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An Approach to Hensel’s Lemma

gary mcguire

Abstract. Hensel’s Lemma is an important tool in many ways. One
application is in factoring polynomials over Z. The computation in
applying Hensel’s Lemma proceeds by using the Euclidean algorithm.
In this short article we present another approach to Hensel’s Lemma,

and we show that the lift of a polynomial can be calculated in another

way. In some cases this is computationally faster. The proof is a
connection between Hensel’s Lemma and the polynomial whose roots

are the p-th powers of the roots of a given polynomial.

1. Introduction

Let h(x) be a polynomial with integer coefficients. In this article
we will assume that all polynomials are monic. Hensel’s Lemma
begins with a factorisation h(x) = f1(x)g1(x) over Zp, where p is
a prime and gcd(f1, g1) = 1, and inductively constructs a factori-
sation h(x) = fk(x)gk(x) over Zpk with the property that fk(x) ≡
f1(x) (mod p) and gk(x) ≡ g1(x) (mod p). This “Hensel lift” from
Zp to Zpk is accomplished by repeated use of the Euclidean algo-
rithm. For more details, and applications, see [2], [3] or [4]. Here is
an example where p = 2.

k Zpk [x] fk(x) gk(x) = h(x)

1 Z2[x] (x3 + x + 1) (x4 + x2 + x + 1) = x7 − 1
2 Z4[x] (x3 + 2x2 + x + 3) (x4 + 2x3 + 3x2 + x + 1) = x7 − 1
3 Z8[x] (x3 + 6x2 + 5x + 7) (x4 + 2x3 + 7x2 + 5x + 1) = x7 − 1
4 Z16[x] (x3 + 6x2 + 5x + 15) (x4 + 10x3 + 15x2 + 5x + 1) = x7 − 1
5 Z32[x] (x3 + 6x2 + 5x + 31) (x4 + 26x3 + 31x2 + 5x + 1) = x7 − 1
6 Z64[x] (x3 + 38x2 + 37x + 63) (x4 + 26x3 + 63x2 + 37x + 1) = x7 − 1

In Section 2 we will give another method for accomplishing the
lifting of a factorisation. Our method will lift either a single poly-
nomial in the factorisation, or both factors, using only polynomial
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multiplication. The procedure in the previous paragraph lifts both
factors f1(x) and g1(x) simultaneously. The lifting of one factor is
sometimes all that is required; for example, this occurs in the lifting
of generator polynomials of cyclic codes over Z2 to Z4, or more gen-
erally from Zp to Zpk . Coding theorists have been using the method
of this article, and although we have not seen anything in print, this
article contains nothing new. In Section 3 we compare the compu-
tational complexities of both methods. Section 4 will provide full
details of one of the proofs.

The Hensel lift of a factorisation is defined above. We will now
define the Hensel lift of a single polynomial. First we define the
Hensel lift of irreducible divisors of xn − 1, and then proceed to
define the Hensel lift for an arbitrary divisor of xn − 1. Sometimes
we will refer to the Hensel lift simply as the lift.

If f(x) ∈ Zp[x] is a monic irreducible divisor of xn− 1, the Hensel
lift to Zpk of f(x) is defined to be the unique monic irreducible
polynomial fk(x) ∈ Zpk [x] such that fk(x) ≡ f(x) (mod p) and fk(x)
divides xn−1 in Zpk [x]. For a proof of the existence and uniqueness
of fk(x), see Theorem 1 below. With g(x) = (xn − 1)/f(x), this
is the same result as would be found if we lifted the factorisation
h(x) = xn− 1 = f(x)g(x) in Zp[x] to xn− 1 = fk(x)gk(x) in Zpk [x],
by uniqueness.

The Hensel lift of any monic f(x) ∈ Zp[x] which divides xn − 1
is obtained by factoring f(x) into irreducible factors in Zp[x], then
lifting each irreducible factor to Zpk [x] and multiplying the lifts to-
gether.

We could even define the Hensel lift of any monic f(x) ∈ Zp[x],
by defining the lift to be the product of the lifts of the irreducible
factors of f(x), but we will not discuss this further.

2. The Results

Our method is based on finding the polynomial whose roots are
the p-th powers of the roots of a given polynomial a(x). Corollary
C below can be seen as a generalisation of the familiar method of
calculating a polynomial whose roots are the squares of a given a(x),
which is to replace x2 by x in the polynomial a(x)a(−x).

Theorem A. Let a(x) be a polynomial with rational coefficients.
Let ω 6= 1 be a complex n-th root of unity, for any integer n > 1.
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If r ≥ 1 is relatively prime to n then the coefficient of xr in the
polynomial

b(x) =
n∏

j=1

a(ωjx)

is zero. All the coefficients of b(x) are rational, and if a(x) has
integer coefficients, then so does b(x).

Proof: It is clear that b(x) has rational coefficients since it is fixed
by the Galois group of the extension Q(ω)/Q. If a(x) has integer
coefficients, then the coefficients of b(x) are algebraic integers, and
therefore rational integers.

If a(x) =
∑

aix
i then the coefficient of xr in b(x) is

∑
ai0ai1 · · · ain−1ω

i1+2i2+3i3+···+(n−1)in−1

where the sum is over all n-tuples (i0, i1, i2, . . . , in−1) such that each
ij ≥ 0 and i0 + i1 + i2 + · · ·+ in−1 = r. In this sum, consider the n
terms arising from any particular n-tuple and its n cyclic shifts. If r
is relatively prime to n, we will show that the sum of these n terms
is zero. This will complete the proof.

Since the coefficients ai0ai1 · · · ain−1 in the n terms are all equal,
to show that the sum of these n terms is zero it will suffice to show
that the n powers of ω are all distinct, and then use the fact that
1+ω +ω2 + · · ·+ωn−1 = 0. Suppose to the contrary that two of the
powers are equal. By relabelling the ij if necessary, we may assume
that

ωi1+2i2+3i3+···+(n−1)in−1 = ωik+1+2ik+2+3ik+3+···+(n−1)ik+n−1

(reading subscripts modulo n) for some k satisfying 0 < k < n. If
we consider the exponents, this implies

n−1∑
m=0

mim ≡
n−1∑
m=0

mik+m (mod n).

But this righthand side is congruent modulo n to
∑n−1

s=0 (s − k)is,
and so

n−1∑
m=0

mim ≡
n−1∑
s=0

(s− k)is ≡
n−1∑
s=0

sis −
n−1∑
s=0

kis (mod n)
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giving
∑n−1

s=0 kis ≡ 0 (mod n). Now we use that fact that i0 + i1 +
i2 + · · ·+ in−1 = r to conclude kr ≡ 0 (mod n), which is impossible
if r and n are relatively prime. tu

Corollary B. Let a(x) be a polynomial with integer coefficients.
Let ω 6= 1 be a p-th root of unity, for any prime p. Then the integral
polynomial

b(x) =
p∏

j=1

a(ωjx)

is a polynomial in xp.

Corollary C. Let a(x) be a monic polynomial with integer coeffi-
cients, and let p be a prime. Let b(x) be as in Corollary B. Then
the monic integral polynomial c(x) whose roots are the p-th powers
of the roots of a(x) is

c(x) = b(x1/p).

Now that we have shown how to calculate the polynomial whose
roots are the p-th powers of a given polynomial, we shall show that
this polynomial is the lift that is produced by Hensel’s Lemma. This
will be shown in the course of the proof of Theorem 1, which is
why we include the proof although the result is not new (see [1] for
example—we will give their proof). Usually Theorem 1 is given as a
corollary of Hensel’s Lemma.

Theorem 1. Let fk(x) be a monic irreducible divisor of xn − 1 in
Zpk [x] for any k ≥ 1. Assume n and p are relatively prime. Then
there exists a unique monic irreducible polynomial fk+1(x) which
divides xn − 1 in Zpk+1 [x] and such that fk+1(x) ≡ fk(x) (mod pk).

Proof: (Sketch—for full details see Section 4.) Let Sk be the set
of n-th roots of unity in an extension ring of Zpk . If α ∈ Sk is a
root of fk(x), then in Zpk+1 [Sk+1] we have αn = 1 + pkδ for some
δ ∈ Sk+1. It follows that αnp = 1. We conclude that the polynomial
in Zpk+1 [x] whose roots are the p-th powers of the roots of fk(x) is a
lift of fk(x). For uniqueness see section 4. If fk+1(x) were reducible,
then reduction modulo pk would imply that fk(x) is reducible. tu
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Corollary 2. Given fk(x), fk+1(x) can be calculated as follows:
1. Regard fk(x) as having integer coefficents.
2. Compute the polynomial c(x) in Corollary C (with fk(x) in place

of a(x)).
3. Reduce c(x) modulo pk+1.

We can now summarise our approach.

INPUT: A monic polynomial f(x) ∈ Zp[x] dividing xn − 1.

WANTED: The Hensel lift of f(x) to Zpk [x].

PROCEDURE: Factor f(x) into irreducible factors. For each ir-
reducible factor iterate Corollary 2 k− 1 times, i.e., lift from Zpm to
Zpm+1 for m = 1, 2, . . . , k − 1. Then multiply the lifts of each factor
together.

We remark that by iterating Corollary 2 indefinitely, we would get
the p-adic lift of f(x).

3. Computational Complexity

Here we (rather crudely) compare the complexity of using Corollary 2
to calculate the lift versus the usual method. The worst feature of
the Corollary 2 method is that the given polynomial f(x) to be lifted
has to be factored into irreducible factors in Zp[x].

Assume for the moment that f(x) is a monic irreducible polyno-
mial in Zp[x], of degree r, say. In this case there is no factoring
required. To calculate the lift of f(x) to Zp2 , we must multiply p
polynomials of degree r together. According to [2], multiplication
of two degree r polynomials using the Fast Fourier Transform takes
O(r log r) operations, so the multiplication of our p polynomials of
degree r takes O(pr log pr) operations. However, this may not be
strictly accurate in our case since the coefficients are not integers,
and the simplification of these coefficients is not taken into account.

The Euclidean algorithm calculation in Hensel’s Lemma takes
O(m(log m)2 log log m) operations where m is the largest of the de-
grees of the two polynomials, see [2]. If f(x) has degree r then
m = n− r where n is the smallest n such that f(x) divides xn − 1.

In the case that f(x) is a primitive irreducible polynomial, we have
n = pr − 1 and m = pr − 1 − r, so in this crude comparison we see
that using Corollary 2 is faster for large r and fixed p. This was
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borne out by Mathematica experiments. For example, if p = 3 and
r = 30 then pr = 120, but m = pr − 1− r = 330 − 31 is much larger
than pr.

For small r we tested some examples on Mathematica and the
Euclidean algorithm method was faster, as one might expect.

4. Technical Details

In this section we give a more complete proof of Theorem 1. The
complications arise from the fact that we are dealing with polynomi-
als which have coefficients in a ring (with zero-divisors), and not a
field. We would like to know that extension rings always exist con-
taining the roots of these polynomials, as happens with a field. Since
we are always working with monic polynomials within the roots of
unity, this is true.

The proper framework is really the field of p-adic numbers Qp.
If S is the set of n-th roots of unity in an extension field of Qp,
then we consider the ring Zp[S] where Zp is the ring of p-adic inte-
gers. For each k there is the reduction modulo pk homomorphism
φk:Zp −→ Zpk and this can be extended to Zp[S]. Let Sk = φk(S).
For example, S1 is the set of n-th roots of unity in an extension field
of Z/pZ.

There are also homomorphisms ψk:Zpk+1 −→ Zpk which are re-
duction modulo pk. For example,

ψ−1
k (1) = {1 + pkδ : δ ∈ S}.

This set has n elements, but note that all n elements have the same
p-th power, namely 1.

To prove Theorem 1, let T ⊆ Sk be the set of roots of fk(x).
Take the p-th powers of the elements of ψ−1

k (T ). If αk ∈ T then
a pre-image of αk in ψ−1

k (T ) looks like αk+1 = αk + pkδ so that
αp

k+1 = αp
k. This gives us deg(fk) elements of Zpk+1 [Sk+1] each of

whose n-th power is 1. Clearly their reduction modulo pk gives the
roots of fk(x), i.e., ψk(ψ−1

k (T )p) = T . These two properties mean
that we can take the p-th powers of the elements of ψ−1

k (T ), and
form the polynomial with these as roots, and this polynomial will be
fk+1(x).

To prove uniqueness, suppose there are two polynomials g(x) and
g′(x) in Zpk+1 [x] which divide xn−1 and reduce modulo pk to fk(x).
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Let β and β′ be roots of g(x) and g′(x) respectively, both of which
reduce modulo pk to α. Then βn = 1 = β′n of course, so (β/β′)n = 1.
But also βp = β′p so (β/β′)p = 1. Since n and p are relatively prime
we get β = β′ and therefore g(x) = g′(x).
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