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Banach Algebras in Which Every Left Ideal is
Countably Generated

NADIA BOUDI

1. Introduction

An algebra which is associative or alternative is Noetherian if it sat-
isfies the ascending chain condition on left ideals or equivalently,
every left ideal is finitely generated. A well-known result of Sinclair
and Tullo [9] states that an associative Noetherian Banach algebra
is finite dimensional. This result was extended in [2] to the alter-
native case. In this paper, we are concerned with associative and
alternative Banach algebras in which every left ideal is countably
generated. Several papers have appeared dealing with countably
generated ideals in some Banach algebras (like in [4], [6]). It should
be pointed out that sometimes we have some surprising facts, see for
example [7] and [8].

It is clear that we can treat directly the alternative case, since
every associative algebra is alternative. But our purpose here is to
present the methods rather than the results. And the proof of the
alternative case is rather more complicated.

2. Associative Case

Throughout, we use ‘countable’ to mean finite or denumerably infi-
nite. A key result in [9] is the fact that if the closure of a left ideal I
of an associative Banach algebra is finitely generated as a left ideal,
then I is closed. The next proposition is a generalization of this
result.

Given a Banach space E and X ⊆ E, we denote by X− and ∂X,
respectively, the closure and the boundary of X.
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Proposition 1. Let A be a real or complex Banach algebra, and
let I be a left ideal of A. If the left ideal I− is countably generated,
then I is closed.
Proof. Let (xn) be a sequence of elements of I− such that I− =∑

A′xn, where A′ denotes the unitisation of A. For each n, let (vn
k )

be a sequence of elements of I converging to xn. Without loss of
generality, we can suppose that ‖xn‖ = ‖vn

k ‖ = 1 and ‖xn − vn
k ‖ < 1

for each n, k ∈ N. Set Γ =
⊕

n∈N∗ An, where An = A′. We define
on Γ a vector space norm ‖.‖′ with ‖(an)‖′ =

∑
n ‖an‖. Let T be

the map:
T : Γ −→ I−

(an) 7−→ ∑
anxn,

and for each k, let Tk be the map given by:
Tk : Γ −→ I−

(an) 7−→
k∑

n=1
anvk

n

Clearly, T , Tk are linear and bounded. We claim that the sequence
(Tk) converges uniformly to T on Γ. Indeed, for ε > 0, let 0 6= t
be in N with t 6= 0 and 1/t < ε. Choose N ∈ N such that N > t,
and for each k > N and n ∈ {1, . . . , t} , ‖xn − vn

k ‖ < 1/t. Then, for
(an)n ∈ Γ,

‖T − Tk(an)‖ ≤
∥∥∥

t∑
n=1

an(xn− vn
k )

∥∥∥ +
∥∥∥

k∑
t+1

an(xn− vn
k )

∥∥∥ +
∥∥∥
∞∑

k+1

anxn

∥∥∥

≤
t∑

n=1

1
t ‖an‖+

∞∑
t+1

‖an‖

≤ 1
t

( t∑
n=1

‖an‖+
∞∑

t+1
t ‖an‖

)

≤ 1
t

∞∑
n=1

n ‖an‖ = 1/t ‖(an)‖′

< ε ‖(an)‖′.

Denote by Λ the completion of the normed vector space (Γ, ‖·‖′).
Of course, Λ = {(an) ∈ ΠAn :

∑
n ‖an‖ < ∞}. Let T (resp. T k):

Λ → I− be the continuous extension of T (resp. Tk). Then, the
sequence of continuous linear operators (T k) converges uniformly to
T , but T is surjective and it is well known that the set of surjective
continuous linear mappings is open, hence there exists a positive
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integer k such that T k is surjective. Now the proof is completed by
showing that T k(Λ) ⊆ I. Let (an)n be an element of Λ. Let us
consider the sequence (uk′)k′ , where uk′ = (bk′

n )n and

bk′
n =

{
0 if n > k′

an if n ≤ k′ .

Then, since
∑

n ‖an‖ < ∞, lim
k′

uk′ = (an)n. Clearly, T k((an)n) =

lim
k′

Tk(uk′). For each k′ > k, Tk(uk′) =
k∑

n=1
bk′
n vk

n =
k∑

n=1
anvk

n. Hence,

(Tk(uk′))k′ stabilizes. Therefore, for each k ∈ N, T k((an)n) =
k∑

n=1
anvk

n ∈ I, and the proof is complete. ¤

The following result was shown by Sidney; see [1, p. 77] for a short
simple proof.

Theorem 2. Let A be a Banach algebra. If every left ideal of A is
closed, then A is finite dimensional.

Combining Proposition 1 with the above theorem, we obtain the
main result of this section.

Theorem 3. Let A be a Banach algebra. If every closed left ideal
is countably generated, then A is finite dimensional.

3. Alternative Case

A nonassociative algebra A over a field K of characteristic zero is
said to be an alternative algebra if it satisfies:

x2y = x(xy); yx2 = (yx)x
for all x, y ∈ A. Let A be an alternative algebra. Then A is called
semiprime (respectively, prime) if for every ideal I of A (resp., for
every two of its ideals I and J) it follows from I2 = (0) (resp.
IJ = (0)) that I = (0) (resp., that either I = (0) or J = (0)). Let
X be a subset of A. The annihilator of X is defined by ann(X) =
{a ∈ A : Xa = aX = 0}. If the center Z(A) of A is nonzero and
does not contain zero divisors of the algebra A, A is said to be a
Cayley Dickson ring if moreover the ring of quotients (Z(A)∗)−1 is a
Cayley Dickson algebra over the field of quotients of the center Z(A)
(where Z(A)∗ = Z(A) \ {0}). One can prove that in A, there exists
a smallest ideal B(A) such that A/B(A) does not contain nonzero
trivial ideals [10]; B(A) is called the Baer radical of A.
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A real or complex nonassociative algebra A is said to be normed
(respectively, Banach) algebra if the underlying vector space of A is
endowed with a norm (respectively, complete norm) ‖·‖ satisfying
‖ab‖ ≤ ‖a‖ ‖b‖ for all a, b ∈ A. Any alternative algebra A can be
imbedded in a unital alternative algebra A′, A′ = K + A. For ba-
sic results on alternative algebras, the reader is referred to [10]. In
particular, recall that every prime alternative algebra A that is not
associative is a Cayley Dickson ring. Also, recall that if A is an al-
ternative algebra, then for any two of its ideals I and J , the product
IJ is also an ideal of the algebra A. Now, let A be a nonassociative
Banach algebra and let BL(A) denote the algebra of all bounded
linear operators on A. For a in A, La will mean the operator of left
multiplication by a on A; clearly, La is bounded. We will denote
by L(A) the left multiplication algebra of A, namely, the subalge-
bra of BL(A) generated by the identity operator idA and the set
{La : a ∈ A}.

Let A be a nonassociative algebra and let I be a left ideal of A. If I
is generated by {xi}, then I =

∑
L(A)xi. Note that if A is endowed

with a complete norm, then L(A) need not be closed. Hence, the
technique of the proof of Proposition 1 gives a restricted version
of this proposition in the nonassociative context, but which is still
enough for our purposes.

Proposition 4. Let A be a nonassociative real or complex Banach
algebra, and let I be a left ideal of A. If L(A)−I ⊆ I and I− is
countably generated as a left ideal in A, then I is closed.

The next lemma is an immediate consequence of the above propo-
sition.

Lemma 5. Let A be a nonassociative real or complex Banach alge-
bra, and let y be an element of the nucleus N(A) of A. If (A′y)−

is countably generated as a left ideal in A, then A′y is closed.
Let A be an algebra. We will denote by id(a1, . . . , an) the ideal

generated by a1, . . . , an ∈ A.

Lemma 6. Let A be an alternative semiprime complex unital Ba-
nach algebra in which every left ideal is countably generated. Then
the center Z(A) is semisimple and finite dimensional.

Proof. Let us first prove that Z(A) has finite spectrum. Let x be in
Z(A) and assume that sp(x, Z(A)) is infinite. Then, ∂sp(x, Z(A)) is
infinite. Consider the set
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I = {z ∈ A | ∃λ1, ..., λn ∈ ∂spx, z(x− λ1)...(x− λn) = 0} .

Clearly, I is an ideal of A and L(A)−I ⊆ I. Hence, I is closed
(Proposition 4). By assumption, we can find a sequence (zn)n ⊆ I
such that I =

∑
n

L(A)zn. For each n, there exist λn
1 , . . . , λn

rn
∈ ∂spx

(rn ∈ N) such that
zn(x− λn

1 ) · · · (x− λn
rn

) = 0.
If ∂spx is not countable, then we can pick λ ∈ ∂spx so that λ /∈
{λn

i : i = 1, . . . , rn, n ∈ N}. Define
T : A −→ A

y 7−→ yx.

We check easily that spT = sp(x, Z(A)) = sp(x,A). Thus, λn ∈
∂spT . Since A(x−λ) is closed (Lemma 5), we can apply [1, Lemma 3
on p. 75] to λ to get z ∈ A with z(x − λ) = 0. Hence, z ∈ I and
z = S1z1 + ... + Snzn for some S1,..., Sn ∈ L(A). Therefore,

z
∏

i=1,...,n
j=1,...,rn

(x− λi
j) = 0

and thus
∏

i,j(λ−λi
j) = 0, which is impossible. Consequently, ∂spx is

countable. Set ∂spx = {λn | n ∈ N}. Then, we can write I =
⋃

n∈N
In,

where In = {z ∈ A | z(x − λ1) · · · (x − λn) = 0}. Using Baire’s

Theorem and Proposition 4, we deduce that I =
N⋃

n=1
In = IN for

some N ∈ N, and we proceed as above to prove that ∂spx is finite.
Now we prove that Z(A) is semisimple. Let x be in Rad Z(A).
Then, x is quasi-nilpotent. Set J = {a ∈ A | ∃n ∈ N, axn = 0}; J is
an ideal of A, L(A)−J ⊆ J and hence, J is closed (Proposition 4).
Furthermore, J =

⋃
n∈N

Jn where Jn = {a ∈ A : axn = 0}. Again by

Baire’s Theorem and Proposition 4, there exists n ∈ N such that

J =
n⋃

k=1

Jk = Jn. Suppose that Jn 6= A. Consider

T : A/Jn −→ A/Jn

a + Jn 7−→ ax + Jn.

Clearly, T is quasi-nilpotent. Applying again [1, Lemma 3 on p. 75],
we get a ∈ A such that a /∈ Jn and ax ∈ Jn. Hence, a ∈ Jn+1 =
Jn which is impossible. Thus, Jn = A and x is nilpotent. Since
x ∈ Z(A), id(x) is nilpotent and hence, by the semiprimeness of A,
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x = 0. Finally, the lemma follows from the well-known result of
Kaplansky [5]. ¤
Lemma 7. Let A be a complex alternative prime Banach algebra in
which every left ideal is countably generated. Suppose that A is not
associative; then, A = OC (the Cayley Dickson algebra over C).

Proof. Since A is prime, Z(A) does not contain non-zero zero di-
visors. Furthermore, by Lemma 6, Z(A) is finite dimensional and
semisimple. Hence, by Wedderburn’s theorem for semisimple finite
dimensional associative complex algebras, it is isomorphic to the
complex field. Now, the lemma is a consequence of [10, p. 194]. ¤

We are now in a position to prove the main theorem of this section.

Theorem 8. Let A be an alternative complex Banach algebra. If
every left ideal is countably generated, then A is finite dimensional.

Proof. If A is not unital, then A′ is a complex alternative Banach
algebra in which every left ideal is countably generated. Hence, we
can assume without loss of generality that A is unital.

Let us first examine the semiprime case. Then, every associative
ideal I of A is contained in the nucleus N(A) of A (N(I) = I∩N(A)
[10, p. 177]. Let U be the largest associative ideal of A. Clearly, U is
closed, A/U is purely alternative and semiprime (for the second fact,
one can use for example the semiprimeness of A and the well known
property: (A,A, A)U = 0 [10, p. 136, Lemma 1], also, using the
same identities, one can deduce the third fact). Now, set A = A/U .
Then, A is a purely alternative semiprime Banach algebra in which
every left ideal is countably generated, hence for every nonzero ideal
of A, I ∩ Z(A) 6= 0 [10]. Pick a prime ideal P1 of A. Then, since
Z(A) is finite dimensional (Lemma 7) and

⋂
P prime

P = 0 [10], there

exists a prime ideal P2 of A such that P2 ∩ P1 ∩ Z(A) 6= P1 ∩ Z(A).

Hence, we can proceed analogously to prove that
n⋂

i=1

Pi ∩ Z(A) = 0

for some prime ideals P3,. . . ,Pn. And so,
n⋂

i=1

Pi = 0. Without loss of

generality we can assume Pi * Pj if i 6= j. Then each Pi is closed
(Pi = ann(

⋂
j 6=i

Pj)), hence A/Pi is finite dimensional (Lemma 7 and

Theorem 3), and therefore, A is finite dimensional. Next we show
that A is finite dimensional. Let I be a left ideal of U . Let (xn) be
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a sequence of I such that A′IA′ =
∑

A′xn. Then, I =
∑

Uxn + F
where F is a countably dimensional space. Hence, every left ideal
of U is countably generated and Theorem 3 yields that U is finite
dimensional.

Now, for the general case, let us consider the Baer chain of ideals
[10, p. 161], B1(A) ⊆ B2(A) . . . ⊆ Bn(A) . . . and let B′(A) =⋃
i∈N

Bi(A). Since L(A)−B1(A) ⊆ B1(A), B1(A) is closed (Propo-

sition 4). Now, by considering A/Bi−1(A), we deduce that Bi(A) is
closed for each i. And so, Baire’s Theorem and Proposition 4 show

that B′(A) =
n⋃

i=1

Bi(A) for some n, which implies that B′(A) =

Bn(A). And consequently, the Baer radical of A is Bn(A). Since
B1(A) is a countably generated left ideal, we can choose a sequence
(an)n∈N of elements of A such that id(an) is trivial and B1(A) =⋃
i∈N

id(a1, ...ai). Hence, by applying Baire’s Theorem and Proposi-

tion 4, we infer that B1(A) =
N⋃

i=1

(id(a1, ..., ai))− = (id(a1, ..., aN ))−

for some N ∈ N. Now, we check easily that B1(A) is nilpotent.
Set A = A/Bn−1(A). Then, A is a complex alternative Banach al-
gebra in which every left ideal is countably generated. Therefore,
B1(A) = Bn(A)/Bn−1(A) is nilpotent. Choose k ∈ N such that
(B1(A))k = 0. Then, ((B1(A))k−1)− is a countably generated mod-
ule over L(A/B1(A)). But A/B1(A) ' A/Bn(A) which is finite
dimensional, hence L(A/B1(A)) is countably dimensional and so,
((B1(A))k−1)− is countably dimensional. Thus, by Baire’s Theorem,
(B1(A))k−1 is finite-dimensional. Consider (B1(A))k−2/(B1(A))k−1

and A/(B1(A))k−1, as above, we show that (B1(A))k−2 is finite di-
mensional. We continue in this fashion to obtain that B1(A) is finite
dimensional, hence A is finite dimensional. A recursive argument
allows us to show that A is finite dimensional, which completes the
proof. ¤

Corollary 9. Let A be a real alternative Banach algebra in which
every left ideal is countably generated. Then A is finite dimensional.

Proof. Consider AC = A+ iA, the complexification of A. Then, by a
straightforward argument, we show that every left ideal is countably
generated in AC. Also, recall that AC is endowed with a complete
norm [3]. Now, by applying Theorem 8 we deduce that AC and hence
A is finite dimensional. ¤
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