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Recent Progress on the Daugavet Property

DIRK WERNER

1. Introduction

It is a remarkable result due to I.K. Daugavet [8] that the norm
identity

‖Id + T‖ = 1 + ‖T‖, (1.1)

which has become known as the Daugavet equation, holds for com-
pact operators on C[0, 1]; shortly afterwards the same result for com-
pact operators on L1[0, 1] was discovered by G.Ya. Lozanovskii [20].
Over the years, (1.1) has been extended to larger classes of opera-
tors on various spaces; in particular, the Daugavet equation is known
to hold for operators not fixing a copy of C[0, 1] defined on certain
“large” subspaces of C(K), where K is a compact space without iso-
lated points, and for operators not fixing a copy of L1[0, 1] defined
on certain “large” subspaces of L1[0, 1] ([15], [22], [28]). See also the
examples in the next section.

Methods encountered in the investigation of (1.1) include Banach
lattice techniques ([1], [2]), stochastic kernels and random measures
([13], [27], [29]) and other arguments from the geometry of Banach
spaces ([14], [30]).

The Daugavet equation has proved useful in approximation the-
ory, where it was used to find the best constants in certain inequali-
ties [26], and in the geometry of Banach spaces. In [13], G. Godefroy,
N. Kalton and D. Li observed for an operator V with ‖V ‖ < 2 and
T := V − Id satisfying (1.1) that V must be an isomorphism; indeed,
(1.1) implies that ‖V −Id‖ < 1, and hence the result follows from the
Neumann series. They go on to apply this consequence to quotients
by nicely placed subspaces of L1. V. Kadets [14] used the Daugavet
equation to give a very simple argument that neither C[0, 1] nor
L1[0, 1] have unconditional bases; see Proposition 3.1 below.
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This survey describes some results along these lines that were
recently obtained in [17], [18] and [25], where full details can be
found.

2. The Daugavet property

Our starting point is the observation that those Banach spaces on
which (1.1) holds for rank-1 operators can be characterised geomet-
rically. So we first give a convenient definition.

Definition 2.1. A Banach space X has the Daugavet property if

‖Id + T‖ = 1 + ‖T‖
for every rank-1 operator T : X → X.

Clearly, it is enough to check this definition for operators with
norm 1. Indeed, if two elements in a normed space satisfy ‖v +w‖ =
‖v‖+ ‖w‖, then the function ϕ(λ) = ‖λv +(1−λ)w‖− (λ‖v‖+(1−
λ)‖w‖) is convex on [0, 1], takes values ≤ 0 and satisfies ϕ(1/2) = 0;
therefore ϕ = 0 which implies that ‖rv + sw‖ = r‖v‖+ s‖w‖ for all
r, s > 0.

We remark that the Daugavet property is an isometric property of
a Banach space that is liable to be spoilt by passing to an equivalent
norm.

Before giving examples, we mention that it will turn out that
the Daugavet equation holds for much wider classes of operators
if it merely holds for one-dimensional ones, see Theorem 2.7 and
Theorem 2.8 below and Section 4.

Examples. (a) If K is a compact Hausdorff space without isolated
points, then C(K) has the Daugavet property; this is essentially
I.K. Daugavet’s original result [8]. On the other hand, if K has an
isolated point k0, the one-dimensional operator Tf = −f(k0)χ{k0}
does not satisfy (1.1); instead we have ‖Id + T‖ = 1, 1 + ‖T‖ = 2.

(b) If µ is a nonatomic measure, then L1(µ) and L∞(µ) have
the Daugavet property; this is originally due to G.Ya. Lozanovskii
[20] and A. PeÃlczyński [11]. Again it is easy to see that (1.1) fails
in general if µ has atoms. Note that the Daugavet property passes
from X∗ to X, but not necessarily from X to X∗; indeed C[0, 1] has
the Daugavet property, but its dual fails it. We mention that (a)
and (b) extend to the Banach space valued function spaces C(K, E)
and L1(µ, E) irrespective of the range space; see below.
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(c) In general, the Daugavet property does not pass to subspaces,
not even to 1-complemented ones; we shall have more to say on this
in Section 5. However, it does pass to M -ideals and L-summands
[17]. On the other hand, if X and Y have the Daugavet property,
then so do X ⊕1 Y and X ⊕∞ Y ([17], [30] and, for the special case
C(K) ⊕1 C(K), [1]). Very recently, D. Bilik has shown that the
`1- and `∞-sums are the only unconditional sums that preserve the
Daugavet property.

(d) If A ⊂ C(K) is a uniform algebra, i.e., a closed subalgebra
containing the constant functions and separating the points of K,
and if the Choquet boundary of A does not contain any isolated
points, then A has the Daugavet property ([29], [30]). In particu-
lar, the Daugavet property holds for the disk algebra A(D) and the
algebra of bounded analytic functions H∞.

(e) A real L1-predual space X, i.e., a Banach space whose dual
is isometric to some space L1(µ), has the Daugavet property if the
set of extreme points ex BX∗ has no isolated points; in the complex
case one has to consider the quotient space ex BX∗/∼ instead, where
p∗ ∼ q∗ if they are multiples of each other [29].

(f) The noncommutative analogues of (a) and (b) hold as well
[21]: A C∗-algebra has the Daugavet property if and only if it is
nonatomic, and then (1.1) is automatically valid for the completely
bounded norm. Consequently, the predual of a nonatomic von Neu-
mann algebra has the Daugavet property.

In order to describe the Daugavet property in geometric terms,
we recall that a slice of the unit ball of X is a set given by

S(x∗, α) = {x ∈ BX : Re x∗(x) ≥ 1− α}
for some functional x∗ ∈ X∗ of norm 1 and some α > 0. Here
BX = {x ∈ X: ‖x‖ ≤ 1} denotes the closed unit ball of X, and we
let SX = {x ∈ X: ‖x‖ = 1} stand for its unit sphere.

In the following we shall assume for simplicity that we are dealing
with real scalars.

Lemma 2.2. The following assertions about a Banach space X are
equivalent:

(i) X has the Daugavet property.
(ii) For every slice S = S(x∗0, ε0) of BX , every x0 ∈ SX and

every ε > 0 there exists a point x ∈ S such that ‖x + x0‖ ≥
2− ε.
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(iii) For every slice S = S(x∗0, ε0) of BX , every x0 ∈ SX and
every ε > 0 there exists a slice S′ of BX contained in S such
that ‖x + x0‖ ≥ 2− ε for all x ∈ S′.

(iv) For every relatively weakly open subset U of BX , every x0 ∈
SX and every ε > 0 there exists a relatively weakly open
subset U ′ of BX contained in U such that ‖x + x0‖ ≥ 2− ε
for all x ∈ U ′.

Proof. The equivalence of (i) and (ii) is quickly established by look-
ing at the rank-1 operator defined by Tx = x∗0(x)x0 when a slice and
a point are given; conversely, every such operator determines a slice
and a point. For the implication (i) ⇒ (iii) note that ‖Id + T ∗‖ =
‖Id + T‖ = 2 for the above T . Hence there is a functional x∗ ∈ SX∗

such that ‖x∗ + T ∗x∗‖ ≥ 2− ε0 and x∗(x0) ≥ 0. Put

x∗1 =
x∗ + T ∗x∗

‖x∗ + T ∗x∗‖ , ε1 = 1− 2− ε0

‖x∗ + T ∗x∗‖ .

Then we have, given x ∈ S′ := S(x∗1, ε1),

〈(Id + T ∗)x∗, x〉 ≥ (1− ε1)‖x∗ + T ∗x∗‖ = 2− ε0,

therefore
x∗(x) + x∗(x0)x∗0(x) ≥ 2− ε0, (2.1)

which implies that x∗0(x) ≥ 1− ε0, i.e., x ∈ S(x∗0, ε0). Moreover, by
(2.1) we have x∗(x) + x∗(x0) ≥ 2− ε0 and hence ‖x + x0‖ ≥ 2− ε0;
note that there is no loss of generality in assuming that ε = ε0.

The implication (i) ⇒ (iv) is more difficult and originally due to
R. Shvidkoy [25]. He starts off by rediscovering a lemma that has
originated in Bourgain’s Paris lecture notes on the Radon-Nikodým
property (cf. [12, Lemma II.1]) to the effect that a relatively weakly
open subset of BX contains a convex combination of slices, and then
one uses (iii). Finally, the implications (iv) ⇒ (ii) and (iii) ⇒ (ii)
are clear. ¤

By means of the Hahn-Banach theorem the equivalence of (i) and
(ii) above can be rephrased as follows. We use the notation

∆ε(x) = {y ∈ BX : ‖x− y‖ ≥ 2− ε}
for x ∈ SX .

Corollary 2.3. A Banach space X has the Daugavet property if and
only if BX = co∆ε(x) for all x ∈ SX and ε > 0.
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Example. Let us use Lemma 2.2 to show that L1[0, 1] has the Dau-
gavet property. In fact, let f0 ∈ SL1 and g0 ∈ SL∞ . For ε > 0,
find a measurable subset B of [0, 1] such that ‖χBf0‖L1 ≤ ε/2 and
‖χBg0‖L∞ ≥ 1 − ε/2, and pick f ∈ SL1 so that χBf = f and
〈g0, f〉 ≥ 1 − ε. Since clearly ‖f + f0‖ ≥ 2 − ε, condition (ii) of
Lemma 2.2 is fulfilled.

The same arguments work for L1(µ) if (Ω,Σ, µ) is a nonatomic
measure space, and they easily extend to the Bochner space L1(µ,E)
irrespective of the range space.

Similarly one can show that C(K) and indeed the space of vector-
valued functions C(K,E) has the Daugavet property if K has no
isolated points. It is somewhat more convenient to work with Corol-
lary 2.3 now. Thus, let f ∈ SC(K,E) and ε > 0 be given. Let U be
the open set {t ∈ K: ‖f(t)‖E > 1 − ε/2} and pick, given n ∈ N,
open pairwise disjoint nonvoid subsets U1, . . . , Un ⊂ U and points
tj ∈ Uj . Now let h ∈ BC(K,E). Choose continuous E-valued func-
tions gj such that gj = h off Uj , gj(tj) = −f(tj) and ‖gj‖∞ ≤ 1;
this can be achieved by multiplying f and h by suitable Urysohn
functions. Then gj ∈ ∆ε(f), and for t ∈ Ui

∥∥∥∥h(t)− 1
n

n∑

j=1

gj(t)
∥∥∥∥
∞

=
∥∥∥h(t)− n− 1

n
h(t)− 1

n
gi(t)

∥∥∥
∞

=
1
n
‖h(t)− gi(t)‖∞ ≤ 2

n
,

whereas for t /∈ ⋃
j Uj

h(t)− 1
n

n∑

j=1

gj(t) = 0.

This proves that h ∈ co∆ε(f) and, consequently, that BC(K,E) =
co∆ε(f).

The same argument implies that the spaces of weakly resp. weak∗

continuous functions Cw(K,E) resp. Cw∗(K, E∗) have the Daugavet
property if K fails to have isolated points.

There is also a weak∗ version of Lemma 2.2 that can be verified
by working with the adjoint of the above operator T .

Lemma 2.4. The following assertions about a Banach space X are
equivalent:

(i) X has the Daugavet property.
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(ii) For every weak ∗ closed slice S∗ of BX∗ , every x∗0 ∈ SX∗

and every ε > 0 there exists a point x∗ ∈ S∗ such that
‖x∗ + x∗0‖ ≥ 2− ε.

(iii) For every weak ∗ closed slice S∗ of BX∗ , every x∗0 ∈ SX∗ and
every ε > 0 there exists a slice S∗′ of BX∗ contained in S∗

such that ‖x∗ + x∗0‖ ≥ 2− ε for all x∗ ∈ S∗′.

Lemmas 2.2 and 2.4 allow us to deduce an immediate necessary
condition for the Daugavet property.

Corollary 2.5. If X has the Daugavet property, then every slice of
the unit ball has diameter 2. Therefore, X fails to have the Radon-
Nikodým property, and in particular X is nonreflexive. Likewise X∗

fails to have the Radon-Nikodým property.

This follows from (ii) of Lemma 2.2 if we apply it to an x0 with
−x0 ∈ S, respectively from (ii) of Lemma 2.4; note that closed con-
vex bounded sets in spaces with the Radon-Nikodým property admit
slices of arbitrarily small diameter (cf. [3, Th. 5.8]).

The next theorem gives another reason why a space with the
Daugavet property must be nonreflexive.

Theorem 2.6. If X has the Daugavet property, then X contains a
subspace isomorphic to `1.

Proof. (Sketch.) Start with any vector x1 ∈ SX and any slice S1

of BX . Lemma 2.2 provides us with a subslice S2 ⊂ S1 such that
‖x+x1‖ is close to 2 for all x ∈ S2. Now apply Lemma 2.2 with −x1

and S2 to obtain a slice S3 ⊂ S2 such that ‖x− x1‖ is close to 2 for
all x ∈ S3; that is

‖x± x1‖ ≈ 2 ∀x ∈ S3.

That means that for any such x the linear span of x and x1 is ap-
proximately a 2-dimensional `1-space. Denote a subspace thus ob-
tained by E2. If we repeat the above procedure for sufficiently many
points y1, . . . , yN in the unit sphere of E2 and for the resulting slices
S3 ⊃ S4 ⊃ S5 ⊃ . . . , we eventually obtain a slice S such that

‖x + yj‖ ≈ 2 ∀x ∈ S, j = 1, . . . , N,

and if the points y1, . . . , yN form a δ-net for a sufficiently small δ,
then

‖x + y‖ ≈ 2 ∀x ∈ S, y ∈ SE2 .
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This implies that any such x and E2 generate a 3-dimensional sub-
space E3 ⊃ E2 that is approximately a 3-dimensional `1-space, etc.
With a judicious choice of the epsilons and deltas involved that de-
termine the accuracy of the approximations one obtains a nested
sequence E2 ⊂ E3 ⊂ . . . , with each Ek approximately a finite-
dimensional `1-space. Therefore the closed linear span of the Ek

is isomorphic to `1. ¤
An inspection of the proof reveals that a space X with the Dau-

gavet property actually contains asymptotically isometric copies of
`1, meaning copies of `1 spanned by a basis satisfying, for some null
sequence (εn),

∞∑
n=1

(1− εn)|an| ≤
∥∥∥∥
∞∑

n=1

anen

∥∥∥∥ ≤
∞∑

n=1

|an| ∀(an) ∈ `1.

By [10] this implies that X∗ contains an isometric copy of L1[0, 1].
However, in [17] we have shown that a certain space constructed by
Talagrand in his study of the three-space problem for L1 has the
Daugavet property; this yields an example of a space with the Dau-
gavet property that fails to contain an isomorphic copy of L1[0, 1].

We now discuss some transfer theorems for operators that satisfy
the Daugavet equation. The definition of the Daugavet property
modestly requires (1.1) to hold only for rank-1 operators, but we
shall see that then automatically much more is true.

Theorem 2.7. If X has the Daugavet property and T : X → X is a
weakly compact operator, then

‖Id + T‖ = 1 + ‖T‖.
Let us remark that, due to the nonlinearity of the norm, it is not

obvious that the Daugavet equation passes form rank-1 to rank-2
operators; yet Theorem 2.7 shows this and much more. Instead of
indicating the proof of this theorem now we only give the argument
for the special case of a compact operator; a generalisation of Theo-
rem 2.7 will be discussed later (Theorem 4.5 and Theorem 4.7).

So let T : X → X be a compact operator on a space with the
Daugavet property; assume without loss of generality that ‖T‖ = 1.
We shall use the fact that the restriction of T ∗ to the dual unit ball
is weak∗-to-norm continuous. Therefore, by the Krein-Milman the-
orem, there exists an extreme point p∗ of BX∗ such that ‖T ∗p∗‖ =
‖T ∗‖ = 1. The converse of the Krein-Milman theorem implies that
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p∗ has a neighbourhood base for the weak∗ topology of BX∗ con-
sisting of weak∗ closed slices, say (S∗α)α; cf. [7, p. 107] for details.
Now Lemma 2.4 shows that each S∗α contains some x∗α such that
‖x∗α + T ∗p∗‖ ≥ 2 − εα, where (εα) is a net converging to 0. This
means that x∗α → p∗ weak∗ and consequently T ∗x∗α → T ∗p∗ in norm
so that ‖x∗α + T ∗x∗α‖ → 2 and thus ‖Id + T‖ = ‖Id + T ∗‖ = 2.

Incidentally, Theorem 2.7 shows that our concept of the Daugavet
property coincides with the one that made a brief appearance in [2].

Comparing Theorem 2.7 with Corollary 2.5 we see that the Ba-
nach space properties of a space with the Daugavet property and
the properties of the operators on that space that satisfy the Dau-
gavet equation seem to complement each other. Therefore, in view
of Theorem 2.6, it is natural to suspect that an even larger class of
operators might satisfy the Daugavet equation, namely the class of
operators not fixing a copy of `1. This was verified in a number of
special cases ([15], [22] and [28]) before R. Shvidkoy obtained the
general statement in [25].

Recall that an operator T : X → Y between Banach spaces is said
to fix a copy of `1 if there is a closed subspace E of X isomorphic to
`1 such that T |E : E → T (E) is an isomorphism; otherwise one says
that T does not fix a copy of `1 (or that T is `1-singular).

Theorem 2.8. If X has the Daugavet property and T : X → X is
an operator not fixing a copy of `1, then

‖Id + T‖ = 1 + ‖T‖.
Again, we shall discuss an extension of this theorem later (Theo-

rem 4.6) and therefore bypass its proof.
For example, let Q be a quotient map from C[0, 1] onto c0 and let

J : c0 → C[0, 1] be an embedding; then JQ does not fix a copy of `1
and hence satisfies the Daugavet equation. This cannot be deduced
from Theorem 2.7 since JQ is not weakly compact.

3. Unconditional bases

Recall that a Schauder basis (en) with coefficient functionals (e∗n) on
a (separable) Banach space X is called an unconditional basis if for
each x ∈ X the expansion

x =
∞∑

n=1

e∗n(x)en
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converges unconditionally. This can be equivalently rephrased by
saying that for each x the net of finite-rank projections defined by

PF (x) =
∑

n∈F

e∗n(x)en, F ⊂ N finite,

converges to x along the index set FIN of finite subsets of N.
It is a well-known fact that neither C[0, 1] nor L1[0, 1] have un-

conditional bases. Indeed, this follows easily from the Daugavet
property as shown by V. Kadets [14].

Proposition 3.1. Any separable Banach space with the Daugavet
property fails to have an unconditional basis.

Proof. Suppose X has an unconditional basis, and define the opera-
tors PF as above. Then sup{‖PF x‖: F ⊂ N finite} < ∞ for each x
so that the uniform boundedness principle implies

α := sup{‖PF ‖: F ⊂ N finite} < ∞.

If X has the Daugavet property, this leads to a contradiction as
follows.

Pick F0 such that ‖PF0‖ > α− 1/2. Then the Daugavet equation
implies that

‖Id− PF0‖ = 1 + ‖PF0‖ > α + 1/2; (3.1)

note that it is applicable by Theorem 2.7 (in fact by the special case
we have proved above). But

‖(Id− PF0)x‖ =
∥∥∥∥

∑

n/∈F0

e∗n(x)en

∥∥∥∥

≤ sup{‖PGx‖: G ⊂ N \ F0 finite} ≤ α‖x‖
so that ‖Id− PF0‖ ≤ α, contradicting (3.1). ¤

The same argument applies to show that a Banach space with the
Daugavet property fails to have an unconditional finite-dimensional
Schauder decomposition or indeed an unconditional Schauder de-
composition into reflexive spaces or even into spaces not containing
`1; we shall have more to say on this in a moment.

At this point it might be worth mentioning that there are Ba-
nach spaces with the Daugavet property failing the approximation
property, since every Banach space X0 can be embedded as a com-
plemented subspace of some uniform algebra X having the Daugavet
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property (see [30]); if X0 fails the approximation property, then so
does X.

The arguments presented in this paper so far seem to provide the
most easily accessible proof to show that C[0, 1] and L1[0, 1] don’t
have unconditional bases. But for these spaces more is true: they do
not even embed into spaces with unconditional bases. In fact, this
also results from the Daugavet property.

Theorem 3.2. A separable Banach space with the Daugavet property
does not embed into a space having an unconditional basis.

Let us sketch the main ideas of the proof ([16], [17]).
Suppose X has the Daugavet property and suppose X embeds

isomorphically into the separable space Y . Let us pretend for the
moment that X is isometric to a subspace of Y (with J : X → Y
denoting the inclusion operator) and that the pair (X, Y ) has the
Daugavet property in the sense that

‖J + T‖ = 1 + ‖T‖ (3.2)

for every rank-1 operator T : X → Y . Then one could work out the
analogous statements of Section 2 to arrive at the conclusion that
(3.2) extends to weakly compact operators or `1-singular operators
from X to Y . In particular, (3.2) holds for finite-rank operators,
and the method of Proposition 3.1 applies to show that J cannot be
expanded into a pointwise unconditionally converging sum of finite-
rank projections; therefore Y cannot have an unconditional basis.

To get rid of the extra assumption, the main idea is to prove that
one can renorm Y to obtain Ỹ , say, in such a way that the pair (X, Ỹ )
satisfies the above extra condition. So, starting from X we wish to
find a renorming Ỹ of Y such that X is isometric to a subspace of
Ỹ and the pair (X, Ỹ ) has the Daugavet property. This is achieved
by means of a universal embedding procedure.

Let U be the space `∞(BX∗) of all bounded functions on BX∗

with the supremum norm; then X embeds into U in a canonical
fashion. If X embeds isomorphically into a separable space Y , then
it is possible to show that Y in turn embeds isomorphically into U
so that the embedded copy Ỹ extends X. If we equip Ỹ with the
supremum norm inherited from U , we obtain isometric embeddings
X ⊂ Ỹ ⊂ U . In order to show that the pair (X, Ỹ ) has the Daugavet
property it is enough to establish this for the pair (X, U). But now
the proof breaks down since U is based on isolated points; in fact,
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U = C(K) for K the Stone-Čech compactification of the discrete
space BX∗ which has a dense set of isolated points.

In order to remedy this situation we reconsider our choice of U ;
the point is to get rid of the isolated points. The following idea works.
Let Ω denote BX∗ with its weak∗ topology, and let fc(Ω) denote the
subspace of all bounded functions f : Ω → R for which {ω: f(ω) 6= 0}
is of first category. Let m0(Ω) = `∞(Ω)/fc(Ω); note that by the Baire
category theorem the restriction of the quotient map Q: `∞(Ω) →
m0(Ω) to C(Ω) is an isometry. Therefore X embeds isometrically
into m0(Ω) by means of Q|X . Now the following statements turn
out to be true.

Theorem 3.3. Let X and Y be separable Banach spaces, with X
isomorphic to a subspace of Y .

(a) There is an isomorphic embedding S: Y → m0(Ω) with
S|X = Q|X .

(b) If X has the Daugavet property, then the pair (X, m0(Ω))
has the Daugavet property.

With this theorem in hand the above outline works with m0(Ω) in
place of U , which yields the proof of Theorem 3.2. We remark that
in [17] we used Ω = exBX∗ instead of BX∗ in order to be able to
work with slices; given part (iv) of Lemma 2.2 one can now proceed
as above (see [25]).

4. Narrow operators

In [18] we have launched another approach to the Daugavet property
building on previous attempts in [15] and [22]. In [15] V. Kadets and
M. Popov defined an operator T : C[0, 1] → E to be C-narrow if for
every proper closed subset F of [0, 1] and every ε > 0 there is a
continuous function of norm 1 vanishing on F such that ‖Tf‖ ≤ ε.
In other words, a C-narrow operator is not bounded from below on
any M -ideal of C[0, 1]. (Actually, they speak of narrow operators –
but see below.) They went on to show that a C-narrow operator T :
C[0, 1] → C[0, 1] satisfies the Daugavet equation (1.1), thus proving
(1.1) for operators on C[0, 1] not fixing a copy of C[0, 1] itself or
– modulo a theorem due to H.P. Rosenthal [23] – for `1-singular
operators on C[0, 1].

An L1-version of narrowness appears in [22]. In [18] the following
definition is proposed.
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Definition 4.1. Let T : X → E be an operator between Banach
spaces.

(a) T is called almost narrow (or strong Daugavet operator) if
for every two elements x, y ∈ SX and every ε > 0 there is
some z ∈ BX such that ‖T (y− z)‖ ≤ ε and ‖x + z‖ ≥ 2− ε.

(b) T is called narrow if for every functional x∗ ∈ X∗ the oper-
ator T ⊕ x∗: X → E ⊕1 R defined by

(T ⊕ x∗)(x) =
(
T (x), x∗(x)

)

is almost narrow.

The necessity to distinguish between narrow and almost narrow
operators will become apparent only later (cf. Theorem 5.2 and The-
orem 5.4).

It follows from Lemma 2.2 that a finite-rank operator on a space
with the Daugavet property is almost narrow, and conversely, if every
rank-1 operator is almost narrow, then X has the Daugavet property.

Also, if X admits at least one narrow operator (with values in
some Banach space E), then by definition all rank-1 operators are
almost narrow; hence X has the Daugavet property if it admits at
least one narrow operator.

The following lemma geometrically describes the difference be-
tween narrow and almost narrow operators.

Lemma 4.2. An operator T : X → E is narrow if and only if for
every two elements x, y ∈ SX , ε > 0 and every slice S of the unit
ball of X containing y there is some z ∈ S such that ‖T (y− z)‖ < ε
and ‖x + z‖ > 2− ε.

Proof. We only prove the forward direction. So let T be a narrow
operator on X, and let x, y ∈ SX , ε > 0 and a slice S = S(x∗, α) be
given such that y ∈ S, that is, x∗(y) ≥ 1− α. Pick a point y′ ∈ SX

with ‖y− y′‖ ≤ ε/(2‖T‖) and x∗(y′) > 1−α. Let δ = min{x∗(y′)−
(1−α), ε/2}. Since T ⊕x∗ is almost narrow, we can find a point z ∈
BX such that ‖z+x‖ ≥ 2−δ ≥ 2−ε and ‖T (y′−z)‖+|x∗(y′−z)| ≤ δ.
This implies that z ∈ S(x∗, α) and ‖T (y − z)‖ ≤ ε. ¤

There is an obvious connection between almost narrow operators
and the Daugavet equation.

Lemma 4.3. If T : X → X is an almost narrow operator, then T
satisfies the Daugavet equation (1.1).
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Proof. We assume without loss of generality that ‖T‖ = 1. Given
ε > 0 pick y ∈ SX such that ‖Ty‖ ≥ 1− ε. If x = Ty/‖Ty‖ and z is
chosen according to Definition 4.1, then

2− ε ≤ ‖z + x‖ ≤ ‖z + Ty‖+ ε ≤ ‖z + Tz‖+ 2ε,

hence
‖z + Tz‖ ≥ 2− 3ε,

which proves the lemma. ¤

Therefore it is an important task to find sufficient conditions for an
operator to be narrow or almost narrow. First of all, for operators
on C(K) there is essentially no difference between C-narrow and
narrow operators.

Theorem 4.4. On the space C(K) an operator is almost narrow
if and only if it is C-narrow. If K has no isolated points, then an
operator on C(K) is narrow if and only if it is C-narrow.

For the proof see [15] and [18].
The following two results extend, via Lemma 4.3, Theorem 2.7

and Theorem 2.8.

Theorem 4.5. If T is a weakly compact operator on a space with
the Daugavet property, then T is narrow.

Proof. Since T ⊕ x∗ is again weakly compact, it is enough to show
that T is almost narrow. So let x, y ∈ SX and ε > 0 be given. Denote
K = TBX ; this is a weakly compact set. Therefore K is the closed
convex hull of its strongly exposed points; see e.g. Theorem 5.11 and
Theorem 5.17 of [3]. Hence there exists a convex combination of
strongly exposed points of K such that

∥∥∥∥Ty −
n∑

j=1

λjuj

∥∥∥∥ < ε.

By the definition of a strongly exposed point, each uj has a neigh-
bourhood base for the relative norm topology on K consisting of
slices of K. Thus, there exist slices S′1, . . . , S

′
n of K such that

n∑

j=1

λjS
′
j ⊂ {u ∈ K: ‖Ty − u‖ < ε}.
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Now Sj := T−1(S′j) ∩BX is a slice of BX , and

U :=
n∑

j=1

λjSj ⊂ {z ∈ BX : ‖Ty − Tz‖ < ε}.

By Lemma 2.2(iv) there is some z ∈ U such that ‖z + x‖ ≥ 2 − ε,
which shows that T is almost narrow. ¤

Theorem 4.6. If T is an `1-singular operator on a space with the
Daugavet property, then T is narrow.

Proof. (Sketch.) Again it is enough to show that T is almost narrow.
We shall only consider the case of separable spaces; in fact, it is
possible to reduce the general case to the separable one. By [9,
Lemma 1(xii)] an operator that does not fix a copy of `1 can be
factored through a space not containing `1. Therefore, it is left to
prove that an operator T : X → E between separable spaces, with X
having the Daugavet property and E not containing a copy of `1, is
almost narrow.

So let x, y ∈ SX and ε > 0 be given. We introduce the following
directed set (Γ,¹): the elements of Γ are finite sequences in SX of
the form γ = (x1, . . . , xn), n ∈ N, with x1 = x. The (strict) ordering
is defined by

(x1, . . . , xn) ≺ (y1, . . . , ym)

if
n < m and {x1, . . . , xn} ⊂ {y1, . . . , ym−1}

and of course γ1 ¹ γ2 iff γ1 ≺ γ2 or γ1 = γ2. Now define a bounded
function F : Γ → E × R by

F (γ) = (Txn, α(γ)),

where α(γ) is given by

sup
{
a > 0: ‖z + xn‖ > a(‖z‖+ ‖xn‖) ∀z ∈ lin{x1, x2, . . . , xn−1}

}
.

We claim that (Ty, 1) is a weak limit point of this net. Indeed,
given γ0 = (x1, . . . , xn−1), a weak neighbourhood V of Ty and
δ > 0, an argument similar to the one of Theorem 2.6, this time
based on Lemma 2.2(iv), shows that there is some xn in the weak
neighbourhood U := T−1(V ) of y such that xn is “up to δ” `1-
orthogonal over lin{x1, . . . , xn−1}; i.e., for γ = (x1, . . . , xn) we have
F (γ) ∈ V × (1− δ, 1 + δ).
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Now we use a modification of a theorem due to H.P. Rosenthal
[24] which tells us that there is a strictly increasing sequence (γj)
such that F (γj) → (Ty, 1) weakly. (It is here that the assumption
that E is separable and fails to contain `1 enters.) If we write γj =
(x1, . . . , xn(j)), then there is a subsequence (x′n) of (xn) such that
Tx′n → Ty weakly and (x′n) is “up to ε” an `1-basis. Therefore there
exists a sequence of convex combinations zn ∈ co{x′n, x′n+1, . . . } such
that ‖Tzn−Ty‖ → 0 and ‖x1 + zn‖ ≥ 2− ε. Hence for large enough
n, z = zn will satisfy the requirements of Definition 4.1(a). ¤

These results can be extended further. First we note that the
essential property of a weakly compact set that we have used in
the proof of Theorem 4.5 is that a convex weakly compact set is
the norm-closed convex hull of its strongly exposed points. This is
known to hold in a larger class of sets called Radon-Nikodým sets
[3, Th. 5.17]. An operator T : X → E is called a strong Radon-Niko-
dým operator if the closure of T (BX) is a Radon-Nikodým set; this
is certainly the case if E has the Radon-Nikodým property. Thus,
the above proof actually shows:

Theorem 4.7. If T is a strong Radon-Nikodým operator on a space
with the Daugavet property, then T is narrow.

In fact, the following more general statements hold. For two op-
erators T : X → E and S: X → F we define T ⊕ S: X → E ⊕1 F
by

(T ⊕ S)(x) =
(
T (x), S(x)

)
.

Theorem 4.8. Suppose X has the Daugavet property and let T and
S be two operators on X.

(a) If T is a strong Radon-Nikodým operator (or merely weakly
compact) and S is narrow, then T ⊕ S is narrow.

(b) If T does not fix a copy of `1 and S is a narrow operator,
then T ⊕ S is narrow.

The previous theorems correspond to the choice S = 0 in this
result. The proof of Theorem 4.8 can be found in [18]. Since there are
examples of narrow operators T and S for which T ⊕S is not narrow
[4], Theorem 4.8 does not follow automatically from the previous
theorems.



92 Dirk Werner

5. Rich subspaces

We have seen that a space with the Daugavet property is sort of
large: it is not reflexive, in fact neither the space nor its dual have the
Radon-Nikodým property, and it is very rich in `1-subspaces. Thus
it is natural to suspect that the Daugavet property is inherited by
“large” subspaces. It turns out that the following concept describes
the appropriate notion of largeness. Again, this definition draws on
precursors from [15] and [22].

Definition 5.1. A subspace Y of a Banach space X is called rich
(resp. almost rich) if the quotient map from X onto X/Y is narrow
(resp. almost narrow).

Example. Let A ⊂ C(K) be a uniform algebra whose Silov boundary
is K. Then A is an almost rich subspace. Indeed, by Theorem 4.4
it is enough to show that the quotient map Q: C(K) → C(K)/A is
C-narrow; that is, we have to show for a closed subset F ( K and
for ε > 0 that there is a continuous function f of norm 1 vanishing
on F whose distance to A is < ε. But a fundamental theorem in the
theory of uniform algebras ensures that there is some g ∈ A with
‖g‖ = 1 and |g| < ε on F ([19, p. 49 and p. 78]), hence an obvious
modification of g yields a function f as requested.

If K has no isolated points, then A is even rich.
Another example worth mentioning (from [15]) is that a subspace

of C[0, 1] (resp. L1[0, 1]) containing a complemented copy of C[0, 1]
(resp. L1[0, 1]) is rich.

We now have:

Theorem 5.2. A rich subspace Y of a Daugavet space X is a Dau-
gavet space itself. Moreover, the pair (Y, X) has the Daugavet prop-
erty.

Proof. Consider elements x ∈ SX , y ∈ SY , and a slice S = S(x∗, ε)
with y ∈ S. According to our assumption the quotient map Q:
X → X/Y is a narrow operator. So by Lemma 4.2 there is an
element z ∈ S such that ‖z+x‖ > 2−ε and ‖Q(y−z)‖ = ‖Q(z)‖ < ε.
The last condition means that the distance from z to Y is smaller
than ε, so there is an element v ∈ Y with ‖v − z‖ < ε. The norm of
v is close to 1, viz. 1− 2ε < ‖v‖ < 1 + ε. Put w = v/‖v‖. For this w
we have ‖w − z‖ < 3ε, so w ∈ S(x∗, 4ε) and ‖w + x‖ > 2− 4ε. ¤
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Corollary 5.3. Suppose X has the Daugavet property and let Y be
a closed subspace of X.

(a) If the quotient space X/Y has the Radon-Nikodým property,
then Y is rich.

(b) If the quotient space X/Y contains no copy of `1, then Y is
rich.

(c) If (X/Y )∗ has the Radon-Nikodým property, then Y is rich.
(d) In particular, every finite-codimensional subspace of X is

rich.
In either case Y is a Daugavet space itself.

Proof. (a) follows from Theorem 4.7 and (b) from Theorem 4.6; (c)
and (d) follow from (b). ¤

Example. Consider the unit circle T and the Fourier transform F :
f 7→ f̂ from L1(T) to c0(Z). A subset Λ of Z is a Sidon set if the
mapping FΛ: f 7→ f̂ |Λ maps L1(T) onto c0(Λ); an example is the set
{1, 4, 16, 64, . . . }. The kernel of FΛ is L1,Λ′ , the space of L1-functions
whose Fourier transforms are supported on Λ′ = Z \ Λ. Thus, if Λ′

is the complement of a Sidon set Λ, then L1/L1,Λ′ is isomorphic
to c0(Λ), a space whose dual `1(Λ) is separable and hence has the
Radon-Nikodým property. Consequently L1,Λ′ is a rich subspace of
L1 if Λ′ is the complement of a Sidon set.

We remark that Theorem 5.2 would not hold if we had replaced
the assumption of richness by almost richness, for there is the fol-
lowing example.

Theorem 5.4. There is a subspace Y of L1 := L1[0, 1] such that Y
fails the Daugavet property, but the quotient map Q: L1 → L1/Y is
almost narrow. Hence Q is an almost narrow operator that fails to
be narrow and Y is an almost rich subspace that fails to be rich.

Outline of the construction. The space Y is the subspace of L1[0, 1]
spanned by the constant functions and certain step functions with
integral 0.

We first partition [0, 1] into 24 subintervals I1,1, . . . , I1,24 of length
1/24 and consider the function g0,1 defined as follows: On I1,2 ∪
· · · ∪ I1,24 it takes the value −1, and on I1,1, the leftmost of these
intervals, it takes a value a0 such that

∫
g0,1 = 0. Next [0, 1] is

partitioned into 216 subintervals I2,1, . . . , I2,216 of length 1/216. We
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let g1,k (k = 1, . . . , 24) be the function with support I1,k defined as
follows: On the leftmost of the small subintervals that make up I1,k

it takes a value a1 and on the remainder of I1,k it takes the value
−1, where a1 is chosen so as to guarantee that

∫
g1,k = 0. Then this

construction is repeated with 264, 2256, etc. subintervals giving step
functions g2,k (k = 1, . . . , 216), g3,k (k = 1, . . . , 264), etc.

We define Y to be the closed linear span of the gn,k and the
constant functions. That the quotient map Q: L1 → L1/Y is almost
narrow can be shown by approximating the function y appearing
in Definition 4.1 by step functions supported on the intervals In,k

(k = 1, . . . , 24n

) for sufficiently large n and then “shifting” the mass
onto the leftmost subinterval of the next generation. However Y
fails the Daugavet property, since it can be shown that the operator
Tf = − ∫

S
f(x) dx 1, with S = [0, 1] \ ⋃

n,k{gn,k > 0}, fails the
Daugavet equation (1.1). ¤

We finally mention another result from [18]. If Y ⊂ Z ⊂ X and
Y is a rich subspace of X, then so is Z by the definition of a narrow
operator. Consequently, all superspaces of a rich subspace have the
Daugavet property by Theorem 5.2. The converse is valid as well:

Theorem 5.5. For a subspace Y of a Banach space X the following
are equivalent:

(i) Y is a rich subspace of X.
(ii) Every finite-codimensional subspace of Y is a rich subspace

of X.
(iii) Every superspace Y ⊂ Z ⊂ X has the Daugavet property

(“Y is wealthy”).

6. Open problems

Here we list some problems which have remained open.
(1) Does the Banach space of Lipschitz functions on the unit

square have the Daugavet property with respect to one of its
natural norms? This is true for the space of Lipschitz func-
tions on the unit interval, which is isomorphic to L∞[0, 1].

(2) Is there a Banach space X such that X∗∗ has the Daugavet
property?

(3) If X and/or Y have the Daugavet property, what about their
tensor products X⊗̂εY and X⊗̂πY ? Note that C(K)⊗̂εY =
C(K,Y ) and L1(µ)⊗̂πY = L1(µ, Y ). [Added June 2001: We
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have recently shown for the complex space L1 = L1[0, 1] and
a certain 2-dimensional complex space Y that L1⊗̂εY fails
the Daugavet property.]

(4) If X has the Daugavet property, does X have a subspace
isomorphic to `2?

(5) If T is an operator on a space X with the Daugavet property
which does not fix a copy of `2, is T then narrow? We remark
that the answer is affirmative in the case X = C[0, 1] by
Theorem 4.6 and a result due to J. Bourgain [5].

(6) Is there a rich subspace of L1 with the Schur property? Is
there a Schur space with the Daugavet property? (Obviously,
not both of Problems 4 and 6 can have a positive answer.)

(7) Specifically, let X ⊂ L1 be the subspace constructed by
J. Bourgain and H.P. Rosenthal in [6]. It has the Schur
property and fails the Radon-Nikodým property. Is it rich?
Does it have the Daugavet property? This space has the
following property:

For ε > 0 and ‖x‖ = 1, let ∆ε(x) = {y ∈ BX :
‖x− y‖ ≥ 2− ε}; then x ∈ co∆ε(x).

For the Daugavet property, we must have BX = co∆ε(x)
for all ε and x; cf. Corollary 2.3. By contrast, the above
property means that ‖Id − P‖ = 2 for every norm-1 rank-1
projection P .
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weakly compact operators. J. Funct. Anal. 17 (1974), 311–327.

[10] S. J. Dilworth, M. Girardi, and J. Hagler. Dual Banach spaces which
contain an isometric copy of L1. Bull. Pol. Acad. Sci. (to appear). Preprint
available from http://xxx.lanl.gov.
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