

C(n, 2k + 1
)

(19)

We now return to exploring the link with the Jacobsthal numbers
0, 1, 1, 3, 5, 11, 21, . . ., with defining recurrence

Jn+2 = Jn+1 + 2Jn, J0 = 0, J1 = 1. (20)
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Proposition 7.

an =
J(n + 1)

2n
, bn =

J(n)
2n

. (21)

Proof. The recurrence (20) yields the expression J(n) = 1
32n +

1
3 (−1)n. Dividing through by 2n, we obtain J(n)

2n = 1
3 + 1

3
(−1)n

2n = 1
3 +

1
3 (− 1

2 )n = bn. Since an = 2bn+1, we get an = 2J(n+1)
2n+1 = J(n+1)

2n . ¤

Corollary 8.

On =
J(n + 1)

2n
O0 +

J(n)
2n

H0 =
1
2n

(J(n + 1)O0 + J(n)H0). (22)

Corollary 9.

J(n) =
1

2n−1

∑

k=0

C(n, 2k + 1)32k. (23)

Proof.

J(n) = 2nbn =
2n

3
2
4n

∑

k=0

C(n, 2k + 1)32k+1

=
1

2n−1

∑

k=0

C(n, 2k + 1)32k

¤

Noting again that 2n−1 =
∑

k=0 C(n, 2k +1), we see that the last
result exhibits J(n) as a weighted average of even powers of 3. For
instance, J(5) = 5+10.32+1.34

5+10+1 = 11.

Corollary 10.

J(n) =
1
3
(2n−1 +

1
2n

∑

k=0

C(n− 1, 2k)32k). (24)

Proof. (17) and (21) together show that

J(n + 1) =
2n

3
+

2
3

1
2n

∑

k=0

C(n, 2k)32k

=
2
3
.2n−1 +

1
3

∑

k=0

C(n− 1, 2k)32k.

Changing from n + 1 to n, we get J(n) = 2n−1

3 + 1
3

1
2n−2

∑
k=0 C(n−

1, 2k)32k, from which the result follows. ¤
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We can rewrite this as a convex combination

J(n) =
2
3
2n−2 +

1
3

1
2n−2

∑

k=0

C(n− 1, 2k)32k.

We note that the last term of this expression is again a weighted
average of even powers of 3, since 2n−2 =

∑
k=0 C(n − 1, 2k). The

numbers represented by the expression 1
2n−2

∑
k=0 C(n−1, 2k)32k are

the Jacobsthal–Lucas numbers 2, 1, 5, 7, 17, 31, 65, 127, . . . [Sloane,
A014551]. Starting at 1, they are all of the form 2n ± 1.

We now consider links between the Jacobsthal numbers and Pas-
cal’s triangle. Pascal’s triangle is usually represented in triangular
array fashion as

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

While there are numerous links between the Jacobsthal numbers
and this number triangle, the following observations will motivate
the current investigation. First, we consider

-
- 1

1 - -
- - 3 -

- 4 - - 1
1 - - 10 - -

- - 15 - - 6 -
- 7 - - 35 - - 1

1 - - 56 - - 28 - -
Here, the ‘-’ entry can be taken to stand for 0. Row sums of this
new triangle are 0, 1, 1, 3, 5, 11, 21, 43, 85, . . . In other words, we have
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the beginning of the sequence of Jacobsthal numbers. Similarly, the
following modified triangle

-
1 -

- - 1
- 3 - -

1 - - 4 -
- - 10 - - 1

- 6 - - 15 - -
1 - - 35 - - 7 -

- - 28 - - 56 - - 1

yields the same sequence of numbers 0, 1, 1, 3, 5, 11, 21, . . . For com-
pleteness, a look at what is ‘left over’ is also informative.

1
- -

- 2 -
1 - - 1
- - 6 - -

- 5 - - 5 -
1 - - 20 - - 1

- - 21 - - 21 - -
- 8 - - 70 - - 8 -

This gives us the sequence 1, 0, 2, 2, 6, 10, 22, 42, 86, . . . We note that
these numbers are of the form Jn ± 1. They form the start of the
sequence [Sloane, A078008]. For the purposes of this article, we shall
define J ′n = Jn + (−1)n. We then have J ′(n) = 2n

3 + 2(−1)n

3 . J ′(n)
is a solution to recurrence (1), with initial conditions a0 = 1, a1 = 0.
J ′(n) = J(n + 1)− J(n) = 2n(an − bn).

Recall now that the sum of the rows of Pascal’s triangle are of the
form 2n, a consequence of the well-known identity

n∑

k=0

C(n, k) = 2n. (25)

The above results suggest the following decomposition of 2n (and
figuratively, a decomposition of Pascal’s triangle).
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20 = 1 = 0 + 0 + 1 (26)
21 = 2 = 1 + 1 + 0 (27)
22 = 4 = 1 + 1 + 2 (28)

23 = 8 = 3 + 3 + (1 + 1) (29)
24 = 16 = 5 + 5 + 6 = (1 + 4) + (4 + 1) + 6 (30)

25 = 32 = 11 + 11 + 10 = (1 + 10) + (10 + 1) + (5 + 5) (31)

This leads to:

Proposition 11.
2n = 2Jn + J ′n. (32)

Proof. 2Jn + J ′n = 2( 2n

3 − (−1)n

3 ) + ( 2n

3 − (−1)n

3 ) + (−1)n = 2n. ¤

Corollary 12.
2n = J(n) + J(n + 1). (33)

We now wish to show that this provides a decomposition for the rows
of Pascal’s triangle, as indicated by the equations (26)–(31) above.

Proposition 13.

J(n) =
∑

(n+k) mod 3=1

C(n, k) =
∑

(n+k) mod 3=2

C(n, k), (34)

J ′(n) =
∑

(n+k) mod 3=0

C(n, k). (35)

Proof. We let

a(n) =
∑

(n+k) mod 3=1

C(n, k) and a′(n) =
∑

(n+k) mod 3=2

C(n, k).

We wish to show that a(n) = a′(n) = J(n). We start by establishing
the initial conditions. a(0) =

∑
(n+k) mod 3=1 C(0, k) = 0 since only

C(0, 0) 6= 0. a(1) =
∑

(n+k) mod 3=1 C(1, k) = C(1, 1) = 1 since all
other terms C(1, k) with (n + k) mod 3 = 1 have value 0. We can
similarly show that a′(0) = 0, a′(1) = 1. ¤

We now wish to establish that a(n + 2) = a(n + 1) + 2a(n). For
this, we employ the following lemma.
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Lemma 14.

a(n + 2) = a′(n + 1) + a′(n) + a(n) (36)
a′(n + 2) = a(n + 1) + a(n) + a′(n) (37)

Proof. We have

a(n + 2) =
∑

(n+2+k) mod 3=1

C(n + 2, k) =
∑
m

C(n + 2, 3m− n− 1)

=
∑
m

(C(n + 1, 3m− n− 2) + C(n + 1, 3m− n− 1))

=
∑
m

C(n + 1, 3m− n− 2)

+
∑(

C(n, 3m− n− 1) + C(n, 3m− n− 2)
)

=
∑

(n+1+k) mod 3=2

C(n + 1, k) +
∑

(n+k) mod 3=2

C(n, k)

+
∑

(n+k) mod 3=1

C(n, k)

= a′(n + 1) + a′(n) + a(n)

In a similar fashion, we have

a′(n + 2) =
∑

(n+2+k) mod 3=2

C(n + 2, k) =
∑
m

C(n + 2, 3m− n)

=
∑
m

(C(n + 1, 3m− n− 1) + C(n + 1, 3m− n))

=
∑
m

C(n + 1, 3m− n− 1)

+
∑(

C(n, 3m− n− 2) + C(n, 3m− n− 1)
)

=
∑

(n+1+k) mod 3=1

C(n + 1, k) +
∑

(n+k) mod 3=1

C(n, k)

+
∑

(n+k) mod 3=2

C(n, k)

= a(n + 1) + a(n) + a′(n)

The proof of the first assertion now follows from the observation that

a(n+2)−a′(n+2) = a′(n+1)+a′(n)+a(n)−a(n+1)−a(n)−a′(n)
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and
a(n + 2)− a′(n + 2) = a′(n + 1)− a(n + 1). (38)

Hence,

a(n + 2)− a′(n + 2) = a′(n + 1)− a(n + 1) = a(n)− a′(n)
= . . . = 1− 1 = 0.

Thus a(n) = a′(n) and so a(n + 2) = a′(n + 1) + a′(n) + a(n) =
a(n + 1) + 2a(n) as required. In order to prove the second assertion,

we make use of the fact that J ′(n) = J(n+1)−J(n). We then have

J ′(n) = J(n + 1)− J(n)

=
∑

(n+1+k) mod 3=1

C(n + 1, k)−
∑

(n+k) mod 3=2

C(n, k)

=
∑
m

C(n + 1, 3m− n)−
∑

(n+k) mod 3=2

C(n, k)

=
∑
m

C(n, 3m− n) +
∑
m

C(n, 3m− n− 1)

−
∑

(n+k) mod 3=2

C(n, k)

=
∑
m

C(n, 3m− n) +
∑

(n+k) mod 3=2

C(n, k)−
∑

(n+k) mod 3=2

C(n, k)

=
∑

(n+k) mod 3=0

C(n, k).
¤

There is in fact a second Jacobsthal decomposition of Pascal’s
triangle, based on the fact that 2n = J(n)+J(n+1). The following
display makes this evident.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1



Triangle Geometry and Jacobsthal Numbers 57

Here, underlined elements sum to J(n) and non-underlined elements
sum to J(n + 1).

We end with an observation that follows from an examination
of the ’Jacobsthal’ triangles. We recall that the Fibonacci num-
bers [Sloane, A000045] can be obtained as the sums of the diago-
nals of Pascal’s triangle. The above proposition provides us with
a decomposition of Pascal’s triangle that effectively tri-sects the Fi-
bonacci numbers: the diagonals of the triangles shown give us F(3n),
F(3n+1) and F(3n+2) [Sloane, A001076, A033887, A015448].

Concerned with sequences A000045, A001045, A001076, A007318,
A014551, A015448, A033887, A078008.
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