A. J. CALDERÓN MARTÍN AND C. MARTÍN GONZÁLEZ

ABSTRACT. We prove that any graded Lie derivation on certain 3-graded associative algebras is a graded derivation. As an application we show that the graded Lie derivations on infinite dimensional topologically simple 3-graded associative H^* -algebras are also graded derivations.

1. INTRODUCTION

Over the years, there has been considerable effort made and success in studying the structure of derivations and Lie derivations of rings ([2, 3]), and Banach algebras ([12, 15, 16]). The 3-graded algebras have been considered in the literature with emphasis on their connections with Jordan pairs and the associated groups ([13, 14, 17]), we have also introduced in [5] techniques of derivations and 3-graded algebras in the treatment of problems of Lie isomorphisms. We are interested in investigating the Lie derivations on 3-graded associative algebras. We recall that given a unitary commutative ring K, a 3-graded K-algebra A is a K-algebra which splits into the direct sum $A = A_{-1} \oplus A_0 \oplus A_1$ of nonzero K-submodules satisfying $A_0A_i + A_iA_0 \subset A_i$ for all $i \in \{-1, 0, 1\}$, $A_{-1}A_1 + A_1A_{-1} \subset A_0$ and $A_1A_1 = A_{-1}A_{-1} = 0$. A linear mapping D on a 3-graded associative algebra A such that $D(A_i) \subset A_i$, $i \in \{-1, 0, 1\}$, is called a graded derivation if satisfies D(xy) = D(x)y + xD(y) for all $x, y \in A$, and it is called a graded Lie derivation if D([x, y]) = [D(x), y] + [x, D(y)]holds for all $x, y \in A$. Here and subsequently, the bracket denotes the Lie product, [x, y] = xy - yx on A. From now on A will denote

²⁰⁰⁰ Mathematics Subject Classification. Primary 17B40, 17B70; Secondary 46K70.

The authors are supported in part by the PCI of the spanish Junta de Andalucía 'Estudio analítico-algebraico de sistemas triples y de pares en diferentes clases de estructuras no asociativas', by the PAI of the spanish Junta de Andalucía with project number FQM-0125 and by the the Spanish DGICYT.

a 3-graded associative algebra defined over a field K of characteristic not 2. We define the *annihilator* of A as the ideal given by $Ann(A) = \{x \in A : xy = yx = 0 \text{ for all } y \in A\}$. Our purpose is to show the following theorem

Theorem 1. Let D be a graded Lie derivation on a semiprime 3-graded associative algebra $A = A_{-1} \oplus A_0 \oplus A_1$ such that $A_0 = [A_{-1}, A_1]$. Then D is a 3-graded derivation.

Corollary 1. Let D be a graded Lie derivation on an infinite dimensional topologically simple 3-graded associative H^* -algebra A. Then D is a 3-graded derivation.

2. The Theorem

Given a 3-graded associative algebra, we have clearly that (A_{-1}, A_1) is an associative pair with respect to the triple products $\langle x, y, z \rangle^{\sigma} = xyz$ for $\sigma = \pm$, with $x, z \in A_{-1}$ and $y \in A_1$ if $\sigma = +$, and with $x, z \in A_1$ and $y \in A_{-1}$ if $\sigma = -$. If $P = (P^+, P^-)$ is an associative pair isomorphic to the associative pair (A_{-1}, A_1) , we shall say that A is a 3-graded algebra *envelope* of P if $A_0 = A_{-1}A_1 + A_1A_{-1}$. An envelope A is *tight* if

$$\{x_0 \in A_0 : x_0 A_\sigma = A_\sigma x_0 = 0, \sigma = \pm 1\} = 0.$$

A derivation D on a, non-necessarily associative, pair $V = (V^+, V^-)$ is a couple of linear mappings $D = (D^+, D^-), D^{\sigma} : V^{\sigma} \to V^{\sigma}$, satisfying

$$\begin{split} D^{\sigma}(< x^{\sigma}, y^{-\sigma}, z^{\sigma} >) = &< D^{\sigma}(x^{\sigma}), y^{-\sigma}, z^{\sigma} > \\ &+ < x^{\sigma}, D^{-\sigma}(y^{-\sigma}), z^{\sigma} > + < x^{\sigma}, y^{-\sigma}, D^{\sigma}(z^{\sigma}) > \end{split}$$

for any $x^{\sigma}, z^{\sigma} \in V^{\sigma}, y^{-\sigma} \in V^{-\sigma}$ and $\sigma = \pm$.

Proposition 1. Let $P = (P^+, P^-)$ be an associative pair, let D be a derivation of P, and let A be a 3-graded tight algebra envelope of P. Then there is a unique graded derivation D' on A extending D.

Proof. As $A = P^+ \oplus (P^+P^- + P^-P^+) \oplus P^-$, we can define first

$$D': P^+ \oplus (P^+P^- + P^-P^+) \oplus P^- \to A$$

by writing $D'(x) := D^{\sigma}(x)$ for all $x \in P^{\sigma}$, $\sigma = \pm$, and

$$\begin{split} D'(\sum_{j}(x_{j}y_{j}+u_{j}v_{j})) &:= \sum_{j}(D^{+}(x_{j})y_{j}+x_{j}D^{-}(y_{j})\\ &+D^{-}(u_{j})v_{j}+u_{j}D^{+}(v_{j})) \end{split}$$

for arbitrary $x_j, v_j \in P^+$ and $y_j, u_j \in P^-$. The definition is correct since if $\sum (x_j y_j + u_j v_j) = 0$. Letting

$$z := \sum_{j} (D^{+}(x_{j})y_{j} + x_{j}D^{-}(y_{j}) + D^{-}(u_{j})v_{j} + u_{j}D^{+}(v_{j})),$$

the equations

$$D^+(\sum_j (x_j y_j + u_j v_j)x) = 0$$
 and $D^-(\sum_j (x_j y_j + u_j v_j)y) = 0$

for any $x \in P^+$ and any $y \in P^-$ imply $zP^{\sigma} = 0$, $\sigma = \pm$. In a similar way we have $P^{\sigma}z = 0$. Hence z = 0. The fact that D' is a derivation is easy to check and the proof is complete.

Proof of Theorem 1. As A is a 3-graded associative algebra, we find that the pair

$$J := ((A_{-1}, A_1), \{\cdot, \cdot, \cdot\}^{\sigma})$$

is a Jordan pair in the sense of [10] with respect to the triple products $\{x, y, z\}^{\sigma} = [[x, y], z]$ for $\sigma = \pm$, with $x, z \in A_{-1}, y \in A_1$ if $\sigma = +$ and $x, z \in A_1, y \in A_{-1}$ if $\sigma = -$. Hence (D, D) is a derivation of J. It is proved in [11] that any Jordan derivation on a semiprime associative pair over a field K of characteristic not 2 is an associative derivation. As the 3-graduation of A also implies $\{x, y, z\}^{\sigma} = xyz + zyx$, the above result gives us that (D, D) is a derivation of the associative pair $P := ((A_{-1}, A_1), < \cdot, \cdot, \cdot >^{\sigma})$ being $< \cdot, \cdot, \cdot >^{\sigma} = xyz$. It is easy to check that A is a 3-graded tight algebra envelope of P, hence Proposition 1 shows that (D, D) extends uniquely to a derivation D' on A. We assert that D = D'. Indeed, D(x) = D'(x) for any $x \in A_{-1} \cup A_1$ and chosen any $x_0 \in A_0$, the condition $A_0 = [A_{-1}, A_1]$ gives us $D(x_0) = D'(x_0)$. The proof is complete.

In order to prove Corollary 1, we recall that an H^* -algebra A over $K, K = \mathbb{R}$ or $K = \mathbb{C}$, is a non-necessarily associative K-algebra whose underlying vector space is a Hilbert space with inner product

 $(\cdot|\cdot)$, endowed either with a linear map if $K = \mathbb{R}$ or with a conjugatelinear map if $K = \mathbb{C}$, $*: A \to A$ $(x \mapsto x^*)$, such that $(x^*)^* = x$, $(xy)^* = y^*x^*$ for any $x, y \in A$ and the following hold

$$(xy|z) = (x|zy^*) = (y|x^*z)$$

for all $x, y, z \in A$. The map * will be called the *involution* of the H^* -algebra. The continuity of the product of A is proved in [8]. We call the H^{*}-algebra A, topologically simple if $A^2 \neq 0$ and A has no nontrivial closed ideals. H^* -algebras were introduced and studied by Ambrose [1] in the associative case, and have been also considered in the case of the most familiar classes of nonassociative algebras [4, 6, 8, 9] and even in the general nonassociative context [7, 15]. In [8] it is proved that any H^* -algebra A with continuous involution splits into the orthogonal direct sum $A = Ann(A) \perp \overline{\mathcal{L}(A^2)}$, where Ann(A) denotes the annihilator of A defined as in §1, and $\overline{\mathcal{L}(A^2)}$ is the closure of the vector span of A^2 , which turns out to be an H^* algebra with zero annihilator. Moreover, each H^* -algebra A with zero annihilator satisfies $A = \overline{\perp I_{\alpha}}$ where $\{I_{\alpha}\}_{\alpha}$ denotes the family of minimal closed ideals of A, each of them being a topologically simple H^* -algebra. We also recall that any derivation on arbitrary H^* -algebras with zero annihilator is continuous [15].

Proof of Corollary 1. The structure theories of topologically simple associative and Lie H^* -algebras given in [8] and [6] respectively imply that the antisymmetrized Lie H^* -algebra A^- of A is also a topologically simple Lie H^* -algebra. Hence $A_0 = \overline{[A_{-1}, A_1]}$. There is not any problem in arguing as in Theorem 1 to prove that D = D' on $A_1 \oplus [A_{-1}, A_1] \oplus A_1$. By [15], D and D' are continuous and therefore D = D' on $A = A_1 \oplus \overline{[A_{-1}, A_1]} \oplus A_1$.

References

- W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364–386.
- [2] R. Banning and M. Mathieu, Commutativity-preserving mappings on semiprime rings, Comm. Algebra 25 (1997), 247–265.
- [3] M. Brešar, Commuting traces of biadditive mappings, commutativitypreserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993) 525–546.
- [4] M. Cabrera, J. Martínez and A. Rodríguez, Structurable H^{*}-algebras, J. Algebra 147, no. 1 (1992), 19–62.

- [5] A. J. Calderón and C. Martín, *Lie isomorphisms on H^{*}-algebras*, Comm. Algebra. In press.
- [6] J. A. Cuenca, A. García and C. Martín, Structure theory for L*-algebras, Math. Proc. Cambridge Philos. Soc. 107, no. 2 (1990), 361–365.
- [7] J. A. Cuenca and A. Rodríguez, *Isomorphisms of H^{*}-algebras*, Math. Proc. Cambridge Philos. Soc. 97, (1985), 93–99.
- [8] J. A. Cuenca and A. Rodríguez, Structure theory for noncommutative Jordan H^{*}-algebras, 106 (1987), 1–14.
- [9] Devapakkian, C. Viola and P. S. Rema, *Hilbert space methods in the theory* of Jordan algebras, Math. Proc. Cambridge Philos. Soc. 78 (1975), 293–300.
- [10] O. Loos, Jordan pairs, Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, vol. 460, (1976), 307–319.
- [11] M. Marhinine, C. Zarhouti, *Jordan derivations on associative pairs*. Preprint, University of Tetouan.
- [12] M. Mathieu, "Where to find the image of a derivation", Banach Center Publications, Vol. 30, pp. 237–249, PWN, Warsaw, 1994.
- [13] K. Meyberg, "Lectures on algebraic and triple systems", Lecture notes, University of Virginia, Chalottesville, 1976.
- [14] E. Neher, Generators and relations for 3-graded Lie algebras, J. Algebra 155 (1993), 1–35.
- [15] A. R. Villena, Continuity of derivations on H^{*}-algebras, Proc. Amer. Math. Soc. 122 (1994), 821–826.
- [16] A. R. Villena, Lie derivations on Banach algebras, J. Algebra 226 (2000), 390–409.
- [17] E. Zelmanov, Lie algebras with a finite grading, Math. USSR-SB 52 (1985), 347–385.
- A. J. Calderón Martín,
 Departamento de Matemáticas,
 Universidad de Cádiz,
 11510 Puerto Real, Cádiz, Spain
 ajesus.calderon@uca.es

C. Martín González, Departamento de Algebra, Geometría y Topología, Universidad de Málaga, Apartado 59, 29080 Málaga, Spain.

Received on 20 October 2001 and in revised form on 13 July 2002.